Skip to main content
Log in

Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata’s rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

UHPLC-DAD-ESI/QTOF-MS:

Ultrahigh-performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry

UV:

Ultraviolet

ESI:

Electrospray ionization

MSMS:

Tandem mass spectrometry

ESI/MS2 :

Electrospray ionization tandem mass spectrometry

HRMS:

High-resolution mass spectrometry

1H-NMR:

Proton nuclear magnetic resonance

RT:

Retention time

SPE:

Solid phase extraction

PVP:

Soil under P. vittata polluted

BSP:

Bulk soil polluted

DLP:

Soil under Dicranopteris linearis polluted

PVC:

Soil under P. vittata control

HSD:

Honest significant difference

PCA:

Principal component analysis

ANOVA:

Analysis of variance

CFU:

Colony forming unit

QPCR:

Quantitative real-time polymerase chain reaction

OTU:

Operational taxonomic unit

DGGE:

Denaturing gradient gel electrophoresis

DPPH:

2,2-diphenyl-1-picrylhydrazyl

References

  • Ahmed SI, Hayat MQ, Tahir M et al (2016) Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement Altern Med 16:460. doi:10.1186/s12906-016-1443-z

    Article  Google Scholar 

  • Ali MB, Singh N, Shohael AM et al (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171:147–154. doi:10.1016/j.plantsci.2006.03.005

    Article  CAS  Google Scholar 

  • Amadou C, Pascal G, Mangenot S et al (2008) Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483. doi:10.1101/gr.076448.108

    Article  CAS  Google Scholar 

  • Anh BTK, Kim DD, Tua TV et al (2011) Phytoremediation potential of indigenous plants from Thai Nguyen province, Vietnam. J Environ Biol 32:257–262

    CAS  Google Scholar 

  • An ZZ, Huang ZC, Lei M et al (2006) Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil. Chemosphere 62:796–802. doi:10.1016/j.chemosphere.2005.04.084

    Article  CAS  Google Scholar 

  • Azarbad H, Niklińska M, van Gestel CAM et al (2013) Microbial community structure and functioning along metal pollution gradients. Environ Toxicol Chem 32:1992–2002. doi:10.1002/etc.2269

    Article  CAS  Google Scholar 

  • Bardon C, Piola F, Bellvert F et al (2014) Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites. New Phytol 204:620–630. doi:10.1111/nph.12944

    Article  CAS  Google Scholar 

  • Berg J, Brandt KK, Al-Soud WA et al (2012) Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Appl Environ Microbiol 78:7438–7446. doi:10.1128/AEM.01071-12

    Article  CAS  Google Scholar 

  • Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 51:2900–2911. doi:10.1021/jf026187q

    Article  CAS  Google Scholar 

  • Courts FL, Williamson G (2015) The occurrence, fate and biological activities of C-glycosyl flavonoids in the human diet. Crit Rev Food Sci Nutr 55:1352–1367. doi:10.1080/10408398.2012.694497

    Article  CAS  Google Scholar 

  • Crupi P, Genghi R, Antonacci D (2014) In-time and in-space tandem mass spectrometry to determine the metabolic profiling of flavonoids in a typical sweet cherry (Prunus avium L.) cultivar from Southern Italy. J Mass Spectrom 49:1025–1034. doi:10.1002/jms.3423

    Article  CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytoremediation 16:429–453. doi:10.1080/15226514.2013.798613

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. doi:10.1105/tpc.7.7.1085

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  Google Scholar 

  • Ekelund F, Olsson S, Johansen A (2003) Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol Biochem 35:1507–1516. doi:10.1016/S0038-0717(03)00249-9

    Article  CAS  Google Scholar 

  • Epelde L, Martín-Sánchez I, González-Oreja JA et al (2012) Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils. Sci Total Environ 433:264–272. doi:10.1016/j.scitotenv.2012.06.049

