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Abstract. This article describes a modular ensemble-based
data assimilation (DA) system which is developed for an in-
tegrated surface—subsurface hydrological model. The soft-
ware environment for DA is the Parallel Data Assimilation
Framework (PDAF), which provides various assimilation al-
gorithms like the ensemble Kalman filters, non-linear fil-
ters, 3D-Var and combinations among them. The integrated
surface—subsurface hydrological model is HydroGeoSphere
(HGS), a physically based modelling software for the simula-
tion of surface and variably saturated subsurface flow, as well
as heat and mass transport. The coupling and capabilities of
the modular DA system are described and demonstrated us-
ing an idealised model of a geologically heterogeneous al-
luvial river—aquifer system with drinking water production
via riverbank filtration. To demonstrate its modularity and
adaptability, both single and multivariate assimilations of hy-
draulic head and soil moisture observations are demonstrated
in combination with individual and joint updating of multiple
simulated states (i.e. hydraulic heads and water saturation)
and model parameters (i.e. hydraulic conductivity). With the
integrated model and this modular DA framework, we have
essentially developed the hydrologically and DA-wise robust
toolbox for developing the basic model for operational man-
agement of coupled surface water—groundwater resources.

1 Introduction

Numerical hydrological models are appropriate decision sup-
port tools for water resource management, as they can be
used to better understand and predict complex hydrological
systems that are dynamically evolving as a result of natural
and anthropogenic stresses. When it comes to managing shal-
low groundwater systems, integrated surface—subsurface hy-
drological models (ISSHMs) (Sebben et al., 2013) are essen-
tial as they simulate all the components of the hydrological
cycle and their feedback mechanisms within a single frame-
work (Doherty and Moore, 2020; Islam, 2011; Paniconi and
Putti, 2015). ISSHMs provide a physically based and hydro-
logically consistent simulation of water fluxes across the en-
tire hydrological system (Simmons et al., 2020). This makes
ISSHMs robust tools for the simulation of water quantity and
quality and thus for supporting the prospective management
of water resources (Yang et al., 2021; Paudel and Benjankar,
2022; Du et al., 2012; Burek et al., 2020; Belleflamme et
al., 2023). Furthermore, ISSHMs also allow the potential im-
pacts of climate change and human activity on the natural
water system to be studied (Wada et al., 2017). Examples of
such ISSHMs include MIKE-SHE (Refsgaard et al., 1995),
InHM (VanderKwaak and Loague, 2001), IHM (Ross et al.,
2005), ParFlow (Kollet and Maxwell, 2006), CATHY (Cam-
porese et al., 2010) and HydroGeoSphere (HGS; Brunner and
Simmons, 2012; Aquanty, 2020).
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As with any modelling approach, complex ISSHMs ne-
cessitate the minimisation of uncertainty in both model pa-
rameters and predictions. This is ideally achieved through in-
verse estimation of model parameters using available direct
and indirect observations, facilitated by some form of data
assimilation. Model parameters in ISSHMs generally repre-
sent the many different physically and sometimes also the
biogeochemically relevant hydraulic and hydrological prop-
erties of the surface and subsurface, and these parameters are
typically spatially and sometimes also temporally highly het-
erogeneous. Moreover, the true values of these parameters
are usually not precisely measurable, and any hydrological
modelling effort, be it based on an elaborate ISSHM or even
a simple bucket-type model, inevitably starts off with con-
siderable prior uncertainty (Moges et al., 2020). In addition,
model forcing data and model structure are associated with
uncertainty, and, unless they are reduced and/or appropri-
ately accounted for, all these uncertainties have the potential
to significantly limit the reliability of (integrated) numerical
models. Thus, the quantification and reduction of model un-
certainty is a critical step for any decision-based hydrologi-
cal model (Anderson et al., 2015) and important for both re-
search and for operational modelling efforts (Liu and Gupta,
2007). While different methods exist, one of the most ro-
bust approaches to quantify and reduce model uncertainties
is through data assimilation (DA) (Fan et al., 2022). DA is
used widely in oceanography and meteorology (see Hoteit et
al., 2018; Ghil and Malanotte-Rizzoli, 1991), particularly for
global reanalysis (Baatz et al., 2021) and operational weather
forecasting (Navon, 2009; Hu et al., 2023), where DA frame-
works integrate measurements in near-real time into mod-
els and continuously correct for model deviations from the
“true” system states. In recent years, DA has also been ap-
plied more frequently to continental hydrological systems,
especially for experimental studies with physically based
models and operational flood forecasting (Camporese and
Girotto, 2022). By continuously incorporating real-time in-
formation from ground sensors and remote sensing, as well
as weather forecasts, into hydrological models via DA, the
uncertainties of hydrological model predictions could be sig-
nificantly reduced and operational short-term forecasts im-
proved (Di Marco et al., 2021).

