Skip to main content

Advertisement

Log in

Active and resting microbenthos in differently contaminated marine coastal areas: insights from the Gulf of Trieste (northern Adriatic, Mediterranean Sea)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Marine benthic microalgae are a promising bioindicator of contamination. To date, however, investigations on the microbenthic communities subjected to multiple stressors in natural environments are still very rare. To assess whether the benthic processes of primary production and oxygen consumption, and the structure of active and resting microbenthos, were affected by sediment contamination, seven stations were sampled in different zones of the port of Trieste, subjected to multiple and diffuse contamination, and a reference site in the Marine Reserve of Miramare. No major differences in total abundance of active microbenthos were observed among sites, but the dominance of stress-resistant species and the reduction of more sensitive ones, were registered nearby the main productive activities. The densities of resting microbenthos were higher in polluted areas, and represented by key dinoflagellate species that were clearly linked to contamination. The analysis of similarity applied to both active and resting communities significantly separated the most contaminated stations from the other ones. The photosynthetic capability of active microbenthos did not seem to be affected by contamination. The maximum oxygen consumption rates observed in sediments nearby the productive activities were likely ascribable to high organic C contents and the presence of metals in reduced chemical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Admiraal, W., 1984. The ecology of estuarine sediment-inhabiting diatoms. Progress in Phycological Research 3: 269–322.

    Google Scholar 

  • Agatz, M., M. R. Asmus & B. Deventer, 1999. Structural changes in the benthic diatom community along a eutrophication gradient on a tidal flat. Helgoland Marine Research 53: 92–101.

    Article  Google Scholar 

  • Araújo, C. V. M., J. Blasco & I. Moreno-Garrido, 2010. Microphytobenthos in ecotoxicology: a review of the use of marine benthic diatoms in bioassays. Environment International 36: 637–646.

    Article  PubMed  Google Scholar 

  • Aydin, H. & S. Uzar, 2014. Distribution and abundance of modern dinoflagellate cysts from Marmara, Aegean and Eastern Seas of Turkey. Journal of Environmental Biology 35: 413–419.

    PubMed  Google Scholar 

  • Aydin, H., E. E. Yürür, S. Uzar & F. Küçüksezgin, 2015. Impact of industrial pollution on recent dinoflagellate cysts in Izmir Bay (Eastern Aegean). Marine Pollution Bulletin 94: 144–152.

    Article  CAS  PubMed  Google Scholar 

  • Bastianini, M., C. Totti, A. Penna, A. De Lazzari & M. Montresor, 2016. Dinoflagellate cyst production in the north-western Adriatic Sea. Mediterranean Marine Science 17: 751–765.

    Article  Google Scholar 

  • Baula, I. U., R. V. Azanza, Y. Fukuyo & F. P. Siringan, 2011. Dinoflagellate cyst composition, abundance and horizontal distribution in Bolinao, Pangasinan, Northern Philippines. Harmful Algae 11: 33–44.

    Article  Google Scholar 

  • Berg, P., N. Risgaard-Petersen & S. Rysgaard, 1998. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography 43: 1500–1510.

    Article  CAS  Google Scholar 

  • Brambati, A. & G. Catani, 1988. Le coste ei fondali del Golfo di Trieste dall’Isonzo a Punta Sottile: aspetti geologici, geomorfologici, sedimentologici e geotecnici. Hydrores Information 5: 13–28.

    Google Scholar 

  • Cahoon, L. B. & J. Cooke, 1992. Benthic microalgal production in Onslow bay, North Carolina, USA. Marine Ecology Progress Series 84: 185–196.

    Article  Google Scholar 

  • Cardin, V. & M. Celio, 1997. Cluster analysis as a statistical method for identification of the water bodies present in the Gulf of Trieste (Northern Adriatic Sea). Bollettino di Geofisica Teorica e Applicata 38: 119–135.

    Google Scholar 

  • Casas-Monroy, O., S. Roy & A. Rochon, 2013. Dinoflagellate cysts in ballast sediments: differences between Canada’s east coast, west coast and the Great Lakes. Aquatic Conservation: Marine and Freshwater Ecosystems 23: 254–276.