    Article  CAS  Google Scholar 

  • Gong X-L, Chen Z-H, Liang N-C (2007) Advances in study on chemical constituents and pharmacological activities of plants of genus Pteris. Chin J Chin Mater Medica 32:1382–1387

    CAS  Google Scholar 

  • Gracelin DHS, Britto AJD, Kumar PBJR (2012) Qualitative and quantitative analysis of phytochamicals in five Pteris species. Int J Pharm Pharm Sci 5:105–107

    Google Scholar 

  • Gu L, Kelm MA, Hammerstone JF et al (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521. doi:10.1021/jf034815d

    Article  CAS  Google Scholar 

  • Guo Z, Megharaj M, Beer M et al (2009) Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol 100:3831–3836. doi:10.1016/j.biortech.2009.02.043

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, Tuinen D van, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321:235–257. doi: 10.1007/s11104-008-9814-y

  • Hong C, Si Y, Xing Y, Li Y (2015) Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ Sci Pollut Res Int 22:10788–10799. doi:10.1007/s11356-015-4186-3

    Article  CAS  Google Scholar 

  • Imperato F (2000) Kaempferol and quercetin 3-O-(X″,X″-di-protocatechuoyl)-glucuronides from Pteris vittata. Am Fern J 90:141–144. doi:10.2307/1547491

    Article  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. doi:10.2478/intox-2014-0009

    Article  Google Scholar 

  • Jaishee N, Chakraborty U (2015) Comparative assessment of phytochemicals and HPLC analyses of phenolics present in Dicranopteris linearis (N. Burm.) Underw and Pteris vittata L. Int J Pharm Pharm Sci Res 5:1–7

    Google Scholar 

  • Kachenko AG, Singh B, Bhatia NP (2007) Heavy metal tolerance in common fern species. Aust J Bot 55:63–73. doi:10.1071/BT06063

    Article  CAS  Google Scholar 

  • Kajdžanoska M, Gjamovski V, Stefova M (2010) HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced J Chem Chem Eng 29:181–194

    Google Scholar 

  • Karafin M, Romagnoli M, Fink DL et al (2010) Fatal infection caused by Cupriavidus gilardii in a child with aplastic anemia. J Clin Microbiol 48:1005–1007. doi:10.1128/JCM.01482-09

    Article  Google Scholar 

  • Karamać M (2009) Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts. Int J Mol Sci 10:5485–5497. doi:10.3390/ijms10125485

    Article  Google Scholar 

  • Kelly JJ, Häggblom M, Tate RL III (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465. doi:10.1016/S0038-0717(99)00059-0

    Article  CAS  Google Scholar 

  • Konopka A, Zakharova T, Bischoff M et al (1999) Microbial biomass and activity in lead-contaminated soil. Appl Environ Microbiol 65:2256–2259

    CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13

    Article  CAS  Google Scholar 

  • Langevin S, Vincelette J, Bekal S, Gaudreau C (2011) First case of invasive human infection caused by Cupriavidus metallidurans. J Clin Microbiol 49:744–745. doi:10.1128/JCM.01947-10

    Article  Google Scholar 

  • Lenart-Boroń A, Boroń P (2014) The effect of industrial heavy metal pollution on microbial abundance and diversity in soils—a review. In: Hernandez Soriano MC (ed) Environmental risk assessment of soil contamination. InTech. p759–783. doi: 10.5772/57406

  • Leong CNA, Tako M, Hanashiro I, Tamaki H (2008) Antioxidant flavonoid glycosides from the leaves of Ficus pumila L. Food Chem 109:415–420. doi:10.1016/j.foodchem.2007.12.069

    Article  CAS  Google Scholar 

  • Lin L-Z, Harnly JM (2010) Phenolic component profiles of mustard greens, yu choy, and 15 other brassica vegetables. J Agric Food Chem 58:6850–6857. doi:10.1021/jf1004786

