Skip to main content

Advertisement

Log in

‘End to end’ planktonic trophic web and its implications for the mussel farms in the Mar Piccolo of Taranto (Ionian Sea, Italy)

  • Integrated environmental characterization of the contaminated marine coastal area of Taranto, Ionian Sea (southern Italy) - the RITMARE Project
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013–2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (<2 μm) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the ‘bottom-up’ control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acri F, Benardi Aubry F, Berton A, Bianchi F, Boldrin A, Camatti E, Comaschi A, Rabitti S, Socal G (2004) Plankton communities and nutrients in the Venice lagoon. Comparison between current and old data. J Mar Syst 51:321–329

    Article  Google Scholar 

  • Alabiso G, Giacomini M, Milillo M, Ricci P (2006) Chemical-physical conditions in the Taranto sea system from 2002 to 2004. Biol Mar Medit 13(1):1055–1058

    Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41(1):41–51

    Article  CAS  Google Scholar 

  • Andersen P, Throndsen J (2004) Estimating cell numbers. In: Hallegraeff GM, Anderson DM, Cembella A (eds) Manual on harmful marine microalgae. Monographs on oceanographic methodology n. 11. UNESCO, Paris, pp 99–130

    Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nature 5:782–789

    CAS  Google Scholar 

  • Beers JR, Stewart GL (1970) Numerical abundance and estimated biomass of microzooplankton. In: Strickland JDH (ed) The ecology of the plankton off La Jolla, California, in the period April through September 1967. University of California Press, Berkeley, pp 67–87

    Google Scholar 

  • Belmonte G, Fanelli G, Gravili C, Rubino F (2001) Composition, distribution and seasonality of zooplankton in Taranto seas (Ionian Sea, Italy). Biol Mar Medit 8(1):352–362

    Google Scholar 

  • Belmonte G, Vaglio I, Rubino F, Alabiso G (2013) Zooplankton composition along the confinement gradient of the Taranto Sea System (Ionian Sea, south-eastern Italy). J Mar Syst 128:222–238

    Article  Google Scholar 

  • Bloem J, Bar-Gilissen MJ, Cappenberg TE (1986) Fixation, counting, and manipulation of heterotrophic nanoflagellates. Appl Environ Microbiol 52:1266–1986

    CAS  Google Scholar 

  • Boissonneault-Cellineri KR, Mehta M, Lonsdale DJ, Caron DA (2011) Microbial food web interactions in two long island embayments. Aquat Microb Ecol 26:139–155

    Article  Google Scholar 

  • Bouvy M, Bettarel Y, Bouvier C, Domaizon I, Jacquet S, Le Floc’h E, Montanié H, Mostajir B, Sime-Ngando T, Torréton JP, Vidussi F, Bouvier T (2011) Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change. Environ Microbiol 13(7):1842–1857

    Article  CAS  Google Scholar 

  • Cabrini M, Andri M, Cok S, Pecchiar I, Fonda Umani S (2002) Carbon partitioning among the first trophic levels in the north western Adriatic basin. Chem Ecol 18(1–2):95–105

    Article  Google Scholar 

  • Cardellicchio N, Buccolieri A, Giandomenico S, Lopez L, Pizzuli F, Spada L (2007) Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, southern Italy). Mar Pollut Bull 55(10–12):451–458

    Article  CAS  Google Scholar 

  • Cardellicchio N, Annicchiarico C, Di Leo A, Giandomenico S, Spada L (2015) The Mar Piccolo of Taranto: an interesting ecosystem for the study of the environmental problems. Spec Issue Ritmare. doi:10.1007/s11356-015-4924-6

    Google Scholar 

  • Caron DA, Lim EL, Miceli G, Waterbury JB, Valois FW (1991) Grazing and utilization of chrococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar Ecol Prog Ser 76:205–217

    Article  Google Scholar 

  • Caroppo C (1996) Phytoplankton successions and biodiversity in Mar Piccolo of Taranto. SItE Atti 17:355–358

    Google Scholar 

  • Caroppo C, Cardellicchio N (1995) Preliminary study on phytoplankton communities of Mar Piccolo in Taranto (Ionian Sea). Oebalia 21:61–76

    Google Scholar 

  • Caroppo C, Turicchia S, Margheri MC (2006) Phytoplankton assemblages in coastal waters of the northern Ionian Sea (eastern Mediterranean), with special reference to cyanobacteria. J Mar Biol Assoc UK 86:927–937

    Article  Google Scholar 

  • Caroppo C, Giordano L, Rubino F, Bisci AP, Hopkins TS (2010) Phytoplankton communities as indicators of ecological change in the anthropogenically impacted Mar Piccolo of Taranto (Ionian Sea). Biol Mar Medit 17(1):102–105