    Article  Google Scholar 

  • Cibic, T. & D. Virgilio, 2010. Different fixatives and chloridric acid concentrations in microphytobenthic primary production estimates using radiolabeled carbon: their use and misuse. Limnology and Oceanography: Methods 8: 453–461.

    CAS  Google Scholar 

  • Cibic, T., O. Blasutto, C. Falconi & S. Fonda Umani, 2007a. Microphytobenthic biomass, species composition and nutrient availability in sublittoral sediments of the Gulf of Trieste (northern Adriatic Sea). Estuarine, Coastal and Shelf Science 75: 50–62.

    Article  Google Scholar 

  • Cibic, T., O. Blasutto, K. Hancke & G. Johnsen, 2007b. Microphytobenthic species composition, pigment concentration, and primary production in sublittoral sediments of the Trondheimsfjord. Journal of Phycology 43: 1126–1137.

    Article  CAS  Google Scholar 

  • Cibic, T., A. Acquavita, F. Aleffi, N. Bettoso, O. Blasutto, C. De Vittor, C. Falconi, J. Falomo, L. Faresi, S. Predonzani, F. Tamberlich & S. Fonda Umani, 2008a. Integrated approach to sediment pollution: a case study in the Gulf of Trieste. Marine Pollution Bulletin 56: 1650–1657.

    Article  CAS  PubMed  Google Scholar 

  • Cibic, T., O. Blasutto, N. Burba & S. Fonda Umani, 2008b. Microphytobenthic primary production as 14C uptake in sublittoral sediments of the Gulf of Trieste (northern Adriatic Sea): methodological aspects and data analyses. Estuarine, Coastal and Shelf Science 77: 113–122.

    Article  Google Scholar 

  • Cibic, T., C. Comici, A. Bussani & P. Del Negro, 2012a. Benthic diatom response to changing environmental conditions. Estuarine, Coastal and Shelf Science 115: 158–169.

    Article  CAS  Google Scholar 

  • Cibic, T., A. Franzo, M. Celussi, C. Fabbro & P. Del Negro, 2012b. Benthic ecosystem functioning in hydrocarbon and heavy-metal contaminated sediments of an Adriatic lagoon. Marine Ecology Progress Series 458: 69–87.

    Article  CAS  Google Scholar 

  • Cibic, T., L. Bongiorni, F. Borfecchia, A. Di Leo, A. Franzo, S. Giandomenico, A. Karuza, C. Micheli, M. Rogelja & L. Spada, 2016. Ecosystem functioning approach applied to a large contaminated coastal site: the study case of the Mar Piccolo of Taranto (Ionian Sea). Environmental Science and Pollution Research 23: 12739–12754.

    Article  PubMed  Google Scholar 

  • Consalvey, M., D. M. Paterson & G. J. C. Underwood, 2004. The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Research 19: 181–202.

    Article  Google Scholar 

  • Cunningham, L., J. S. Stark, I. Snape, A. McMinn & M. J. Riddle, 2003. Effects of metal and petroleum hydrocarbon contamination on benthic diatom communities near Casey station, Antarctica: an experimental approach. Journal of Phycology 39: 490–503.

    Article  CAS  Google Scholar 

  • De la Rey, P. A., J. C. Taylor, A. Laas, L. Van Rensburg & A. Vosloo, 2004. Determining the possible application value of diatoms as indicators of general water quality: a comparison with SASS 5. Water SA 30: 325–332.

    Google Scholar 

  • Dexing, J., C. Zhaodi, L. Junmin & L. Shicheng, 1985. The Marine Benthic Diatoms in China, Vol. 1. China Ocean Press, Beijing.

    Google Scholar 

  • Elshanawany, R. & K. A. F. Zonneveld, 2016. Dinoflagellate cyst distribution in the oligotrophic environments of the Gulf of Aqaba and northern Red Sea. Marine Micropaleontology 124: 29–44.

    Article  Google Scholar 

  • Faust, M. A. & R. A. Gulledge, 2002. Identifying harmful marine dinoflagellates. Contributions from the United States National Herbarium 42: 1–144.

