Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Human cytomegalovirus protein pp65: an efficient protein carrier system into human dendritic cells

Abstract

Protein-based immunogens are usually poor inducers of CD8+ T cells. To enhance the induction of CD8+ T cells, one approach is the use of protein immunogens coupled to protein transduction domains (PTDs). These are small cationic peptide sequences that significantly enhance the uptake of fused proteins into dendritic cells (DC) and then mediate their presentation in the context of major histocompatibility complex class I (MHC-I) and MHC-II molecules. One drawback of this system is the high concentrations of PTD-fusion proteins required. Here, we show that proteins fused to the human cytomegalovirus tegument protein pp65 were bound with higher efficiency to DCs than those fused to the described PTDs TatPTD and Penetratin. Furthermore, the fusion of pp65 to proteins led to an enhanced uptake of these proteins by DCs. Once taken up, CD4+ and CD8+ memory T cells were strongly stimulated ex vivo demonstrating that pp65 was efficiently processed and presented in the context of both MHC-I and MHC-II. These data make pp65 a promising delivery system to induce cellular immune responses by fused protein vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Reinhard G, Marten A, Kiske SM, Feil F, Bieber T, Schmidt-Wolf IG . Generation of dendritic cell-based vaccines for cancer therapy. Br J Cancer 2002; 86: 1529–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koziel MJ . Cellular immune responses against hepatitis C virus. Clin Infect Dis 2005; 41 (Suppl 1): S25–S31.

    Article  PubMed  Google Scholar 

  3. Chang JJ, Lewin SR . Immunopathogenesis of hepatitis B virus infection. Immunol Cell Biol 2007; 85: 16–23.

    Article  CAS  PubMed  Google Scholar 

  4. Bruder D, Srikiatkhachorn A, Enelow RI . Cellular immunity and lung injury in respiratory virus infection. Viral Immunol 2006; 19: 147–155.

    Article  CAS  PubMed  Google Scholar 

  5. Brehm MA, Selin LK, Welsh RM . CD8T cell responses to viral infections in sequence. Cell Microbiol 2004; 6: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Snyder JT, Alexander-Miller MA, Berzofskyl JA, Belyakov IM . Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res 2003; 1: 287–294.

    Article  CAS  PubMed  Google Scholar 

  7. Kalams SA . Cellular immunity for prevention and clearance of HIV infection. Curr Mol Med 2003; 3: 195–208.

    Article  CAS  PubMed  Google Scholar 

  8. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9–26.

    Article  CAS  PubMed  Google Scholar 

  9. Basta S, Alatery A . The cross-priming pathway: a portrait of an intricate immune system. Scand J Immunol 2007; 65: 311–319.

    Article  CAS  PubMed  Google Scholar 

  10. Shedlock DJ, Weiner DB . DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 2000; 68: 793–806.

    CAS  PubMed  Google Scholar 

  11. Steinman RM . Some interfaces of dendritic cell biology. Apmis 2003; 111: 675–697.

    Article  CAS  PubMed  Google Scholar 

  12. Ardavin C, Amigorena S, Reis e Sousa C . Dendritic cells: immunobiology and cancer immunotherapy. Immunity 2004; 20: 17–23.

    Article  CAS  PubMed  Google Scholar 

  13. Reis e Sousa C . Dendritic cells in a mature age. Nat Rev Immunol 2006; 6: 476–483.

    Article  CAS  PubMed  Google Scholar 

  14. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S . Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002; 20: 621–667.

    Article  CAS  PubMed  Google Scholar 

  15. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T et al. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 2002; 17: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Probst HC, van den Broek M . Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J Immunol 2005; 174: 3920–3924.

    Article  CAS  PubMed  Google Scholar 

  17. Mellman I, Steinman RM . Dendritic cells: specialized and regulated antigen processing machines. Cell 2001; 106: 255–258.

    Article  CAS  PubMed  Google Scholar 

  18. Brode S, Macary PA . Cross-presentation: dendritic cells and macrophages bite off more than they can chew!. Immunology 2004; 112: 345–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C et al. Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 2001; 166: 6099–6103.