So far, studies on the implementation and development
of DA for coupled surface—subsurface hydrological system
modelling, particularly via ISSHMs, are very limited. A suc-
cessful implementation was demonstrated for the first time
by Paniconi et al. (2003), who applied the simple DA method
of nudging to the simplified version of the physically based
surface—subsurface model CATHY (Camporese et al., 2010).
It was shown that through the assimilation of soil moisture
observations, the hydrological simulations improved signifi-
cantly and for little additional computational cost. After more
experimental DA examples were developed with CATHY
(e.g. Camporese et al., 2009b, a), DA started to be explored
also for use with other ISSHMs. Kurtz et al. (2016) devel-
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oped a data assimilation framework for the Terrestrial Sys-
tem Modelling Platform (TerrSysMP) (Shrestha et al., 2014)
using the DA software Parallel Data Assimilation Frame-
work (PDAF) (Nerger et al., 2005). TerrSysMP itself is a
modular Earth system model consisting of the atmospheric
model COSMO (Baldauf et al., 2011), the land surface model
CLM (Community Land Model; Oleson et al., 2004) and
the ISSHM ParFlow (Kollet and Maxwell, 2006), all cou-
pled via OASIS-MCT (Valcke, 2013). The data assimila-
tion framework TerrSysMP-PDAF allows the assimilation
of pressure heads and soil moisture measurements into the
ISSHM ParFlow and the land surface model CLM via dif-
ferent assimilation algorithms as provided by PDAF. Simi-
larly, an ensemble Kalman filter (EnKF)-based data assim-
ilation system for the physically based ISSHM HydroGeo-
Sphere, EnKF-HGS, was developed by Kurtz et al. (2017),
which allowed the assimilation of hydraulic heads with joint
updating of both hydraulic heads and hydraulic conductivi-
ties. Based on EnKF-HGS, Tang et al. (2017, 2018) assimi-
lated hydraulic head observations for the joint estimation of
states (hydraulic heads and surface water discharge) and pa-
rameters (hydraulic conductivities of an alluvial aquifer and
a riverbed). Compared to ParFlow, which is the ISSHM in
TerrSysMP-PDAF and which is best suited for the simulation
of larger-scale interactions between the subsurface, the land
surface and the atmosphere (Condon and Maxwell, 2019),
HGS is more suited for local-scale surface—subsurface inter-
actions and the explicit and efficient simulation of abstrac-
tion schemes in riverbank filtration contexts, reactive trans-
port processes, managed aquifer recharge systems, geother-
mal systems, agricultural drainage (e.g. tile drain) and irriga-
tion infrastructure (Alvarado et al., 2022; Boico et al., 2022;
Schilling et al., 2022; Delottier et al., 2022b).

