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ABSTRACT

In this study, basic interpolation and machine learning data augmentation were applied to scarce data used in Water Quality

Analysis Simulation Programme (WASP) and Continuous Stirred Tank Reactor (CSTR) that were applied to nitrogenous com-

pound degradation modelling in a river reach. Model outputs were assessed for statistically significant differences.

Furthermore, artificial data gaps were introduced into the input data to study the limitations of each augmentation method.

The Python Data Analysis Library (Pandas) was used to perform the deterministic interpolation. In addition, the effect of missing

data at local maxima was investigated. The results showed little statistical difference between deterministic interpolation

methods for data augmentation but larger differences when the input data were infilled specifically at locations where extrema

occurred.
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HIGHLIGHTS

• Basic interpolation methods did not produce statistically significant differences in augmented datasets.

• Increasing the gaps yielded greater differences between augmented datasets.

• ML methods on real and artificial gaps produced acceptable results.

• No significant differences between the WASP and Basic Model on real and artificial input.

• Difference between the WASP and Basic Model on real and artificial input.
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INTRODUCTION

Fresh water is a scarce resource in South Africa, with an average annual daily rainfall of 490 mm (WWF-SA 2016)
being around half the global average. A recent local annual climate report shows that precipitation patterns have

remained unchanged in South Africa (SAWS 2020). There has therefore not been any increase in rainfall while
the demand for water increased steadily. In addition to water scarcity, South African freshwater resources are
subjected to strain through pollution from underperforming water treatment facility effluents. Eutrophication,

a result of excess phosphoric and nitrogenous nutrients in a river system, has been previously highlighted by
van Ginkel (2011) and Harding (2015) as a serious problem in the country. Therefore, effective water resource
management is crucial to managing the quantity and quality of available in-demand levels.

Water resource management solutions require a reliable representation of the state of water in the regions of
the country where water is monitored and managed. This can be achieved through the use of established
sampling networks that record the quantity and quality of available water for various uses. Numerical models

can be further used to complement actual measurements to achieve a similar objective.
Numerical models can describe processes (such as geo-hydrology, climate properties, sources, sinks) recorded

in the field to provide a more reliable and accurate representation. This is possible when adequate measured
boundary condition data as well as data for calibration and validation are available. When data are scarce, aug-

mentation techniques can be applied to adjust the recorded information for the model input, which is necessary
for a more accurate simulation of the environment. Data availability can therefore limit the choice of reasonable
modelling approaches (including items of structure, complexity, and spatial and temporal resolution) that can be

applied (Slaughter et al. 2017).
Spatial and temporal resolution are examples of necessary requirements for the model study that seeks to simu-

late a dynamic process such as nitrification in rivers. This study focuses on the impact of augmented model input

data generated by applying simple (basic interpolation) and advanced (artificial neural networks (ANNs)) aug-
mentation methods applicable to modelling nitrogenous compounds in the river system.

In instances where the input data are of unsatisfactory resolution; data augmentation techniques may be

applied for gap filling and disaggregation to meet the model requirements (Baffaut et al. 2015). Examples of
recent successful applications of data augmentation through interpolation to water quality modelling can be
obtained in the literature (see Yang et al. 2020 and Kim et al. 2021). Blöschl & Sivapalan (1995) details how
upscaling and downscaling of data can be used to align the scales of available data with model requirements.

In this context, upscaling refers to the transfer of information from a small scale to a large scale and downscaling
refers to transferring information to a small scale. Downscaling consists of two steps (disaggregation and singling
out) to transfer information to a smaller scale (Blöschl & Sivapalan 1995). Input hydrodynamic data may be dis-

aggregated from monthly to daily flows to accommodate the variation in daily concentration during water quality
modelling. This was demonstrated when flow duration curves and mathematical relationships were applied to
flow data for the WQSAM model to study water quality (see Slaughter (2017)). Disaggregation in hydrology is

one of the steps used for downscaling hydrology data to meet the scales required for meeting the modelling
objective.