    Google Scholar 

  • Ferraro, L., F. Rubino, M. Belmonte, S. Da Prato, M. Greco & F. Frontalini, 2016. A multidisciplinary approach to study confined marine basins: the holobenthic and merobenthic assemblages in the Mar Piccolo of Taranto (Ionian Sea, Mediterranean). Marine Biodiversity. doi:10.1007/s12526-016-0523-0.

    Google Scholar 

  • Fertouna-Bellakhal, M., A. Dhib, B. Béjaoui, S. Turki & L. Aleya, 2014. Driving factors behind the distribution of dinocyst composition and abundance in surface sediments in a western Mediterranean coastal lagoon: report from a high resolution mapping study. Marine Pollution Bulletin 84: 347–362.

    Article  CAS  PubMed  Google Scholar 

  • Forster, R. M., V. Créach, K. Sabbe, W. Vyverman & L. J. Stal, 2006. Biodiversity-ecosystem function relationship in microphytobenthic diatoms of the Westerschelde estuary. Marine Ecology Progress Series 311: 191–201.

    Article  Google Scholar 

  • Franzo, A., T. Cibic, P. Del Negro & C. Solidoro, 2014. Microphytobenthic response to mussel farm biodeposition in coastal sediments of the northern Adriatic Sea. Marine Pollution Bulletin 79: 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Franzo, A., T. Cibic & P. Del Negro, 2016. Integrated approach for the assessment of the benthic ecosystem functioning at a coastal site in the northern Adriatic Sea. Continental Shelf Research 121: 35–47.

    Article  Google Scholar 

  • Germain, H., 1981. Flore des Diatomées: Eaux Douces et Saumâtres. Société Nouvelle des Éditions Boubée, Paris.

    Google Scholar 

  • Ghirardelli, E. & S. Pignatti, 1968. Consequences de la pollution sur les peuplements du “Vallone de Muggia” près de Trieste. Revue Internationale d’Océanographie Médicale 10: 111–122.

    Google Scholar 

  • Guiry, M. D. & G. M. Guiry, 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 21 Feb 2017

  • Hakanen, P., S. Suikkanen & A. Kremp, 2014. Allelopathic activity of the toxic dinoflagellate Alexandrium ostenfeldii: intra-population variability and response of co-occurring dinoflagellates. Harmful Algae 39: 287–294.

    Article  Google Scholar 

  • Hallegraeff, G. M., 2015. Transport of harmful marine microalgae via ship’s ballast water: management and mitigation with special reference to the Arabian Gulf region. Aquatic Ecosystem Health & Management 18: 290–298.

    Article  CAS  Google Scholar 

  • Hendey, N. I., 1976. An Introductory Account of the Smaller Algae of British Coastal Waters. Fishery Investigations. Otto Koeltz Science Publishers, Koenigstein.

    Google Scholar 

  • Hunter, J., 2007. Diatoms as environmental indicators: a case study in the bioluminescent bays of Vieques, Puerto Rico. 20th Annual Keck Symposium, Wooster, OH, USA. http://keckgeology.org/files/pdf/symvol/20th/puertorico/hunter.pdf

  • Larson, F., D. G. Petersen, I. Dahllöf & K. Sundbäck, 2007. Combined effects of an antifouling biocide and nutrient status on a shallow-water microbenthic community. Aquatic Microbial Ecology 48: 277–294.

    Article  Google Scholar 

  • Liu, D., Y. Shi, B. Di, Q. Sun, Y. Wang, Z. Dong & H. Shao, 2012. The impact of different pollution sources on modern dinoflagellate cysts in Sishili Bay, Yellow Sea China. Marine Micropaleontology 84–85: 1–13.

    Article  Google Scholar 

  • Macken, A., M. Giltrap, B. Foley, E. McGovern, B. McHugh & M. Davoren, 2008. A model compound study: the ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays. Environmental Pollution 153: 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Margalef, R., 1986. Ecología. Editorial Omega S.A., Barcelona.

    Google Scholar 

  • McQuoid, M. R. & K. Nordberg, 2003. The diatom Paralia sulcata as an environmental indicator species in coastal sediments. Estuarine, Coastal and Shelf Science 56: 339–354.