Up to now, only the EnKF was implemented as a data
assimilation algorithm for HGS (via EnKF-HGS), and the
coupling was neither modular nor user-friendly and is thus
not suited for operational implementations. A better solution
than coupling a single DA algorithm to an ISSHM is the cou-
pling of existing DA software that offers a suite of different
assimilation algorithms to choose from and is modular with
respect to the choice of states, parameters and observations
that should be updated or considered for DA. As a toolbox
tailored towards numerical modelling, PDAF offers such a
modular choice of widely used DA algorithms and supports
both single and multivariate assimilation of different types
of observations, as well as single or joint state and param-
eter updating. PDAF also facilitates the addition of novel
assimilation algorithms which are not yet included. Owing
to its modular design, PDAF makes it very easy to switch
between different assimilation methods without the need for
additional coding. Last but not least, the different algorithms
are not only fully implemented and optimised but also par-
allelised, which is a key aspect for the continental-scale hy-
drological modelling conducted with the TerrSysMP-PDAF
platform.
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With the aim to provide a DA framework for opera-
tional real-time simulations of water quality and quantity in
complex systems for which ISSHMs are typically the ideal
decision-based modelling tools (e.g. riverbank filtration well-
fields, managed aquifer recharge schemes or agricultural sys-
tems), we have developed a highly modular DA framework
for ISSHMs based on PDAF and HGS. The coupled frame-
work, called HGS-PDAF, is designed to allow updating of
integrated flow and transport simulations and includes the
following key features:

1. the most up-to-date and continuously maintained col-
lection of data assimilation algorithms, including the
ensemble Kalman filter and its established variants, the
ensemble smoother, the three-dimensional variational
method, and the hybrid ensemble—variational method;

2. a modular tool to handle different types of observation
data, which enables it to assimilate one or multiple types
of observations simultaneously, currently programmed
for hydraulic heads, soil moisture and solute concentra-
tion measurements;

3. a modular tool to handle different model states and
parameters in HGS-PDAF allowing individual or joint
updates of one or multiple states (currently: hydraulic
heads, soil water saturation and solute concentration)
and parameter types (currently: hydraulic conductivity);

4. an open-source code repository, which includes the
source code, an example test case, and documentation
on the use of the code and the execution of the example.

Here, the structure and modules of HGS-PDAF are pre-
sented, alongside its capabilities and its performance on
a multivariate, joint state-parameter DA example based on
a synthetic alluvial riverbank filtration wellfield model.
The structure of this paper is as follows: Sect. 2 de-
scribes the structure of the ISSHM HGS, the DA soft-
ware PDAF and the specific DA algorithm used in the
illustrative example. Section 3 presents the coupled DA
framework HGS-PDAF. Section 4 illustrates the implemen-
tation and performance of HGS-PDAF on the synthetic
test case. The potential for HGS-PDAF to serve as a DA
framework for different scientific and management appli-
cations in the water sector and avenues for further devel-
opments and improvements to HGS-PDAF are discussed
in Sect. 5. The source code of HGS-PDAF, a manual and
the presented example test case are available freely via
https://doi.org/10.5281/zenodo.10000886 (Tang et al., 2023).