Time series for hydrological processes can also be generated using either deterministic (basic interpolation
methods) or stochastic (ANNs) models. Koutsoyiannis et al. (2008) detail the differences in the application of

stochastic models against deterministic models. The important finding in this study is that good stochastic
models are those that are linked with an understanding of the natural behaviours of the system. Furthermore,
deterministic models such as the analogue model can be a good simplistic analytical tool, however, good predic-

tion from this model does not necessarily represent consistency with natural processes. Since this study focuses
on nitrogenous compounds which can be closely linked to hydrogen cycle processes through river stream flow,
some stochastic models may not be ideal for generating time-series analysis depending on whether autocorrela-

tion structure is for short range dependence or long-range dependence (Dimitriadis et al. 2021).
There is a variety of gap-filling methods in the literature that have been applied successfully in water quality

modelling studies. Table 1 lists studies on this topic.

In this study, different augmentation methods applied towards modelling a nitrogenous compound in the river
system were investigated. This was done to inform augmentation method choice when dealing with scarce data.
First, the impact of interpolation method choice as well as whether the level of gaps in the input data impacts the
outcome of each augmentation method differently was investigated. Second, an advanced interpolation method
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf



Table 1 | Gap-filling methods applied to water quality models

Method Application Source

Singular Spectrum Analysis (SSA) Gap-filling hydrological data Sandoval et al.
(2016)

Using Principal Components Analysis and Inverse
Distance Weighted (IDW) Interpolation

Spatial and temporal changes in surface
water quality

Yang et al.
(2020)

Delaunay and k-Nearest Neighbours (kNN) Spatio-temporal analysis of river water quality
parameters

Vizcaino et al.
(2016)

Linear interpolation and regression methods Estimation of decadal stream flow Lee et al. (2016)

Statistical models and ANNs Gap-filling techniques for river stage data Luna et al.
(2020)

ANNs Augmentation of limited input data for water
quality model or a lake

Kim et al.
(2021)

Water Practice & Technology Vol 17 No 12, 2501

Downloaded from http://iw
by guest
on 24 January 2023
(machine learning) was applied towards gap filling while exploring the best method for partition training and vali-
dation given limited data. Finally, the output of the models was compared for scenarios where different levels of

artificial gaps are introduced in the input data.
The outcome of this study provides guidance towards augmenting data for water quality modelling under

scarce data conditions, which are similar to real-world data availability in the study area. Improvement of

model fit to the measured data is beyond the scope of this paper, however there is evidence that the selection
of the appropriate machine learning method can translate to better model fit (see Rozos et al. 2022). This
study is limited to observing the significance of the differences between the augmentation method output.

METHODS

Two scenarios were investigated. First, the effect of using deterministic interpolation for data augmentation.

Second, the effect of using deterministic and machine learning interpolation to infill weekly gaps at locations
where maxima occur in the ammonia input was also investigated.

Study area

The study area consists of a 5.9 km river reach of the Natalspruit river system in the Upper Vaal catchment in
South Africa. The river reach receives effluent discharge from one wastewater treatment plant (WWTP). The
river data sets include observed time-series concentration data at two sampling points located upstream and
downstream of the WWTP discharge location. The observed data were collected at a weekly frequency between

2012 and 2020; with some gaps observed in certain years. Figure 1 shows the upstream and downstream sampling
locations and the WWTP effluent discharge location.

Augmentation methods

Two data operations (gap filling and temporal disaggregation) were required to eliminate the gaps in the original
dataset and to upscale the temporal resolution of the input data from weekly to daily frequency. This is to meet
the model requirement for dynamic processes according to the recommendations by Moriasi et al. (2012).

Basic interpolation

The chosen basic interpolation methods (linear, quadratic, cubic, spline (first and second order), polynomial, pie-
cewise polynomial, and derivatives) in the Python Pandas library (The pandas development team 2021) were
applied to upscale data to a daily resolution. A detailed discussion of these interpolation methods can be

found in Virtanen et al. (2020). The scope of this article only covers the application of each method; whereas
method algorithm details can be found in the references listed in Table 2.