    Article  CAS  Google Scholar 

  • Montresor, M., M. Bastianini, E. Cucchiari, M. Giacobbe, A. Penna, F. Rubino & C. T. Satta, 2010. Stadi di resistenza del fitoplancton. In Socal, G., I. Buttino, M. Cabrini, O. Mangoni, A. Penna & C. Totti (eds), Metodologie di studio del Plancton Marino, Vol. 26. ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Roma: 258–273.

    Google Scholar 

  • Moscatello, S., F. Rubino, O. D. Saracino, G. Fanelli, G. Belmonte & F. Boero, 2004. Plankton biodiversity around the Salento Peninsula (South East Italy): an integrated water/sediment approach. Scientia Marina 68: 85–102.

    Google Scholar 

  • Nichetto, P., G. Honsell & G. Bressan, 1995a. First survey of dinoflagellate cysts in the Gulf of Trieste (Northern Adriatic Sea). In Lassus, P., G. Arzul, E. Erard-Le Denn, P. Gentien & C. Marcaillou-Le Baut (eds), Harmful Marine Algal Blooms. Technique et Documentation-Lavoisier, Intercept ltd, Paris: 205–211.

    Google Scholar 

  • Nichetto, P., L. Sidari & G. Honsell, 1995b. Annual survey of planktonic dinoflagellates and related cysts in the Gulf of Trieste (Northern Adriatic Sea). Giornale botanico italiano 129: 1197–1212.

    Article  Google Scholar 

  • Nieuwenhuize, J., Y. E. M. Maas & J. J. Middelburg, 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Marine Chemistry 45: 217–224.

    Article  CAS  Google Scholar 

  • Okamoto, O. K., L. Shao, J. Woodland Hastings & P. Colepicolo, 1999. Acute and chronic effects of toxic metals on viability, encystment and bioluminescence in the dinoflagellate Gonyaulax polyedra. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 123: 75–83.

    CAS  Google Scholar 

  • Orlova, T. & T. Morozova, 2013. Dinoflagellate cysts in recent marine sediments of the western coast of the Bering Sea. Russian Journal of Marine Biology 39: 15–29.

    Article  Google Scholar 

  • Pella, E. & B. Colombo, 1973. Study of carbon, hydrogen and nitrogen determination by combustion-gas chromatography. Microchimica Acta 61: 697–719.

    Article  Google Scholar 

  • Pielou, E. C., 1966. Shannon’s formula as a measure of specific diversity: its use and misuse. American Naturalist 100: 463–465.

    Article  Google Scholar 

  • Pinckney, J. L. & R. Zingmark, 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Marine Ecology Progress Series 76: 81–89.

    Article  Google Scholar 

  • Potapova, M., N. Desianti & M. Enache, 2016. Potential effects of sediment contaminants on diatom assemblages in coastal lagoons of New Jersey and New York States. Marine Pollution Bulletin 107: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Price, A. M., M. R. S. Coffin, V. Pospelova, J. S. Latimer & G. L. Chmura, 2017. Effect of nutrient pollution on dinoflagellate cyst assemblages across estuaries of the NW Atlantic. Marine Pollution Bulletin 121: 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Revsbech, N. P., 1989. An oxygen microsensor with a guard cathode. Limnology and Oceanography 34: 474–478.

    Article  CAS  Google Scholar 

  • Ribeiro, S., T. Berge, N. Lundholm, T. J. Andersen, F. Abrantes & M. Ellegaard, 2011. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nature Communications 2: 311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richard, M., 1987. Atlas du Phytoplancton Marin Volume II: Diatomophycées. Éditions du Centre National de la Recherché Scientifique, Paris.

  • Rimet, F., 2012. Recent views on river pollution and diatoms. Hydrobiologia 683: 1–24.

    Article  Google Scholar 

  • Round, F. E., R. M. Crawford & D. G. Mann, 1992. The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rubino, F., G. Belmonte, A. M. Miglietta, S. Geraci & F. Boero, 2000. Resting stages of plankton in recent north Adriatic sediments. Marine Ecology 21: 263–284.