2 Hydrological model and data assimilation method
2.1 General overview of the ISSHM HydroGeoSphere

HGS (Aquanty, Inc.) is an integrated surface—subsurface hy-
drological model (ISSHM) that was originally developed
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by Therrien and Sudicky (1996) and can be used to simu-
late fully coupled surface water and variably saturated sub-
surface flow, as well as heat and mass transport (Brunner
and Simmons, 2012; Aquanty, 2020). In HGS, surface water
flow is simulated using the two-dimensional diffusion wave
equation and (variably saturated) subsurface flow using the
three-dimensional Richards equation. The surface and sub-
surface domains are fully coupled in a physically consis-
tent manner, enabling dynamic, two-way feedbacks between
these two domains. This is achieved by simultaneously solv-
ing the surface and subsurface flow and transport equations
in one single system of equations. Owing to its versatility,
HGS has been used to study surface—subsurface flow and
transport in complex, heterogeneous hydro(geo)logical sys-
tems (e.g. Ala-Aho et al., 2017; Schilling et al., 2014, 2017;
Thornton et al., 2022). It has also been used to assess the
potential impacts of, and responses to, climate change on hy-
drological processes at regional scales (Nagare et al., 2023;
Erler et al., 2019; Delottier et al., 2022a; Cochand et al.,
2019); to explore the dynamics of coastal groundwater flood-
ing under a dual-aquifer configuration (Tajima et al., 2023);
in geophysics to inversely estimate the hydraulic conductiv-
ity (Sun et al., 2023) and in the context of supporting hy-
draulic tomography (Wang and Illman, 2023); and to extract
and estimate groundwater recharge (Gong et al., 2023). Im-
portantly, a recent study by Delottier et al. (2022b) has en-
hanced HGS such that it can now explicitly handle reactive
(gas) tracers in transient solute transport simulations under
variably saturated conditions.

HGS has three key executables: grok, phgs and hsplot.
grok is the pre-processing executable which compiles the
prefix.grok file containing the model definition and setup in-
formation. It prepares all the information needed for HGS to
run simulations. phgs is the main executable for running a
serial or parallel forward numerical simulation with HGS.
hsplot is the post-processing executable that converts the
model output files into a readable format that can be later vi-
sualised, for example, by Tecplot (Tecplot, Inc.) or the open-
source tool ParaView (Kitware, Inc.). Thus, grok must be run
before phgs is run, and hsplot can then be run once the simu-
lations executed by phgs have been completed. The workflow
of HGS is illustrated in Fig. 1.

Before grok is run, as with many numerical models, a num-
ber of input files need to be prepared. These files include a
control file, a file containing the model mesh, different pa-
rameter definition files, and files containing definitions of
boundary and initial conditions. The control file is named
prefix.grok, where prefix is the user-defined file name. All
aspects of the HGS model setup are defined in this file con-
taining the main sections: model grid generation, definition
of simulation parameters and material properties, definition
of initial and boundary conditions, configuration of (adap-
tive) time stepping controls, and output controls. The con-
trol file also contains the instructions used to build the model
files. A detailed description of the available input commands
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Figure 1. Flowchart of the pure HGS mode run.

can be found in the HGS reference manual available on the
Aquanty, Inc., website (https://www.aquanty.com/, last ac-
cess: 19 April 2024). When all input files are prepared, grok
can be executed, which prepares all input files required for
the execution of phgs. The number of processors to be used
during the execution of phgs is defined in a default file pro-
duced by grok and can be manually adapted before executing
phgs. When running phgs, the simulations of the flow and
transport phenomena in the surface and subsurface domains
are performed. The output files of phgs contain the results for
the steady state or transient flow solutions in a set of binary
and text-based files. To fully access the simulation outputs,
the binary output files must be aggregated and converted by
hsplot into a composite and readable format.

2.2 Data assimilation method and PDAF software
2.2.1 Data assimilation and the ensemble Kalman filter

The primary purpose of DA is to sequentially update a
model’s state by merging it in a statistically optimal man-
ner with the information available from observations or other
models to achieve a physically consistent and optimal repre-
sentation of the true system state. A state vector in the con-
text of DA refers to the mathematical representation of one
or multiple states of a numerical model. In the case of hy-
drological models, typical variables that are considered for
updating are hydraulic heads, surface water discharge, soil
moisture, evapotranspiration or solute concentrations. In ad-
dition to states, model parameters such as hydraulic conduc-
tivity, porosity or soil parameters may also be included in
the state vector and thus for updating via DA. A widely used
DA algorithm, the ensemble Kalman filter (EnKF; Evensen,
2003), is briefly described below to illustrate the fundamental
procedures of (ensemble) DA.