    Google Scholar 

  • Caroppo C, Giordano L, Palmieri N, Bellio G, Bisci AP, Portacci G, Sclafani P, Hopkins TS (2012) Progress towards sustainable mussel aquaculture in Mar Piccolo, Italy. Ecol Soc 17(3):10

    Google Scholar 

  • Caroppo C, Musco L, Stabili L (2014) Planktonic assemblages in a coastal Mediterranean Sea subjected to anthropogenic pressure. J Geogr Nat Disaster 4(1):121

    Google Scholar 

  • Caroppo C, Cerino F, Auriemma R, Cibic T (2015) Phytoplankton dynamics with a special emphasis on harmful algal blooms in the Mar Piccolo of Taranto (Ionian Sea, Italy). Environ Sci Pollut Res. doi:10.1007/s11356-015-5000-y

    Google Scholar 

  • Carrada GC, Ribera d’Alcalà M, Saggiomo V (1992) The pelagic system of the Southern Tyrrhenian Sea. Some comments and working hypotheses. Proc of IX AIOL Congress: 151–166

  • Cibic T, Bongiorni L, Borfecchia F, Di Leo A, Franzo A, Giandomenico S, Karuza A, Micheli C, Rogelja M, Spada L, Del Negro P (2015) Ecosystem functioning approach applied to a large contaminated coastal site: the study case of the Mar Piccolo of Taranto (Ionian Sea). Environ Sci Pollut Res. doi:10.1007/s11356-015-4997-2

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E- Ltd, Plymouth

    Google Scholar 

  • Collos Y, Bec B, Jauzein C, Abadie E, Laugier T, Lautier J, Astoureaud A, Souchu P, Vaquer A (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau Lagoon, southern France. J Sea Res 61:68–75

    Article  Google Scholar 

  • Cranford PJ, Anderson R, Archambault P, Balch T, Bates SS, Bugden G, Callier MD, Carver C, Comeau L, Hargrave B, Harrison WG, Horne E, Kepkay PE, Li WKW, Mallet A, Ouellette M, Strain P (2006) Indicators and thresholds for use in assessing shellfish aquaculture impacts on fish habitat. Can Dept Fisheries and Oceans, Ottawa, 125 p. DFO Can Sci Advis Sec Res Doc 2006/034

    Google Scholar 

  • Crisafi P, Crescenti M (1975) Conseguenze delle attività umane sullo zooplancton del Mare di Taranto. Boll Pesca Piscicolt Idrobiol 30(2):207–216

    Google Scholar 

  • Dame RF (2012) Ecology of marine bivalves: an ecosystem approach. Francis & Taylor, Boca Raton

    Google Scholar 

  • De Angelis CM, Della Valle R (1959) Il ciclo stagionale del plancton in rapporto alle condizioni fisico-chimiche del Mar Piccolo e del Mar Grande di Taranto. Boll Pesca Piscicolt Idrobiol 14:21–43 (in Italian)

    Google Scholar 

  • De Pascalis F (2013) Correnti e T/S nei mari di Taranto. CNR Report 09/2013 SP3_WP4_AZ5_UO01_D01 RITMARE La Ricerca Italiana per il MARE (in Italian)

  • Del Negro P, Monti M, Beran A, De Vittor C, Celussi M, Libralato S, Solidoro C (2014) Plankton as inexhaustible resource for the mussel farms of the Gulf of Trieste. Biol Mar Medit 21(1):14–16

    Google Scholar 

  • Duarte CM, Agustì S, Gasol JM, Vaquè D, Vazquez-Dominguez E (2000) Effect of nutrient supply on the biomass structure of plankton communities: an experimental test on a Mediterranean coastal community. Mar Ecol Prog Ser 206:87–95

    Article  Google Scholar 

  • Edler L (1979) Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Balt Mar Biol Public 5:1–37

    Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflaggelates. IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42

    Article  Google Scholar 

  • Fonda Umani S, Franco P, Ghirardelli E, Malej A (1992) Outline of oceanography and the plankton of the Adriatic Sea. In: Colombo G, Ferrari I, Ceccherelli VU, Rossi R (eds) Marine eutrophication and population dynamics. Olsen & Olsen, Fredensborg, pp 347–365

    Google Scholar 

  • Fonda Umani S, Malfatti F, Del Negro P (2012) Carbon fluxes in the pelagic ecosystem of the Gulf of Trieste. Estuar Coast Shelf Sci 115:170–185