Each of these interpolation methods was applied to generate an augmented dataset with a daily frequency; as

recommended by Baffaut et al. (2015) for modelling the dynamic processes that affect nitrogenous compounds in
river systems. Upsampling in this study refers to when the frequency of the samples is increased such as from
weekly to daily. For this to be done, the generation of a time series is required. Resampling, in this case, is

required to transform the available irregular frequency of data to a regular frequency and to increase the
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Figure 1 | Map showing the study area considered (Google Earth Pro 7.3.4, Natal Spruit, 26°150550 0S, 25°110300 0E, Maxar
Technologies, February 2022).

Table 2 | Interpolation methods for augmenting missing data gaps

Method Description Source

Linear interpolation Curve fitting method using linear polynomials to generate
estimated data point within the range of a discrete set of
known data points.

Siauw & Bayen
(2015)

Quadratic Interpolation using second-order polynomial to make
interpolation for a function

Vandebogert (2017)

Derivatives Interpolation using derivative information that is a hybrid of
extrapolation to arbitrary order and linear interpolation.

Tugores & Tugores
(2017)

Polynomial Interpolation of a given data set by the polynomial of the lowest
possible degree that passes through the points of the dataset

Zou et al. (2020)

Piecewise Cubic Hermite
Interpolating Polynomial
(PCHIP)

Spline interpolator where each piece is a third-degree
polynomial specified in Hermite form

Barker &
McDougall
(2020)

Cubic spline Interpolation is where the interpolant is a special type of
piecewise polynomial called a spline.

László (2005)

S-linear Spline interpolation of order 1 Virtanen et al.
(2020)

Zero Spline interpolation of order 0 Virtanen et al.
(2020)
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number of samples to create more data on which the neural network can be trained. It is important to note that
resampling methods have the limitation of destroying the long-range dependence that appeared in the data.

Simulation models

Two different simulation models were included in this study.

Continuously Stirred Tank Reactor in series model

A basic Continuously Stirred Tank Reactor (CSTR) model was used to represent the simplest form of a completely
mixed natural water body. Here, several CSTRs were placed in series to simply simulate river sections. This
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf
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method, detailed in Chapra (1997), solves the mass balance equation, which takes the form in Equation (1) below.
For simplicity, only a feed-forward system was considered:

V
dc
dt

¼ W(t)� kVc � vAsc (1)

In Equation (1), V represents the reactor volume, c is parameter concentration in the reactor, W(t) represents
the lumped loading, t is the time, k is the reaction rate constant, As is the cross-sectional area, and v is the flow
velocity.

The reaction term on the mass balance equation represents the nitrification process in a river system. The pro-

cess occurs in two reaction steps. Step 1 shown by Equation (2), Nitrosomonas bacteria convert ammonium ions
to nitrite (Chapra 1997):

NHþ
4 þ 1:5O2 ! 2Hþ þ H2OþNO�

2 (2)

Step 2, represented by Equation (3) Nitrobacter bacteria convert nitrite to nitrate

NO�
2 þ 0:5O2 ! NO�

3 (3)

The oxygen required in the two steps can be determined as (Chapra 1997)

ron ¼ roa þ roi ¼ 4:57 gO gN�1 (4)

where ron is the amount of oxygen consumed per unit mass of nitrogen in the total nitrification reaction. roa and roi
are the total oxygen consumed due to nitrification of ammonia and nitrite, respectively. Usually first-order kin-
etics are assumed for modelling the nitrification process and the following Equations (5)–(8) as described in
Chapra (1997) were included:

dN0

dt
¼ �k0aN0 (5)

dNa

dt
¼ k0aN0 � kaiNa (6)

dNi

dt
¼ kaiNa � kinNi (7)

dNn

dt
¼ kinNi (8)

where N is the parameter concentration and the subscripts o, a, i, and n denote organic, ammonium, nitrite, and
nitrate, respectively. The oxygen deficit (D) balance can be computed as written in Equation (9):

dD
dt

¼ r0akaiNa þ r0ikinNi � kaD (9)

These equations were solved using Python’s fourth-order Runge-Kutta solver for numerical integration because
it was simple to apply to the system of differential equations in this study. Ammonia concentration was computed
on the selected checkpoints in the river reach.