In ensemble-based data assimilation methods such as the
EnKEF, the state vector is formulated as an ensemble of the
states of multiple different realisations of the same model,
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each of them representing a plausible state of the system.
The state vectors are evolved by running multiple realisations
of a numerical model forward in time. The resulting spread
among the state vectors is used to estimate the probability
distribution of the true state of the system. In mathematical
terms, consider that a state vector X can be written as Eq. (1):

X; = (Xy);, )]

where X is the state vector with model state variables. When
parameters are updated together with the state variables, the
augmented state vector can be written as

X

where X, is the state vector with model parameters. The sub-
script i refers to the realisation. Considering a forward tran-
sient model M, the model state at the current time step ¢ can
be simulated from the previous time step ¢ — 1:

Xii=MX;—1,). 3)

When observations are available at time step ¢, denoted as y,,
they are assimilated. For statistical consistency of the EnKF,
the observations are perturbed by a reasonably chosen rep-
resentative observation error & (Burgers et al., 1998). The
perturbed observation vector y, ; is obtained by adding one
individual perturbation per realisation i as

Yii=Y: T & “)

In the EnKF, the state vector is then updated by combining
the observations with the model forecast according to Eq. (4):

X!, =X +aG(y,, —HX!)), )

where H is the mapping operator matrix (denoted observa-
tion operator) between the state vector and the observations;
the superscripts a and f refer to analysis (i.e. the updated
states) and forecast (i.e. the simulated states), respectively;
and « is the damping factor that is used to avoid filter di-
vergence when updating the parameters (Hendricks Franssen
and Kinzelbach, 2008), the value varying between O and 1.
Filter divergence refers to the situation where the estimated
state of the system becomes increasingly inaccurate or diver-
gent from the true state over time. This divergence occurs
when the filtering algorithm fails to effectively incorporate
new observations or when the model’s dynamics do not prop-
erly represent the underlying system. G is the Kalman gain,
which weights the relative importance of the model forecasts
and the observations in a Bayesian sense, taking the respec-
tive uncertainties into account. The Kalman gain is calculated
based on the covariance matrices of the model forecast and
the observational error:

G=CH"(HCH" +R) (6)
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where C is the covariance matrix of the forecast model states
and parameters, and R is a diagonal covariance matrix that
represents the observation errors at individual observation
locations. For more details on the EnKF, R and C, consult
Evensen et al. (2022).

2.2.2 PDATF features and structures

PDAF  (https://doi.org/10.5281/zenodo.7861812, Nerger,
2023) is software for data assimilation, designed to be used
with numerical models. It offers a comprehensive suite
of data assimilation algorithms, including ensemble-based
Kalman filters (e.g. the classical EnKF (Evensen, 1994;
Burgers et al., 1998), SEIK (Pham et al., 1998), LETKF
(Hunt et al., 2007) and LESTKF (Nerger et al., 2012)),
as well as variational approaches (Bannister, 2017). The
available DA approaches and their application fields as well
as several example references are listed in Appendix A.
A comprehensive description of DA methods and vari-
ants of the classical EnKF has recently been provided by
Vetra-Carvalho et al. (2018). The source code for PDAF
is primarily written in Fortran90, with some features de-
rived from Fortran 2003. Notably, PDAF can be linked to
numerical models written in other languages like C, C++
and Python. PDAF’s parallelisation features rely on MPI
(message passing interface; Gropp et al., 1994) for the
software itself, while localised filters additionally support
OpenMP parallelisation. Importantly, the core routines are
entirely independent of the numerical models, allowing them
to be compiled separately and utilised as a library.