    Article  Google Scholar 

  • Franzo A, Auriemma R, Nasi F, Vojvoda J, Pallavicini A, Cibic T, Del Negro P (2015) Benthic ecosystem functioning in the severely contaminated Mar Piccolo of Taranto (Ionian Sea, Italy): focus on heterotrophic pathways. Environ Sci Pollut Res. doi:10.1007/s11356-015-5339-0

    Google Scholar 

  • Giesbrecht W (1891) Elenco dei copepodi pescati dalla R. Corvetta ‘Vettor Pisani’ secondo la loro distribuzione geografica. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche Matematiche e Naturali Rendiconti (4)7 sem. 2:63–68, 276–282 (in Italian)

  • Glibert PM, Garside C, Fuhrman JA, Roman MR (1991) Time-dependent coupling of inorganic and organic nitrogen uptake and regeneration in the plume of the Chesapeake Bay estuary and its regulation by large heterotrophs. Limnol Oceanogr 36(5):895–909

    Article  Google Scholar 

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd edn. Wiley, Weinheim, pp 159–228

    Chapter  Google Scholar 

  • Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (2000) ICES zooplankton methodology

  • Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Holligan PM, Harris RP, Newell RC, Harbour DS, Head RN, Linley EAS, Lucas MI, Tranter PRG, Weekley CM (1984) Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Mar Ecol Prog Ser 14:111–127

    Article  CAS  Google Scholar 

  • Innamorati M, Lazzara L, Nuccio C, Senesi P, Buracchi G (1990) Variazioni stagionali e spaziali delle cenosi fitoplanctoniche nel Mar Ligure (1979–1982). Oebalia 16(1):93–102 (in Italian)

    Google Scholar 

  • Jacobs J (1974) Quantitative measurement of food selection: a modification of the forage ratio and Ivlev’s selectivity index. Oecologia 14:413–417

    Article  Google Scholar 

  • Jacquet S, Lennon JF, Marie D, Vaulot D (1998) Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol Oceanogr 43:1916–1921

    CAS  Google Scholar 

  • Kan J, Wang K, Chen F (2006) Bacterioplankton community in Chesapeake Bay: predictable or random assemblages. Limnol Oceanogr 51(5):2157–2169

    Article  CAS  Google Scholar 

  • Karuza A, Fonda Umani S, Del Negro P (2012) The (un)coupling between viruses and prokaryotes in the Gulf of Trieste. Estuar Coast Shelf Sci 115:87–97

    Article  Google Scholar 

  • Kralj M, Comici C, DeVittor C, Alabiso G (2015) Recent evolution of the physical-chemical characteristics of a site of national interest—the Mar Piccolo of Taranto (Ionian Sea)—and changes over the last 20 years. Environ Sci Pollut Res. doi:10.1007/s11356-015-5198-8

    Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage, Beverly Hills, 96 pp

    Google Scholar 

  • Lee S, Fuhrman JA (1987) Relationship between biovolume and biomass of naturally derived marine bacterio-plankton. Appl Environ Microbiol 54(6):1426–1429

    Google Scholar 

  • Legendre L, Rivkin RB (2002) Pelagic food webs: responses to environmental processes and effects on the environment. Ecol Res 17:143–149

    Article  Google Scholar 

  • Lessard E (1991) The trophic role of the heterotrophic dinoflagellates in diverse marine environments. Mar Microb Food Webs 2:49–58

    Google Scholar 

  • Lorenzen CJ, Jeffrey SW (1980) Determination of chlorophyll in seawater. UNESCO Tech Pap Mar Sci 35:1–20

    Google Scholar 

  • Lorrain A, Savoye N, Chauvaud L, Paulet YM, Naulet N (2003) Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratio of low-carbonated suspended particulate material. Anal Chim Acta 491:125–133

    Article  CAS  Google Scholar 

  • Lund JWG, Kilpling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiology 11:143–170

    Article  Google Scholar 

  • Matarrese A, Tursi A, Costantino G, Pollicoro R (1993) The reproductive cycle of Mytilus galloprovincialis in the Mar Piccolo and Mar Grande of Taranto (Ionian Sea). Oebalia 19:1–11

    Google Scholar 

  • Melaku Canu D, Solidoro C, Umgiesser G, Cucco A, Ferrarin C (2012) Assessing confinement in coastal lagoons. Mar Poll Bull 64:2391–2398

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms and other protest plankton. Limnol Oceanogr 45(3):569–579

    Article  CAS  Google Scholar 

  • Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  • Parenzan P (1984) Il Mar Piccolo di Taranto. Collana documenti della CCIAA, Taranto 25:319 (in Italian)