Water Quality Analysis Simulation Programme

Water Quality Analysis Simulation Programme (WASP) software was additionally used to model the river reach.
WASP (Wool et al. 2020) is an open-source dynamic compartment-modelling programme for aquatic systems,

including both the water column and the underlying benthos. It was developed and distributed by the Environ-
ment Protection Agency in the United States (Wool et al. 2020). It allows the user to investigate 1-, 2-, and 3-
dimensional systems as well as a variety of pollutant types and processes such as eutrophication. This programme

was selected because it is a recognised software that is capable of modelling nitrogenous compounds in a river
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf
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system. Details about the development of this programme and capabilities can be obtained from the work of Wool
et al. (2020).

Input data

Measured on-site data sets were available, but with varying spatial consistency, which required cleaning where
data values were absent in addition to gap filling for missing data. Each data sample (upstream and downstream

from the WWTP) showed varying information. Table 3 provides a list of raw data features.
Table 3 | Summary of measured ammonia data entries

Location Total entries

Ammonia concentration distribution (mg/L)

0–1 1–5 5–10 . 10 Not a number

Upstream samples 316 305 45 4 6 0

Downstream samples 343 173 160 24 4 0
Hydrodynamic data measurements on the reach were not available. Estimates of flow rates were derived using
measurements from a nearby station at a reach with similar features (catchment size and climate) as rec-
ommended by Daggupati et al. (2015) when dealing with data scarcity. The available hydrodynamic data

covered a full year (between 1 October 2017 and 1 October 2018). The reader is reminded here that the focus
of this research was not to test model fit, but rather to investigate differences in model outcomes when using
different water quality data augmentation methods. This data application was therefore accepted as a realistic rep-

resentation of hydrodynamic data for the system.

Investigation design

As mentioned previously, the study area consisted of a single river reach with one WWTP discharging into the
stream. The upstream boundary of the study consisted of observed water quality data with weekly temporal res-
olution for the period 2012–2020. The water quality parameters relevant to this study were monitored
nitrogenous compounds (ammonia and nitrates). The data sets upstream of the WWTP were used as a boundary

condition for the river models; the downstream observed data sets were used for output comparisons. The aug-
mentation study focused on the impact that the boundary condition data had on the model outputs as observed at
the downstream boundary. The focus was to discern whether applying different augmentation techniques would

yield significant differences in the model outputs.

Basic interpolation method study

The input ammonia concentration data were divided into four categories:

• No gaps – the raw measured upstream boundary data as measured.

• Low gaps – raw data with 10% random artificial gaps.

• Medium gaps – raw data with 25% random artificial gaps.

• High gaps- raw data with 50% random artificial gaps.

Each data set was subjected to interpolation for the data gaps and upsampled to daily concentration data
through applying the linear, quadratic, derivatives, cubic, piecewise polynomial, 1st order spline and 0th order
spline interpolation methods. The augmented data were used as input to the Basic Model (CSTRs in series)

and the WASP model in turn to simulate a 5.9 km long single reach river system for nitrogenous compounds
with ammonia selected as a proxy parameter to nitrogenous compounds to represent the changes brought
about through the nitrification process. The simulation models were driven by flowrates as estimated using trans-

ference as explained above. The output of each model for each input data set as generated through the use of the
interpolation methods was compared to determine statistically significant differences.

Advance interpolation method (ANNs) study

As previously stated, two scenarios are investigated. First, we investigate the effect of using deterministic interp-
olation for data augmentation. Second, we investigate the effect of using deterministic and machine learning
interpolation to infill weekly gaps at locations where maxima occur in the ammonia input.
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf
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The raw data samples were irregular (sampled at 5–7 days) and the data set size was less than the rec-
ommended fifty times the number of weights in the ANN (see Alwosheel et al. (2018)). To convert this to a
data set on which a neural network could be trained, the data were upsampled to a daily frequency with a

linear interpolation method. The distribution of the upsampled data before and after the log transform is
shown in Figures 2–4.
Figure 2 | Input ammonia data distribution.