To enable a numerical model to perform DA using PDAF,
several “links” must be established between the numerical
model and PDAF. Firstly, in order to effectively combine
model simulations and observations, it is necessary to inform
PDAF of their relationship in space and time. For example,
the observations may not be at the exact location but in the
vicinity of where the model grid points are located. Inter-
polation is required in this case. In addition, it is important
to specify how the state vector used in the filter algorithms
corresponds to the model variable, for example, whether the
model parameters are included in the state vector for updat-
ing along with the state variables. If yes, and if the parameter
to be included is the hydraulic conductivity (K), to ensure
that K is always positive during the assimilation process, the
log-transformed K is considered in the state vector, but the
HGS model uses the K itself. These relationships are out-
lined in separate subroutines that are provided to the assim-
ilation system by the user. Further details about these sub-
routines, known as parts of the model bindings, are given in
Sect. 3.

When integrating a numerical model with PDAF, there are
two different coupling approaches: online and offline cou-
pling. In online coupling, PDAF is integrated directly into a
model’s source code with the help of the PDAF model bind-
ings. Conversely, in offline coupling, the PDAF model bind-
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ings are compiled independently from the model’s source
code. Consequently, the numerical model run and the assim-
ilation step are executed as separate processes. The output
files generated by the numerical model run serve as inputs to
the assimilation step, which produces the updated state vec-
tors (i.e. the analysis a) and generates new input files for the
next time step to be run by the numerical model.

As open-source software, PDAF has been coupled with
many numerical models. One successful example is its cou-
pling with the climate model AWI-CM-1.1 (Sidorenko et
al., 2015) by Nerger et al. (2020). Using this coupled sys-
tem, Tang et al. (2020) investigated the role of assimilat-
ing oceanic observations in the influence of both the ocean
and the atmosphere. This was further extended to carry out
strongly coupled DA (Tang et al., 2021), which allows atmo-
spheric variables to be directly updated through assimilation.
PDATF has also been applied to explore DA for the terrestrial
system (Kurtz et al., 2016), sea-ice forecasting (Mu et al.,
2020, 2022) and climate modelling (Brune et al., 2015).

3 HGS-PDAF description

The implementation of HGS-PDAF uses the offline coupling
approach. Accordingly, the HGS model has to be restarted
after each assimilation step. As this is the case, an otherwise
longer transient HGS model must be modified for DA, i.e. re-
duced to run only the short period between two times with
available observations of defined length (e.g. 1d) at a time,
with the transient forcings split into equally sized intervals
that are sequentially applied to this short-period model. The
length of this interval is determined by the desired assim-
ilation frequency. The respective procedure is described in
detail in Sect. 3.1. The complete data assimilation workflow
as applied to HGS through PDAF is described in Sect. 3.2.
In HGS-PDAF, HGS, PDAF and model bindings are com-
piled as separate libraries and stored in separate folders, with
detailed descriptions of the respective libraries provided in
Sect. 3.3.

3.1 Adaptation of the HGS forward model runs for the
assimilation run

DA sequentially updates the model states (and if desired
model parameters) during the transient model run, with the
transient model being “interrupted” for updating by DA at
specified intervals. This means that for each new forecast
step, the model must be restarted with the parameter fields
and state variables that have been updated by the DA as the
new initial conditions for the next time step. Modifications
to the HGS model configuration are therefore required. The
sequential model is thus split into a short-period model with
the transient boundary conditions applied sequentially to this
short-period model. The numerical model here always uses
the same mesh and the same model structure, but the bound-
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Controlled by the driver
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Figure 2. Flowchart of the overall HGS-PDAF workflow. The green
blocks are the parts associated with the HGS model, the yellow
block is the model bindings that couple HGS to PDAF, and the blue
block is the PDAF software itself.

ary conditions, parameter files and initial conditions are re-
placed after each of the intervals.