  • Pastore M (1993) Mar Piccolo. Nuova Apulia, Martina: 166 (in Italian)

  • Pella E, Colombo B (1973) Study of carbon, hydrogen and nitrogen determination by combustion-gas chromatography. Mikrochim Acta 5:697–719

    Article  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Pugnetti A, Bazzoni AM, Beran A, Bernardi Aubry F, Camatti E, Celussi M, Coppola J, Crevatin E, Del Negro P, Paoli A (2008) Changes in biomass structure and trophic status of the plankton communities in a highly dynamic ecosystem (Gulf of Venice, northern Adriatic Sea). Mar Ecol 29:367–374

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1107

    Article  Google Scholar 

  • Raymont JEG (1983) Plankton and productivity in the oceans: vol 2 zooplankton. Pergamon, Oxford, 824 pp

    Google Scholar 

  • Riccardi N (2010) Selectivity of plankton nets over mesozooplankton taxa: implications for abundance, biomass and diversity estimation. J Limnol 69(2):287–296

  • Rodhouse PG, Roden CM (1987) Carbon budget for the coastal inlet in relation to intensive cultivation of suspension-feeding bivalve mollusks. Mar Ecol Prog Ser 36:225–236

    Article  Google Scholar 

  • Rubino F, Cibic T, Belmonte M, Rogelja M (2015) Microbenthic community structure and trophic status of sediments in Mar Piccolo of Taranto (Mediterranean, Ionian Sea). Environ Sci Pollut Res. doi:10.1007/s11356-015-5526-z

    Google Scholar 

  • Sato T (1913) Pelagic copepods (n. 1). Scientific reports, Hokkaido Fisheries Experimental Station 1: 1–79

  • Sharp JH (1974) Improved analysis for ‘particulate’ organic carbon and nitrogen from seawater. Limnol Oceanogr 19(6):984–989

    Article  CAS  Google Scholar 

  • Sherr BF, Sherr EB, Pedros-Alio C (1989) Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar Ecol Prog Ser 54:209–219

    Article  Google Scholar 

  • Sieburth JM (1979) Sea microbes. Oxford University Press, New York, 491 pp

    Google Scholar 

  • Solidoro C, Del Negro P, Libralato S, Melaku Canu D (2010) Sostenibilità della mitilicoltura triestina Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, 88

  • Stabili L, Caroppo C, Danovaro R (2004) Virioplankton abundance in relationship with the pico- and phytoplankton dynamics along gradients of anthropogenic impact (Ionian Sea, Mediterranean Sea). Biol Mar Medit 11(3):116

    Google Scholar 

  • Strusi A, Pastore M (1975) Osservazioni idrografiche nel Mar Grande e nel Mar Piccolo di Taranto. Campagna 1970–71. Oebalia 1:1–64

    Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  CAS  Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • Umgiesser G, Scroccaro I, Alabiso G (2007) Mass exchange mechanisms in the Taranto Sea. Transit Water Bull 2:59–71

    Google Scholar 

  • Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Verity P, Langdon C (1984) Relationship between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6(5):859–868

    Article  CAS  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RRZ, Brand LE (1979) Widespread occurrence of a unicellular marine, planktonic cyanobacterium. Nature 277:293–294

    Article  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  Google Scholar 

  • Wiggins BA, Alexander M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49:19–23

    CAS  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49(19):781–788

    Article  Google Scholar 

  • Zingone A, Totti C, Sarno D, Cabrini M, Caroppo C, Giacobbe MG, Luglie A, Nuccio C, Socal G (2010) Fitoplancton: metodiche di analisi quali-quantitativa. In: Socal G, Buttino I, Cabrini M, Mangoni O, Penna A, Totti C (eds), Metodologie di studio del plancton marino. ISPRA, Manuali e Linee Guida 56: 213–237 (in Italian)

Download references

Acknowledgments

We would like to thank to M. Kralj for providing the chemical data and F. Cerino for her stimulating discussions. We are truly grateful to the anonymous reviewers for their valuable suggestions for improving the manuscript. The activities described in this publication were funded by the Project Bandiera RITMARE (Ricerca Italiana per il Mare), coordinated by the National Research Council and funded by the Ministry for Education, University and Research within the National Research Programme 2011–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Karuza.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuza, A., Caroppo, C., Monti, M. et al. ‘End to end’ planktonic trophic web and its implications for the mussel farms in the Mar Piccolo of Taranto (Ionian Sea, Italy). Environ Sci Pollut Res 23, 12707–12724 (2016). https://doi.org/10.1007/s11356-015-5621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5621-1

Keywords

Navigation