Skip to main content

Advertisement

Log in

Effects Of Changing Surface Heat Flux On Atmospheric Boundary-Layer Flow Over Flat Terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We examine the unsteady response of a neutral atmospheric boundary layer (ABL) of depth h and friction velocity u * when a uniform surface heat flux is applied abruptly or decreased rapidly over a time scale t<inf>θ</inf> less than about h /(10u *). Standard Monin–Obukhov (MO) relationships are used for the perturbed eddy viscosity profile in terms of the changes to the heat flux and mean shear. Analytical solutions for changes in temperature, mean wind and shear stress profile are obtained for the surface layer, when there are small changes in h /|LMO| over the time scale tMO~|L MO|/(10u*) (where L MO and t MO are the length and time scales, respectively). They show that a maximum in the wind speed profile occurs at the top of the thermal boundary layer for weak surface cooling, i.e. a wind jet, whereas there is a flattening of the profile and no marked maximum for weak surface heating. The modelled profiles are approximately the same as those obtained from the U.K. Met Office Unified Model when operating as a mesoscale model at 12-km horizontal resolution. The theoretical model is modified when strong surface heating is suddenly applied, resulting in a large change in h /|L MO| (>>1), over the time scale t MO. The eddy structure is predicted to change significantly and the addition of convective turbulence increases the shear turbulence at the ground. A low-level wind jet can form, with convective turbulence adding to the mean momentum of the flow. This was verified by our laboratory experiment and direct numerical simulations. Additionally, it is shown that the effects of Coriolis acceleration diminish (rather than as suggested in the literature, amplify) the formation of the wind jets in the situations considered here. Hence, only when the surface heat flux changes over time scales greater than 1/f (where f is the Coriolis parameter) does the ABL adjust monotonically between its equilibrium states. These results are also applicable to the ABL passing over spatially varying surface heat fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. K. Blackadar (1957) ArticleTitle‘Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions’ Bull. Amer. Meteorol. Soc 38 283–290

    Google Scholar 

  • W. D. Bonner (1968) ArticleTitle‘Climatology of the Low-Level Jet’ Mon. Wea. Rev 96 833–850

    Google Scholar 

  • J. A. Businger J. C. Wyngaard Y. Izumi E. F. Bradley (1971) ArticleTitle‘Flux-Profile Relationships in the Atmospheric Surface Layer’ J. Atmos. Sci 28 181–189 Occurrence Handle10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

    Article  Google Scholar 

  • P. A. Clark P. W. Hopwood (2001) ArticleTitle‘One-Dimensional Site-Specific Forecasting of Radiation Fog. Part I: Model Formulation and Idealised Sensitivity Studies’. Meteorol. Appl 8 279–286 Occurrence Handle10.1017/S1350482701003036

    Article  Google Scholar 

  • M. J. P. Cullen (1993) ArticleTitle‘The Unified Forecast/Climate Model’ Meteor. Mag 122 81–94

    Google Scholar 

  • Cullen, M. J. P., Davies, T., and Mawson, M. H.: 1993, ‘Conservative Finite Difference Schemes for a Unified Forecast/Climate Model’, Unified Model documentation paper No. 10, UK Met. Office, UK.

  • S. H. Derbyshire (1994) ArticleTitle‘A Balanced Approach to Stable Boundary Layer Dynamics’ J. Atmos. Sci 51 3486–3504 Occurrence Handle10.1175/1520-0469(1994)051<3486:AATSBL>2.0.CO;2

    Article  Google Scholar 

  • M. Galmiche J. C. R. Hunt (2002) ArticleTitle‘The Formation of Shear and Density Layers in Stably Stratified Turbulent Flows: Linear Processes’ J. Fluid Mech 455 243–262 Occurrence Handle10.1017/S002211200100739X

    Article  Google Scholar 

  • Garg, S. C., Maini, H. K., Thomas, J., Tiwari, M. K., Singh, V., Singh, D., Bahl, M., Khanna, R. M., and Gera, B. S.: 2004, ‘A New Temperature Inversion Layer Close to the Ground in Polluted Atmospheric Environment’, Proceedings of the Twelfth International Symposium on Acoustic Remote Sensing , Cambridge University, Cambridge, UK, July 11–16, 63–66.

  • J. R. Garratt (1992) The Atmospheric Boundary Layer Cambridge University Press, Cambridge U.K 316

    Google Scholar 

  • E. J. Hinch G. Schubert (1971) ArticleTitle‘Strong Streaming Induced by Moving Thermal Wave’ J. Fluid Mech 41 291–304

    Google Scholar 

  • Hunt J. C. R., Stretch D. D., and Britter R. E. (1988). ‘Length Scales in Stably Stratified Turbulent Flows and Their Use in Turbulence Models. in: J.S. Puttock (ed.). Proceedings of the I M A Conference on Stably Stratified Flow and Dense Gas Dispersion. Clarendon Press, Oxford, U.K 285-322

  • J. C. R. Hunt H. J. S. Fernando M. Princevac (2003) ArticleTitle‘Unsteady Thermally Driven Flows on Gentle Slopes’ J. Atmos. Sci 60 2169–2182 Occurrence Handle10.1175/1520-0469(2003)060<2169:UTDFOG>2.0.CO;2