    Article  Google Scholar 

  • Rubino, F., O. D. Saracino, S. Moscatello & G. Belmonte, 2009. An integrated water/sediment approach to study plankton (a case study in the southern Adriatic Sea). Journal of Marine Systems 78: 536–546.

    Article  Google Scholar 

  • Rubino, F., M. Belmonte, C. Caroppo & M. Giacobbe, 2010. Dinoflagellate cysts from surface sediments of Syracuse Bay (Western Ionian Sea, Mediterranean). Deep Sea Research Part II: Topical Studies in Oceanography 57: 243–247.

    Article  CAS  Google Scholar 

  • Rubino, F., T. Cibic, M. Belmonte & M. Rogelja, 2016. Microbenthic community structure and trophic status of sediments in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea). Environmental Science and Pollution Research 23: 12624–12644.

    Article  CAS  PubMed  Google Scholar 

  • Rubino, F., M. Belmonte & B. S. Galil, 2017. Plankton resting stages in recent sediments of Haifa port, Israel (Eastern Mediterranean): distribution, viability and potential environmental consequences. Marine Pollution Bulletin. doi:10.1016/j.marpolbul.2016.12.078.

    PubMed  Google Scholar 

  • Satta, C. T., S. Anglès, E. Garcés, N. Sechi, S. Pulina, B. M. Padedda, D. Stacca & A. Lugliè, 2014. Dinoflagellate cyst assemblages in surface sediments from three shallow Mediterranean lagoons (Sardinia, North Western Mediterranean Sea). Estuaries and Coasts 37: 646–663.

    Article  CAS  Google Scholar 

  • Serôdio, J., J. M. Da Silva & F. Catarino, 2001. Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Marine Ecology Progress Series 218: 45–61.

    Article  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Champaign.

    Google Scholar 

  • Sharp, J. H., 1974. Improved analysis for particulate organic carbon and nitrogen from seawater. Limnology and Oceanography 19: 984–989.

    Article  CAS  Google Scholar 

  • Sheng, G. P., H. Q. Yu & Z. B. Yue, 2005. Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Applied Microbiology and Biotechnology 69: 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, G. P., H. Q. Yu & X. Y. Li, 2010. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances 28: 882–894.

    Article  CAS  PubMed  Google Scholar 

  • Shepard, F. P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research 24: 151–158.

    Article  Google Scholar 

  • Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.

    Article  Google Scholar 

  • Solis-Weiss, V., P. Rossin, F. Aleffi, N. Bettoso, G. Orel & B. Vrišer, 2001. Gulf of Trieste: sensitivity areas using benthos and GIS techniques. In Özhan, E. (ed), Proceedings of the Fifth International Conference on the Mediterranean Coastal Environment. MEDCOAST 01, Ankara: 1567–1578.

  • Steemann Nielsen, E., 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. Journal du Conseil 18: 117–140.

    Article  Google Scholar 

  • Steichen, J. L., A. Schulze, R. Brinkmeyer & A. Quigg, 2014. All aboard! A biological survey of ballast water onboard vessels spanning the North Atlantic Ocean. Marine Pollution Bulletin 87: 201–210.

    Article  CAS  PubMed  Google Scholar 

  • Sundbäck, K., A. Miles & E. Goeransson, 2000. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Marine Ecology Progress Series 200: 59–76.

    Article  Google Scholar 

  • Sundbäck, K., D. G. Petersen, I. Dahllöf & F. Larson, 2007. Combined nutrient-toxicant effects on a shallow-water marine sediment system: sensitivity and resilience of ecosystem functions. Marine Ecology Progress Series 330: 13–30.

    Article  Google Scholar 

  • Sundbäck, K., C. Alsterberg & F. Larson, 2010. Effects of multiple stressors on marine shallow-water sediments: response of microalgae and meiofauna to nutrient–toxicant exposure. Journal of Experimental Marine Biology and Ecology 388: 39–50.

    Article  Google Scholar 

  • Tolun, L. G., O. S. Okay, A. F. Gaines, M. Tolay, H. Tüfekçi & N. Kıratlı, 2001. The pollution status and the toxicity of surface sediments in İzmit Bay (Marmara Sea). Turkey Environment International 26: 163–168.