Figure 3 | Log-transformed input ammonia data.
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Figure 4 | Autocorrelation plot showing a linear dependence of ammonia data for 3 consecutive days and reduced correlations
for lags larger than 3 days.

Water Practice & Technology Vol 17 No 12, 2506

Downloaded from http://iw
by guest
on 24 January 2023
The log transform is needed here to prevent the minority of very large ammonia values to influence our model

training too significantly: by applying a log transform action, the small and large ammonia values become com-
parable. Normalising the data generally speeds up learning and leads to faster convergence.

To analyse the dependence (or correlation) of consecutive measurements on each other, an autocorrelation
plot was made of the upsampled data. Autocorrelation plots of the data are shown in Figure 4.

Figure 4 shows a significant correlation for a lag of 3 days or less. It should be noted that this can only be used
as a guideline when selecting the number of timesteps to use to predict the next sequence of timesteps; since it
only provides information on the linear- and not the non-linear relationship of the measurements. The pre-pro-

cessing stage was then concluded by dividing the data into a training- and a testing set for which 70% of the
upsampled data were used for training the neural network and 30% was used for testing.

Model architecture and optimisation

For background information on neural networks the reader is referred to Mehlig (2021). The neural network used

here consisted of a single hidden layer. It was optimised to infill a week of missing ammonia values by using 7
days (1 week) measurements before and after the gap as input to the ANN model. The optimal numbers of
input nodes and training epochs were determined by training on the training dataset for 10–500 input nodes

and, for each of these, node selections of 10–100 epochs were used. For each of these scenarios, 30% of the
data were used for validation and model performance was evaluated by calculating the mean squared error
(MSE) on the validation data set. The number of epochs and nodes that resulted in the model with the smallest

MSE on the validation data set was then trained on the entire training data set and saved. To show that the model
was not over-trained, the MSE curves for training and validation are shown in Figure 5.

The validation plot did not increase towards the training line, which is an indication that the model was not
over-trained.

Model testing

The optimal saved model was then applied to the test set and the prediction vs. target value, for each of the seven
timesteps within the gap, are shown in Figure 6. These artificial gaps were created specifically at locations where
local maxima occur within the upsampled data.
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf



Figure 5 | MSE plot showing the relationship between training and validation sets.

Figure 6 | Comparison of the actual data (in green) and the predictions, made by the ML model (in red). Please refer to the
online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wpt.2022.146.
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To visualise the effectiveness of the model to predict gaps that contain local maxima, artificial 7-day gaps were
created within the test set by selecting positions that contain local maxima.

These gaps were then also infilled with the deterministic statistical interpolation methods and the interpolated
results were used as input to the water quality model. The outputs of the water quality model for each of these
input scenarios are shown in Figure 7.

In this case, the machine learning method seems to predict high peaks compared to the rest of the methods
(linear, Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)) except for the polynomial method at the
local maxima.

Result evaluation method

This part of the investigation was done to determine the effect of time-series data disaggregation by interpolation
on the boundary of a river simulation method. The design layout involved simulating the selected model for each
of the interpolation methods. The output of the models for each method was compared, within a model, and then

between the models.
To evaluate the comparisons between the models, statistical techniques were applied to determine if the differ-

ence between the simulated output of the interpolation model was statistically significant. If the difference is

significant, this will indicate that the choice of an interpolation method has an impact on the outcome of a simu-
lation model. Therefore, the choice of the augmentation model should be considered a crucial variable when a
model is developed for a scarce data system.