    Article  Google Scholar 

  • J. C. R. Hunt A. J. Vrieling F. T. N. Nieuwstadt H. J. S. Fernando (2003) ArticleTitle‘The Influence of the Thermal Diffusivity of the Lower Boundary on Eddy Motion in Convection’ J. Fluid Mech 491 183–205 Occurrence Handle10.1017/S0022112003005482

    Article  Google Scholar 

  • J. C. King J. Turner (1997) Antarctic Meteorology and Climatology Cambridge University Press Cambridge, U.K 425

    Google Scholar 

  • R. Krishnamurti L. N. Howard (1981) ArticleTitle‘Large-Scale Flow Generation in Turbulent Convection’ Proc. Natl. Acad Sci. USA 78 1981–1985

    Google Scholar 

  • A. S. Monin A. M. Obukhov (1954) ArticleTitle‘Basic Laws of Turbulent Mixing in the Ground Layer of Atmosphere’ Tr. Geofiz. Akad. Nauk. SSR 1 95–115

    Google Scholar 

  • P. J. Mulhearn (1981) ArticleTitle‘On the Formation of a Stably Stratified Internal Boundary layer by Advection of Warmer Air Over a Cooler Sea’ Boundary-Layer Meteorol 21 247–254 Occurrence Handle10.1007/BF02033942

    Article  Google Scholar 

  • F. T. M. Nieuwstadt J. C. R. Hunt (2003) ‘Boundary Layers: Coherent Structures’ J. R. Holton (Eds) Encyclopedia of Atmospheric Sciences Elsevier Science Ltd. London, U.K. 228–233

    Google Scholar 

  • Ooms, G. and Tennekes, H. (eds.).: 1984, Atmospheric Dispersion of Heavy Gases and Small Particles, IUTAM symposium, Delft, The Netherlands, August 29–September 2, 1983, Springer-Verlag, Berlin, Germany, 440 pp.

  • K. G. Rao R. Narasimha (1996) ArticleTitle‘Estimation of Drag Coefficient at Low Wind Speeds Over the Monsoon Trough Land Region During MONTBLEX-90’ Geophys. Res. Lett 23 2617–2620 Occurrence Handle10.1029/96GL02368

    Article  Google Scholar 

  • L. F. Richardson (1923) ArticleTitle‘Wind Above the Night-Calm at Benson at 7 a.m.’ Quart J. Roy. Meteorol. Soc 49 34

    Google Scholar 

  • N. E. Rider J. R. Philip E. F. Bradley (1963) ArticleTitle‘The Horizontal Transport of Heat and Moisture – A Micrometeorological Study’ Quart J. Roy. Meteorol. Soc 89 507–531

    Google Scholar 

  • R. S. Scorer (1954) ArticleTitle‘Theory of Airflow over Mountains: IV - Separation of Flow over the Surface’ Quart J. Roy Meteorol. Soc 81 340–350

    Google Scholar 

  • J. E. Simpson (1994) Sea Breeze and Local Wind Cambridge University Press Cambridge, U.K 234

    Google Scholar 

  • S. P. Singal S. K. Aggarwal D. R. Pahwa B. S. Gera (1985) ArticleTitle‘Stability Studies with the Help of Acoustic Sounding’ Atmos. Environ 19 221–228 Occurrence Handle10.1016/0004-6981(85)90090-3

    Article  Google Scholar 

  • A.-S. Smedman H. Bergström U. Hagstrom (1995) ArticleTitle‘Spectra, Variances and Length Scales in a Marine Boundary Layer Dominated by a Low Level Jet’ Boundary-Layer Meteorol. 76 211–232 Occurrence Handle10.1007/BF00709352

    Article  Google Scholar 

  • A. S. Smedman U. Högström J. C. R. Hunt (2004) ArticleTitle‘Effects of Shear Sheltering in a Stable Atmospheric Boundary Layer with Strong Shear’ Quart. J. Roy. Meteorol. Soc 130 31–50 Occurrence Handle10.1256/qj.03.68

    Article  Google Scholar 

  • A. J. Thorpe T. H. Guymer (1977) ArticleTitle‘The Nocturnal Jet’ Quart. J. Roy. Meteorol. Soc 103 633–653 Occurrence Handle10.1256/smsqj.43808

    Article  Google Scholar 

  • A. A. Townsend (1965) ArticleTitle‘The Response of a Turbulent Boundary Layer to Abrupt Changes in Surface Conditions’ J. Fluid Mech 22 799–822

    Google Scholar 

  • A. A. Townsend (1976) Structure of Turbulent Shear Flow Cambridge University Press Cambridge, U.K 429

    Google Scholar 

  • J. S. Turner (1973) Buoyancy Effects in Fluids Cambridge University Press Cambridge, U.K. 382

    Google Scholar 

  • J. C. Wyngaard R. A. Brost (1984) ArticleTitle‘Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer’ J. Atmos. Sci. 41 102–112 Occurrence Handle10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Z. Owinoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owinoh, A.Z., Hunt, J.C.R., Orr, A. et al. Effects Of Changing Surface Heat Flux On Atmospheric Boundary-Layer Flow Over Flat Terrain. Boundary-Layer Meteorol 116, 331–361 (2005). https://doi.org/10.1007/s10546-004-2819-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-2819-z

Keywords

Navigation