    Article  CAS  Google Scholar 

  • Lou Z, Wang H, Zhu S et al (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76:M398–M403. doi:10.1111/j.1750-3841.2011.02213.x

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579. doi:10.1038/35054664

    Article  CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer Berlin Heidelberg, Berlin, Heidelberg doi:10.1007/978-3-642-88458-0

  • Maldonado PD, Rivero-Cruz I, Mata R, Pedraza-Chaverrí J (2005) Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). J Agric Food Chem 53:1996–2001. doi:10.1021/jf0483725

    Article  CAS  Google Scholar 

  • Marques V, Farah A (2009) Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem 113:1370–1376. doi:10.1016/j.foodchem.2008.08.086

    Article  CAS  Google Scholar 

  • Martucci MEP, De Vos RCH, Carollo CA, Gobbo-Neto L (2014) Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia schreb. PLoS One 9:e93149. doi:10.1371/journal.pone.0093149

    Article  Google Scholar 

  • Mendoza-Wilson AM, Castro-Arredondo SI, Espinosa-Plascencia A et al (2016) Chemical composition and antioxidant-prooxidant potential of a polyphenolic extract and a proanthocyanidin-rich fraction of apple skin. Heliyon 2:e00073. doi:10.1016/j.heliyon.2016.e00073

    Article  Google Scholar 

  • Michalet S, Rohr J, Warshan D et al (2013) Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiol Biochem 72:169–177. doi:10.1016/j.plaphy.2013.05.003

    Article  CAS  Google Scholar 

  • Nguyen THH, Sakakibara M, Sano S, Mai TN (2011) Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam. J Hazard Mater 186:1384–1391. doi:10.1016/j.jhazmat.2010.12.020

    Article  CAS  Google Scholar 

  • Nunes I, Jacquiod S, Brejnrod A, et al (2016) Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiol Ecol 92:fiw175. doi: 10.1093/femsec/fiw175

  • Paul T, Das B, Apte K, Suchitra (2012) Hypoglycemic activity of Pteris vittata L., a fern on alloxan induced diabetic rats. Inventi Impact Planta active 2:88–91.

  • Plumb GW, Price KR, Williamson G (1999) Antioxidant properties of flavonol glycosides from green beans. Redox Rep Commun Free Radic Res 4:123–127. doi:10.1179/135100099101534800

    Article  CAS  Google Scholar 

  • Poehlein A, Kusian B, Friedrich B et al (2011) Complete genome sequence of the type strain Cupriavidus necator N-1. J Bacteriol 193:5017. doi:10.1128/JB.05660-11

    Article  CAS  Google Scholar 

  • Qiang L, Luo F, Zhao X et al (2015) Identification of proanthocyanidins from litchi ( Litchi chinensis Sonn .) pulp by LC-ESI-Q-TOF-MS and their antioxidant activity. PLoS One 10:e0120480. doi:10.1371/journal.pone.0120480

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. doi:10.1093/nar/gks1219

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Salatino MLF, Prado J (1998) Flavonoid glycosides of Pteridaceae from Brazil. Biochem Syst Ecol 26:761–769. doi:10.1016/S0305-1978(98)00032-5

    Article  CAS  Google Scholar 

  • Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093. doi:10.1128/AEM.00654-11

    Article  Google Scholar 

  • Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621. doi:10.1111/j.1365-2958.2009.06792.x

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. doi:10.1016/j.tplants.2008.10.007

    Article  CAS  Google Scholar 

  • Sheik CS, Mitchell TW, Rizvi FZ et al (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:e40059. doi:10.1371/journal.pone.0040059

    Article  CAS  Google Scholar 

  • Singh BK, Quince C, Macdonald CA et al (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol 16:2408–2420. doi:10.1111/1462-2920.12353

    Article  Google Scholar 

  • Singh M, Govindarajan R, Rawat AKS, Khare PB (2008) Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. Am Fern J 98:98–103