The opposite of this outcome would suggest that for this dataset, the choice of an interpolation method has no
significant impact on the output of the models. This would imply that when setting up a model with inadequate
data, the choice of interpolation method from the list discussed in this study, does not make a significant differ-

ence to the model output.
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf
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Figure 7 | Basic Model output plots for input data filled with basic interpolations (linear, polynomial, and PCHIP) and ML.
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To quantify this, two statistical methods were applied to determine the differences caused by the model bound-

ary interpolation methods. The differences between the interpolated boundary conditions were determined using
quantitative statistics and inferential statistics. For this study, the T-test and the ANOVA test were applied to the
model results.

A T-test is a type of inferential statistic used to determine if there is a significant difference between the means
of two groups (model output from different interpolation methods), while the ANOVA test does the same for
more than two groups. The null hypothesis for both tests assumes that there is a significant difference between

the groups, which is an assumption made about the groups. The T-test and ANOVA test used t values and F
values, respectively, to determine whether the null hypotheses pass or fail. A probability value (p-value) is also
calculated for each test that suggests whether the hypothesis should be accepted (chosen p, 0.05).

The results of the model simulation for the Basic Model and the WASP model were analysed using the T-test
and the ANOVA test. This was done to evaluate how each method compares for both models. This was done to
determine the differences between all the methods in each model. This was followed by the T-test for methods
output comparison across models (Basic Model output against WASP model output) to evaluate the differences

between the models.
RESULTS AND DISCUSSION

Descriptive comparison of model outputs

Basic Model

Figure 8 shows descriptive statistics of the downstream model outputs per basic interpolation method. Figure 8

indicates differences in model output per interpolation method. The significance of which is further investigated
below. Here, the means of each method showed a difference of less than 0.1 mg/L, a rather small amount indi-
cating that the differences in outputs may have been insignificant across interpolation method applications.

Furthermore, the standard deviation in output values (denoted by std) for spline 0 order, quadratic, and cubic
resulted in similar, but larger when compared to the other method outputs, standard deviations in the range of
0.80–0.85; whereas the other methods resulted in similar values of approximately 0.7. The 25% interquartile

ranges (IQRs) of the model outputs resulted in larger values for the quadratic and cubic methods when compared
to the other interpolation methods investigated. However, the 50 and 75% IQRs once more resulted in similar
output values across interpolation methods. It was also noted that the 25% IQR produced negative values for

the quadratic and cubic methods. The reasons for which are unclear at this stage.
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Figure 8 | Basic Model output descriptive statistics.
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Figure 9 indicates similar data distributions for the Basic Model outputs when applying different interpolation

methods. The median lies in a similar position for all the methods. In addition, the sizes of the box plots are simi-
lar, suggesting that the methods may have resulted in a similar output data set when comparing the methods used.
Figure 9 | Basic Model output data.
WASP model

A similar data analysis was performed in application of the WASP model. Figure 10 shows descriptive statistics of

the model outputs per interpolation method.
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Figure 10 | Descriptive statistics for each interpolation method on the WASP model output.
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As was found for the Basic Model results, the WASP model results showed seemingly small variations. The 25%
IQR value for this model yielded 0 meaning there was no discernible variability between the methods.

Figure 11 shows model output data distributions to be similar for each of the interpolation methods. This cor-
responds to the finding made for the Basic Model.
Figure 11 | WASP model box plot showing the data distribution for each method.
Application of artificial gaps

Outputs from the basic and WASP models were compared with downstream measured ammonia concentrations
for different sets of input datasets. Figure 12 shows results for the original input data set with no artificial gaps

before augmentation. The effect of 10, 25, and 50% are shown in Figures 13–15, respectively.
The model outputs from the Basic Model and WASP produced similar trends for each interpolation method for

all input data with varying artificial gaps. The results from the low gaps dataset (10%) and medium gaps dataset

(25%) in Figures 9 and 10 infilled the ammonia concentration with a higher value than the actual measured
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Figure 12 | Model outputs at a downstream location using inputs with no artificial gaps.