    Article  CAS  PubMed  Google Scholar 

  20. Kim DT, Mitchell DJ, Brockstedt DG, Fong L, Nolan GP, Fathman CG et al. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J Immunol 1997; 159: 1666–1668.

    CAS  PubMed  Google Scholar 

  21. Pietersz GA, Li W, Apostolopoulos V . A 16-mer peptide (RQIKIWFQNRRMKWKK) from antennapedia preferentially targets the Class I pathway. Vaccine 2001; 19: 1397–1405.

    Article  CAS  PubMed  Google Scholar 

  22. Leifert JA, Whitton JL . ‘Translocatory proteins’ and ‘protein transduction domains’: a critical analysis of their biological effects and the underlying mechanisms. Mol Ther 2003; 8: 13–20.

    Article  CAS  PubMed  Google Scholar 

  23. Chauhan A, Tikoo A, Kapur AK, Singh M . The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 2007; 117: 148–162.

    Article  CAS  PubMed  Google Scholar 

  24. Shibagaki N, Udey MC . Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J Immunol 2002; 168: 2393–2401.

    Article  CAS  PubMed  Google Scholar 

  25. Shibagaki N, Udey MC . Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma. Eur J Immunol 2003; 33: 850–860.

    Article  CAS  PubMed  Google Scholar 

  26. Lindsay MA . Peptide-mediated cell delivery: application in protein target validation. Curr Opin Pharmacol 2002; 2: 587–594.

    Article  CAS  PubMed  Google Scholar 

  27. Bennett RP, Dalby B, Guy PM . Protein delivery using VP22. Nat Biotechnol 2002; 20: 20.

    Article  CAS  PubMed  Google Scholar 

  28. Falnes PO, Wesche J, Olsnes S . Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment. Biochemistry 2001; 40: 4349–4358.

    Article  CAS  PubMed  Google Scholar 

  29. Mai JC, Shen H, Watkins SC, Cheng T, Robbins PD . Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem 2002; 277: 30208–30218.

    Article  CAS  PubMed  Google Scholar 

  30. Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 1998; 4: 1449–1452.

    Article  CAS  PubMed  Google Scholar 

  31. Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F . Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci USA 2002; 99: 4489–4494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pepperl-Klindworth S, Frankenberg N, Riegler S, Plachter B . Protein delivery by subviral particles of human cytomegalovirus. Gene Therapy 2003; 10: 278–284.

    Article  CAS  PubMed  Google Scholar 

  33. Tabi Z, Moutaftsi M, Borysiewicz LK . Human cytomegalovirus pp65- and immediate early 1 antigen-specific HLA class I-restricted cytotoxic T cell responses induced by cross-presentation of viral antigens. J Immunol 2001; 166: 5695–5703.

    Article  CAS  PubMed  Google Scholar 

  34. Andrews DM, Andoniou CE, Granucci F, Ricciardi-Castagnoli P, Degli-Esposti MA . Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2001; 2: 1077–1084.

    Article  CAS  PubMed  Google Scholar 

  35. Arrode G, Boccaccio C, Abastado JP, Davrinche C . Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J Virol 2002; 76: 142–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moutaftsi M, Mehl AM, Borysiewicz LK, Tabi Z . Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood 2002; 99: 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  37. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: NY, 1989.

    Google Scholar 

  38. Schutz A, Scheller N, Breinig T, Meyerhans A . The Autographa californica nuclear polyhedrosis virus AcNPV induces functional maturation of human monocyte-derived dendritic cells. Vaccine 2006; 24: 7190–7196.

    Article  PubMed  Google Scholar 

  39. Batchu RB, Moreno AM, Szmania SM, Bennett G, Spagnoli GC, Ponnazhagan S et al. Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma. Cancer Res 2005; 65: 10041–10049.