3.2 Workflow of HGS-PDAF

The overall workflow of HGS-PDAF is illustrated in Fig. 2.
First of all, to run HGS-PDAF, a shell execution script called
the “driver”, which is currently implemented for Linux,
needs to be prepared. This driver manages the loop in which
the HGS and data assimilation executables are called se-
quentially throughout the entire run period. At each time
step, the driver first calls the two HGS executables grok and
phgs. After that, hgs-pdaf, which is the executable containing
the model bindings that make the connection between HGS
and the PDAF (see Sect. 3.3 for details), is called. hgs-pdaf
checks if observations are available for the current time step
t and, if there are, calls PDAF to perform DA according to
the chosen DA algorithm. As hgs-pdaf reads model outputs
directly from the hgs binary output files, there is no need to
call hsplot. After computing the DA analysis update, hgs-
pdaf writes the updated state vector (containing only states
or both states and parameters) as new HGS input files for the
next time step. In the following, a generic run is described in
detail.

Consider a DA run with HGS-PDAF for an ensemble of
m state realisations and a transient model with a total run-
time that splits into n time steps of equal interval f;,;. Before
starting the run, an initial ensemble of m different model re-
alisations needs to be created. The initial ensemble should
account for the uncertainty inherent to the natural hydrolog-
ical system to be simulated. These realisations can be gener-
ated in a number of different ways and take into account sev-
eral different sources of uncertainty, for example, uncertainty
in initial conditions, model parameters, boundary conditions
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and external forcings. Subsequently, the run can be started.
At the first time step ¢ = fg, the process is as follows:

1. The ensemble of HGS models is initialised/pre-
processed in parallel by grok. The model mesh, bound-
ary conditions, parameters and initial conditions are
checked and read.

2. The ensemble of HGS models is run in parallel for f,;
by phgs. This is the most computationally demanding
step, as it requires running all HGS model realisations
forward in time. In the current version of hgs-pdaf, no
model run failure management option is implemented,
which requires that all model realisations need to suc-
cessfully completed for continuation of the run.

3. Now hgs-pdaf is executed. Figure 3 shows the call se-
quence within hgs-pdaf. The steps are as follows:

3.1 The parallelisation for PDAF is initialised. The MPI
commands are defined for the respective filter.

3.2 The data assimilation is initialised. The parameter
values for PDAF in the configuration files in the
Fortran namelist format are read. See Sect. 3.3.2
for a detailed description of these configuration
files. Next, the dimension of the state vector is de-
termined. The state variables and parameters from
step (2) are read from the output files of HGS. Their
values, called “forecast”, are entered into the state
vector. This is done for each ensemble state.

3.3 The ensemble mean and standard deviation of the
ensemble of state vectors are written to a netCDF
file Output.nc. In addition, if required, the results
for each realisation are written to m netCDF files
Output_ens_i.nc, where i represents the realisation.

3.4 The observations are mapped into the state space by
the observation operator. PDAF then performs the
analysis step of the data assimilation by integrating
the observations with the model forecast according
to the chosen DA algorithm, e.g. using the EnKF.
The ensemble of state vectors is then updated now
holding the “analysis”.

3.5 The “analysis” state information is written into the
file Output.nc analogous to Step 3.3. The ensemble
of “analysis” state vectors is written into HGS for-
mat in parallel for each ensemble member. These
files will be used as the initial condition for com-
puting the next time step with HGS.

3.6 PDAF is finalised which completes the execution of
hgs-pdaf for this analysis time step.

Steps (1)—(3) are repeated until # = tjp;-n. In the current
implementation, DA results at every analysis time step are
stored in netCDF format, while the original output files of
the HGS model at the final step are also retained.
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Figure 3. Call sequence of different subroutines within hgs-pdaf.

3.3 Model bindings: hgs-pdaf

To couple HGS with PDAF, a number of routines — known as
model bindings — provide PDAF with the information from
HGS and subsequently pass information from PDAF back
to HGS after DA. Since these model bindings are written in
Fortran, the following text uses terminology as it is called in
Fortran. The main program is responsible for calling various
HGS and DA subroutines sequentially. The subroutines/mod-
ules developed are grouped and described as follows.