    Article  CAS  PubMed  Google Scholar 

  • Tomas, C. R., 1997. Identifying Marine Phytoplankton. Academic Press, San Diego.

    Google Scholar 

  • Torres, M. A., M. P. Barros, S. C. G. Campos, E. Pinto, S. Rajamani, R. T. Sayre & P. Colepicolo, 2008. Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicology and Environmental Safety 71: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Triki, H. Z., M. Laabir, C. Lafabrie, D. Malouche, C. Bancon-Montigny, C. Gonzalez, A. Deidun, O. Pringault & O. K. Daly-Yahia, 2017. Do the levels of industrial pollutants influence the distribution and abundance of dinoflagellate cysts in the recently-deposited sediment of a Mediterranean coastal ecosystem? Science of the Total Environment 595: 380–392.

    Article  CAS  PubMed  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Internationale Vereinigung für Theoretische und Anwandte Limnologie 9: 1–38.

    Google Scholar 

  • Van Heurck, H., 1899. Traité des Diatomées. Édité aux Frais de L’Auteur, Anvers.

    Google Scholar 

  • van Leeuwe, M. A., V. Brotas, M. Consalvey, R. M. Forster, D. Gillespie, B. Jesus, J. Roggeveld & W. W. C. Gieskes, 2008. Photoacclimation in microphytobenthos and the role of xanthophyll pigments. European Journal of Phycology 43: 123–132.

    Article  Google Scholar 

  • Witkowski, A., H. Lange-Bertalot & D. Metzeltin, 2000. Diatom Flora of Marine Coasts. Iconographia Diatomologica. Koeltz Scientific Books, Königstein. www.porto.trieste.it

  • Zonneveld, K. A. F., L. Chen, R. Elshanawany, H. W. Fischer, M. Hoins, M. I. Ibrahim, D. Pittauerova & G. J. M. Versteegh, 2012. The use of dinoflagellate cysts to separate human-induced from natural variability in the trophic state of the Po River discharge plume over the last two centuries. Marine Pollution Bulletin 64: 114–132.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The activities described in this study were funded by the Project Bandiera ‘RITMARE—La Ricerca Italiana per il Mare’ coordinated by the National Research Council (C.N.R.) and funded by the Italian ‘Ministry for Education, University and Research’ within the National Research Programme 2011–2013. The activities carried out within the port of Trieste were funded by the ‘Autorità Portuale di Trieste’ (Port Authority of Trieste). We are very grateful to C. Comici for grain size and TOC analyses and to F. Varisco for contaminant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Cibic.

Additional information

Handling editor: Stefano Amalfitano

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Floristic list and life mode of the dominant taxonomic group of the active microbenthos (diatoms) at the seven sampling sites within the port area of Trieste and the reference site C1. Supplementary material 1 (PDF 87 kb)

Online Resource 2

Relative abundance (RA) of the most abundant genera of active (a) and resting (b) microbenthos at the sampling stations in the port of Trieste and the reference site C1. The less abundant taxa are grouped in Others. N. A. = not available. Supplementary material 2 (PDF 160 kb)

Online Resource 3

Diatom abundance in surface sediments of Trieste port and the reference site C1. Supplementary material 3 (PDF 99 kb)

Online Resource 4

List of the resting microbenthos at the seven sampling sites within the port area of Trieste and the reference site C1. Supplementary material 4 (PDF 75 kb)

Online Resource 5

Registered densities of full cysts in surface sediments of Trieste port and the reference site C1. Supplementary material 5 (PDF 95 kb)

Online Resource 6

O2 concentration microprofiles estimated at the sampling stations in the port of Trieste and the reference site C1. Supplementary material 6 (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogelja, M., Cibic, T., Rubino, F. et al. Active and resting microbenthos in differently contaminated marine coastal areas: insights from the Gulf of Trieste (northern Adriatic, Mediterranean Sea). Hydrobiologia 806, 283–301 (2018). https://doi.org/10.1007/s10750-017-3366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3366-1

Keywords

Navigation