    Article  CAS  PubMed  Google Scholar 

  40. Gallina A, Percivalle E, Simoncini L, Revello MG, Gerna G, Milanesi G . Human cytomegalovirus pp65 lower matrix phosphoprotein harbours two transplantable nuclear localization signals. J Gen Virol 1996; 77 (Part 6): 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  41. Schmolke S, Kern HF, Drescher P, Jahn G, Plachter B . The dominant phosphoprotein pp65 (UL83) of human cytomegalovirus is dispensable for growth in cell culture. J Virol 1995; 69: 5959–5968.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bousarghin L, Hubert P, Franzen E, Jacobs N, Boniver J, Delvenne P . Human papillomavirus 16 virus-like particles use heparan sulfates to bind dendritic cells and colocalize with langerin in Langerhans cells. J Gen Virol 2005; 86: 1297–1305.

    Article  CAS  PubMed  Google Scholar 

  43. Loison F, Nizard P, Sourisseau T, Le Goff P, Debure L, Le Drean Y et al. A ubiquitin-based assay for the cytosolic uptake of protein transduction domains. Mol Ther 2005; 11: 205–214.

    Article  CAS  PubMed  Google Scholar 

  44. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 2003; 278: 585–590.

    Article  CAS  PubMed  Google Scholar 

  45. Ingelfinger D, Arndt-Jovin DJ, Luhrmann R, Achsel T . The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. Rna 2002; 8: 1489–1501.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Andrade DM, Scherer SW, Minassian BA . Protein therapy for Unverricht–Lundborg disease using cystatin B transduction by TAT-PTD. Is it that simple? Epilepsy Res 2006; 72: 75–79.

    Article  CAS  PubMed  Google Scholar 

  47. Lundberg M, Johansson M . Is VP22 nuclear homing an artifact? Nat Biotechnol 2001; 19: 713–714.

    Article  CAS  PubMed  Google Scholar 

  48. Lundberg M, Johansson M . Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 2002; 291: 367–371.

    Article  CAS  PubMed  Google Scholar 

  49. Breinig T, Sester M, Sester U, Meyerhans A . Antigen-specific T cell responses: determination of their frequencies, homing properties, and effector functions in human whole blood. Methods 2006; 38: 77–83.

    Article  CAS  PubMed  Google Scholar 

  50. Sester M, Sester U, Gartner B, Heine G, Girndt M, Mueller-Lantzsch N et al. Levels of virus-specific CD4T cells correlate with cytomegalovirus control and predict virus-induced disease after renal transplantation. Transplantation 2001; 71: 1287–1294.

    Article  CAS  PubMed  Google Scholar 

  51. Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J . Cross-presentation by intercellular peptide transfer through gap junctions. Nature 2005; 434: 83–88.

    Article  CAS  PubMed  Google Scholar 

  52. Sester M, Sester U, Kohler H, Schneider T, Deml L, Wagner R et al. Rapid whole blood analysis of virus-specific CD4 and CD8T cell responses in persistent HIV infection. Aids 2000; 14: 2653–2660.

    Article  CAS  PubMed  Google Scholar 

  53. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 2006; 12: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  54. Sabatte J, Maggini J, Nahmod K, Amaral MM, Martinez D, Salamone G et al. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 2007; 18: 5–17.

    Article  CAS  PubMed  Google Scholar 

  55. Crow MK . Modification of accessory molecule signaling. Springer Semin Immunopathol 2006; 27: 409–424.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Saarland University. We thank T Tänzer and D Holzer for technical assistance. We thank the Winterbergkliniken Saarbrücken for providing us with blood cell concentrates and additional information about the HCMV serostatus of the blood donors. We thank, furthermore, the volunteers for the donation of their blood. We also thank Frank T Hufert for a plasmid containing pp65 cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Meyerhans.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheller, N., Furtwängler, R., Sester, U. et al. Human cytomegalovirus protein pp65: an efficient protein carrier system into human dendritic cells. Gene Ther 15, 318–325 (2008). https://doi.org/10.1038/sj.gt.3303086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303086

Keywords

This article is cited by

Search

Quick links