Figure 13 | Model outputs at a downstream location using inputs with low (10%) artificial gaps.
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values at the original dataset. This is because the random gaps were introduced at a critical peak towards the end
of the time series. The dataset with medium gaps (25%) (Figure 10) resulted in the largest deviation between
interpolation method outputs for both models. This indicates that the location of gaps may be of importance

as opposed to the level of gap sizes. Furthermore, the results indicate that in the case that random gaps were intro-
duced at critical peaks, the choice of interpolation method may be important. This notion is supported when
looking at the case in which high gaps (50%) were introduced, which indicated few differences between the

interpolation methods, contrary to intuition.
Further statistical investigation of the simulation results was done to determine and to quantify differences

between methods if they exist. The ANOVA test was applied to the Basic Model output data to compare the differ-

ent outputs when applying the different interpolation methods, with the varying levels of random gaps on the
input datasets. Table 4 provides a summary of the test results.

Table 4 lists a small F-value as well as the p-value (PR). 0.05 for all datasets except for the one with 25% arti-

ficial gaps (PR¼ 0.0001), which suggests that for these datasets the differences between the method outputs were
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf



Figure 14 | Model outputs at a downstream location using inputs with medium (25%) artificial gaps.

Figure 15 | Model output at a downstream location using inputs with high (50%) artificial gaps.

Table 4 | ANOVA test results

Artificial gaps (%) ANOVA test df Sum of squares Mean square F PR (.F )

0 Methods 6 0.618 0.103 0.1739 0.9839

10 Methods 6 3.9311 0.6552 1.5423 0.1603

25 Methods 6 9.2803 1.5467 4.8975 0.0001

50 Methods 6 1.919 0.3198 0.9581 0.4522
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not statistically significant. The contrary result for the case where 25% gaps were included (statistically significant
differences in results) may have been due to the introduction of most of the gaps at the peak values in the original

dataset. This once more indicated that the location of data gaps is of concern.
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Additionally, a post hoc (Tukey) test was performed to compare the outputs from the application of the differ-
ent interpolation methods only on the dataset without artificial gaps. This was to observe if there were any
significant differences between the methods themselves. The results of the test are listed in Table 5.
Table 5 | Tukey’s honestly significant difference (HSD) test results

Group 1 Group 2 Diff Lower Upper q-value p-value

Linear Spline order:0 0.05 �0.12 0.22 1.25 0.9

Linear Spline order: 1 0.01 �0.16 0.18 0.29 0.9

Linear Quadratic 0.03 �0.14 0.2 0.73 0.9

Linear Cubic 0.03 �0.14 0.2 0.73 0.9

Linear Piecewise polynomial 0.01 �0.16 0.18 0.29 0.9

Linear Derivatives 0.01 �0.16 0.18 0.29 0.9

Spline order: 0 Spline order: 1 0.04 �0.13 0.21 0.96 0.9

Spline order: 0 Quadratic 0.02 �0.15 0.19 0.52 0.9

Spline order: 0 Cubic 0.02 �0.15 0.19 0.52 0.9

Spline order: 0 Piecewise polynomial 0.04 �0.13 0.21 0.96 0.9

Spline order: 0 Derivatives 0.04 �0.13 0.21 0.96 0.9

Spline order: 1 Quadratic 0.02 �0.15 0.19 0.43 0.9

Spline order: 1 Cubic 0.02 �0.15 0.19 0.44 0.9

Spline order: 1 Piecewise polynomial 0 �0.17 0.17 0 0.9

Spline order: 1 Derivatives 0 �0.17 0.17 0 0.9

Quadratic Cubic 0 �0.17 0.17 0.01 0.9

Quadratic Piecewise polynomial 0.02 �0.15 0.19 0.43 0.9

Quadratic Derivatives 0.02 �0.15 0.19 0.43 0.9

Cubic Piecewise polynomial 0.02 �0.15 0.19 0.44 0.9

Cubic Derivatives 0.02 �0.15 0.19 0.44 0.9

Piecewise polynomial Derivatives 0 �0.17 0.17 0 0.9
Post hoc tests

The p-values for each individual comparison are shown to be above 0.05, which further confirms the rejection of

the null hypothesis. These results indicate that there were no statistically significant differences between model
outputs when applying the different interpolation methods.