    Article  Google Scholar 

  • Singh S, Parihar P, Singh R et al (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. doi:10.3389/fpls.2015.01143

    Google Scholar 

  • Thijs S, Sillen W, Rineau F et al (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol doi. doi:10.3389/fmicb.2016.00341

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  Google Scholar 

  • Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50. doi:10.1016/S0168-6496(03)00232-0

    Article  CAS  Google Scholar 

  • von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek 96:115–139. doi:10.1007/s10482-008-9284-5

    Article  Google Scholar 

  • Vukics V, Guttman A (2010) Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom Rev 29:1–16. doi:10.1002/mas.20212

    CAS  Google Scholar 

  • Wahid F, Khan T, Shehzad O et al (2016) Phytochemical analysis and effects of Pteris vittata extract on visual processes. J Nat Med 70:8–17. doi:10.1007/s11418-015-0930-8

    Article  CAS  Google Scholar 

  • Wakelin SA, Chu G, Lardner R et al (2010) A single application of Cu to field soil has long-term effects on bacterial community structure, diversity, and soil processes. Pedobiologia 53:149–158. doi:10.1016/j.pedobi.2009.09.002

    Article  CAS  Google Scholar 

  • Wang J, Zhao F-J, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561. doi:10.1104/pp.008185

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  Google Scholar 

  • Wang X, Chen M, Xiao J et al (2015) Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3. PLoS One 10:e0132881. doi:10.1371/journal.pone.0132881

    Article  Google Scholar 

  • Whitaker BD, Stommel JR (2003) Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J Agric Food Chem 51:3448–3454. doi:10.1021/jf026250b

    Article  CAS  Google Scholar 

  • Yang J, Guo J, Yuan J (2008) In vitro antioxidant properties of rutin. LWT - Food Sci Technol 41:1060–1066. doi:10.1016/j.lwt.2007.06.010

    Article  CAS  Google Scholar 

  • Zhang X, Niu J, Liang Y et al (2016) Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 17:21. doi:10.1186/s12863-016-0330-4

    Article  Google Scholar 

Download references

Acknowledgments

Hoang Nam Pham wish to gratefully thank the Vietnam Ministry of Education and Training, the University of Sciences and Technologies of Hanoi, and team “Environmental resistance and bacterial efflux,” UMR 5557 CNRS Microbial Ecology, for the financial support. We thank the platforms CESN (Centre d’Etudes des Substances Naturelles) and PARMIC (Plateau d’Analyse du Risque MICrobiologique, UMR Ecologie Microbienne, Université Lyon1) for the equipment facilities, and Institut of Marine Biochemistry (Vietnam Academy of Science and Technology, Hanoi) is also acknowledged for providing valuable assessment during the development of this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Nazaret.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Fig. S1

Typical UHPLC/DAD chromatogram at 280 nm of P. vittata root extracts. PVP: From plants grown on contaminated soil (Ha Thuong); PVC: From plants grown on non-polluted soil (USTH) (DOCX 157 kb).

Fig. S2

Typical UHPLC/DAD chromatogram at 280 nm of P. vittata stems extracts. PVP: From plants grown on contaminated soil (Ha Thuong); PVC: From plants grown on non-polluted soil (USTH) (DOCX 182 kb).

Fig. S3

Typical UHPLC/DAD chromatogram at 280 nm of P. vittata leaves extracts. PVP: From plants grown on contaminated soil (Ha Thuong); PVC: From plants grown on non-polluted soil (USTH) (DOCX 185 kb).

Table S1

(DOCX 11 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H.N., Michalet, S., Bodillis, J. et al. Impact of metal stress on the production of secondary metabolites in Pteris vittata L. and associated rhizosphere bacterial communities. Environ Sci Pollut Res 24, 16735–16750 (2017). https://doi.org/10.1007/s11356-017-9167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9167-2

Keywords

Navigation