Skip to main content
Log in

High Efficiency Total Absorption Spectrometer HECTOR for capture reaction measurements

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Proper understanding of the stellar nucleosynthesis processes requires information on a variety of capture reaction cross sections. Since these cross sections are typically very low, they require efficient measurement techniques. The High Efficiency Total Absorption Spectrometer (HECTOR) was designed to measure capture cross sections relevant for astrophysical processes. HECTOR is a \( \gamma\) -summing detector comprised of 16 separate NaI(Tl) segments. The detector design is presented, as well as a detailed study of the detector's summing efficiency and analysis procedure. The results of the commissioning of HECTOR are presented. The resonance strengths of the well-known resonances in the 27Al \( (\mathrm{p},\gamma)\)28Si reaction measured with HECTOR are compared with the literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sauerwein, J. Endres, L. Netterdon, A. Zilges, V. Foteinou, G. Provatas, T. Konstantinopoulos, M. Axiotis, S.F. Ashley, S. Harissopulos, T. Rauscher, Phys. Rev. C 86, 035802 (2012)

    Article  ADS  Google Scholar 

  2. S. Galanopoulos, P. Demetriou, M. Kokkoris, S. Harissopulos, R. Kunz, M. Fey, J.W. Hammer, G. Gyürky, Z. Fülop, E. Somorjai, S. Goriely, Phys. Rev. C 67, 015801 (2003)

    Article  ADS  Google Scholar 

  3. S. Harissopulos, A. Spyrou, A. Lagoyannis, M. Axiotis, P. Demetriou, J.W. Hammer, R. Kunz, H.W. Becker, Phys. Rev. C 87, 025806 (2013)

    Article  ADS  Google Scholar 

  4. M. Famiano, R.S. Kodikara, B.M. Giacherio, V.G. Subramanian, A. Kayani, Nucl. Phys. A 802, 26 (2008)

    Article  ADS  Google Scholar 

  5. N. Özkan, A. Murphy, R. Boyd, A. Cole, M. Famiano, R. Gü, Nucl. Phys. A 710, 469 (2002)

    Article  ADS  Google Scholar 

  6. R.T. Güray, N. Özkan, C. Yalçin, T. Rauscher, G. Gyürky, J. Farkas, Z. Fülöp, Z. Halász, E. Somorjai, Phys. Rev. C 91, 055809 (2015)

    Article  ADS  Google Scholar 

  7. P. Tsagari, M. Kokkoris, E. Skreti, A.G. Karydas, S. Harissopulos, T. Paradellis, P. Demetriou, Phys. Rev. C 64, 015802 (2004)

    Article  ADS  Google Scholar 

  8. A. Spyrou, H.W. Becker, A. Lagoyannis, S. Harissopulos, C. Rolfs, Phys. Rev. C 76, 015802 (2007)

    Article  ADS  Google Scholar 

  9. S. Yamamoto, Y. Fujita, T. Shibata, S. Selvi, Nucl. Instrum. Methods A 249, 484 (1986)

    Article  ADS  Google Scholar 

  10. C. Casella, H. Costantini, A. Lemut, B. Limata, D. Bemmerer, R. Bonetti, C. Broggini, L. Campajola, P. Cocconi, P. Corvisiero et al., Nucl. Instrum. Methods A 489, 160 (2002)

    Article  ADS  Google Scholar 

  11. K. Wisshak, K. Guber, F. Käppeler, J. Krisch, H. Müller, G. Rupp, F. Voss, Nucl. Instrum. Methods A 292, 595 (1990)

    Article  ADS  Google Scholar 

  12. A. Simon, S. Quinn, A. Spyrou, A. Battaglia, I. Beskin, A. Best, B. Bucher, M. Couder, P. DeYoung, X. Fang et al., Nucl. Instrum. Methods Phys. Res. A 703, 16 (2013)

    Article  ADS  Google Scholar 

  13. S. Quinn, A. Spyrou, A. Simon, A. Battaglia, M. Bowers, B. Bucher, C. Casarella, M. Couder, P. DeYoung, A. Dombos et al., Nucl. Instrum. Methods Phys. Res. A 757, 62 (2014)

    Article  ADS  Google Scholar 

  14. StGobain Crystals, https://www.crystals.saint-gobain.com (2019)

  15. C. Prokop, S. Liddick, B. Abromeit, A. Chemey, N. Larsen, S. Suchyta, J. Tompkins, Nucl. Instrum. Methods A 741, 163 (2014)

    Article  ADS  Google Scholar 

  16. XIA LLC, http://www.xia.com/DGF_Pixie-16.html (2019)

  17. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  18. P.M. Endt, Nucl. Phys. A 633, 1 (1998)

    Article  ADS  Google Scholar 

  19. NACRE database, http://pntpm.ulb.ac.be/Nacre/nacre.htm (2019)

  20. J. Brenneisen, D. Grathwohl, M. Lickert, R. Ott, R. Höpke, J. Schmälzlin, B. Wildenthal, Z. Phys. A 352, 149 (1995)

    Article  ADS  Google Scholar 

  21. M. Mayer, in Report IPP 9/113, Max-Planck-Institut für Plasmaphysik (Garching, Germany, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simon.

Additional information

Communicated by M.J. Garcia Borge

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reingold, C.S., Olivas-Gomez, O., Simon, A. et al. High Efficiency Total Absorption Spectrometer HECTOR for capture reaction measurements. Eur. Phys. J. A 55, 77 (2019). https://doi.org/10.1140/epja/i2019-12748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12748-8

Navigation