The ANOVA test was similarly applied to the WASP model output data. The results are listed in Table 6.
Table 6 | ANOVA test results for WASP model with artificial gaps

Artificial gaps (%) ANOVA test df Sum of squares Mean square F PR (.F )

0 Methods 6 0.5562 0.0927 0.175 0.9836

10 Methods 6 3.4329 0.5722 1.5476 0.1587

25 Methods 6 8.4919 1.4153 5.0719 0.0000

50 Methods 6 1.7188 0.2865 0.9841 0.4342
The results from this test also support the rejection of the null hypotheses (PR. 0.05) except, once more, for
the input dataset with 25% artificial gaps. Therefore, as was found for the Basic Model, differences in the output
values when applying the different interpolation methods were not statistically significant for the WASP model.
This is further confirmed by the post hoc test result listed in Table 7, for the input dataset without gaps.

Method-by-method comparison yielded a rounded-up p-value. 0.05 for each case, solidifying the rejection of
the null hypothesis. This corresponds to the results from the outputs obtained on the data set generated by the
Basic Model.
aponline.com/wpt/article-pdf/17/12/2499/1155583/wpt0172499.pdf



Table 7 | Tukey’s honestly significant difference (HSD) test results

Group 1 Group 2 Diff Lower Upper q-value p-value

Linear Spline order:0 0.04 �0.12 0.2 1.06 0.9

Linear Spline order: 1 0 �0.16 0.16 0 0.9

Linear Quadratic 0.02 �0.14 0.18 0.51 0.9

Linear Cubic 0.02 �0.14 0.18 0.55 0.9

Linear Piecewise polynomial 0 �0.16 0.16 0 0.9

Linear Derivatives 0 �0.16 0.16 0 0.9

Spline order: 0 Spline order: 1 0.04 �0.12 0.2 1.06 0.9

Spline order: 0 Quadratic 0.02 �0.14 0.18 0.56 0.9

Spline order: 0 Cubic 0.02 �0.14 0.18 0.51 0.9

Spline order: 0 Piecewise polynomial 0.04 �0.12 0.2 1.06 0.9

Spline order: 0 Derivatives 0.04 �0.12 0.2 1.06 0.9

Spline order: 1 Quadratic 0.02 �0.14 0.18 0.51 0.9

Spline order: 1 Cubic 0.02 �0.14 0.18 0.55 0.9

Spline order: 1 Piecewise polynomial 0 �0.16 0.16 0 0.9

Spline order: 1 Derivatives 0 �0.16 0.16 0 0.9

Quadratic Cubic 0 �0.16 0.16 0.05 0.9

Quadratic Piecewise polynomial 0.02 �0.14 0.18 0.51 0.9

Quadratic Derivatives 0.02 �0.14 0.18 0.51 0.9

Cubic Piecewise polynomial 0.02 �0.14 0.18 0.55 0.9

Cubic Derivatives 0.02 �0.14 0.18 0.55 0.9

Piecewise polynomial Derivatives 0 �0.16 0.16 0 0.9
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CONCLUSIONS

The study results indicated that there was no statistically significant difference between the outcomes of each
interpolation method applied to the full dataset, however, the introduction of random artificial gaps resulted
in significant differences in outcomes between interpolation methods for the case where 25% of the gaps were

introduced to the original dataset. Machine learning approaches produced reasonably accurate results. However,
upsampling was necessary to obtain the recommended minimum data size, required for learning.

The following was concluded:

• Application of the different interpolation methods applied to input water quality data did not produce statisti-
cally significantly different augmented datasets with low gaps.

• Increasing the gaps in the original data sets did not always yield greater differences between augmented datasets
for each method.

• The locations of the artificial gaps created statistically significant differences between the augmented datasets
for each interpolation method when compared to the effect of high gaps.

• The selected machine learning methods to infill real and artificial gaps were successful in upsampling the orig-
inal dataset and the dataset with artificial gaps.

• There was no significant difference between the simulated output of WASP and the Basic Model.
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