3.3.1 Initialisation subroutines

These subroutines are designed to initialise the parallelisa-
tion, parameterisation and state vector for DA. The MPI ex-
ecution environment is initialised in init_parallel_pdaf at the
very beginning. Initialisation of PDAF is done by init_pdaf.
This includes the following parts as shown in Fig. 4:

1. Parameters such as the filter type, localisation and infla-
tion are predefined in init_pdaf. Parameters specified in
namelist files are read by read_config_pdaf.

2. The information about the model mesh, such as the total
number of nodes and elements in the model, is read in
by the HGS_init function.

3. The setup and dimension of the state vector is defined
in initialise. It is calculated by the details given in (1)
and (2). For example, if the state vector, as per the defi-
nition in (1), contains the hydraulic heads (i.e. a hydro-
logical system state, defined for each model node) and
K (i.e. a hydraulic parameter, defined for each model
element), then the number of nodes for the hydraulic
heads is npodes, and the number of elements for K is
Nelements, Which is defined in (2). In this case the dimen-
sion of the state vector as calculated by initialise would
be nstate = Mnodes+ Melements-
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Initialize PDAF

‘ Predefine DA parameters
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‘ Read model mesh
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Define state vector
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v
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v

‘ Read state vector values

v

‘ Initialize DA output file

Figure 4. Flowchart of the initialisation of data assimilation.

4. Information about the configuration of the DA, as de-
fined by the initialisation subroutines, can be printed out
by init_pdaf_info.

5. The values for the nodes that have been set to define the
state vector are also read at this point from the ensem-
ble of HGS runs that were run forward in time, i.e. the
“forecast”. This is done directly in init_pdaf. Variables
included in the state vector can be hydraulic heads, soil
water saturation, solute concentrations (modelled sys-
tem states) and K (model parameter). Notice that we
may need to transfer the original values of the model
state or parameters, e.g. for K; the log-transformed K
is considered in the state vector rather than the K itself
used in the HGS model to ensure that K is always posi-
tive during the assimilation process.

6. Initialise the DA output netCDF files Output.nc by
init_output_pdaf.

3.3.2 Parameterisation modules

The parameters for HGS and DA are predefined in the
initialisation phase. However, for each DA application,
users should define them according to their system knowl-
edge and needs. These parameter values are defined in
the two namelist files, namelist.pdaf and namelist.hgs, that
are provided by the user. The available parameters that
can be defined in the namelist files are described in Ap-
pendix B. These two namelist files are read by the subroutine
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read_config_pdaf in the initialisation phase. The parameters
used in DA and HGS will then be replaced with the values
specified in these namelist files instead of the default values
defined in init_pdaf by read_config_pdaf.

3.3.3 Observation modules

For each observation type, a different observation module
obs_VAR_pdafomi exists. Here, VAR refers to the name of
each type of observation, for now hydraulic heads (HEAD),
soil moisture (SAT) and solute concentrations (CONC), but
more can be added easily. These different observation mod-
ules are independent of each other, allowing for several dif-
ferent types of observations to be modularly combined and
assimilated either separately or in a chosen combination. Be-
low, the functioning of the observation modules is described
with the example of hydraulic heads.

Like every observation module, the obs_HEAD_pdafomi
module contains subroutines that initialise the informa-
tion about the observations (init_dim_obs_HEAD) and apply
the observation operator (obs_op_HEAD). Hydraulic head
observations are read from the observation input file by
init_dim_obs_HEAD. The number of observations at the cur-
rent time step is then counted, which define the dimension of
the observation vector for the observation type, in this case
hydraulic head. The observations are checked by excluding
the unreasonable values (e.g. by defining a threshold value),
and the indices of the observations deemed usable during the
current time step are stored. The coordinates, the values and
the errors in the respective observations are also stored.

Obs_op_HEAD is the implementation of the observation
operator. Thus, it is responsible for the mapping between the
state and the observation domains. Various observation op-
erators from PDAF can be selected here by calling the cor-
responding subroutine PDAFomi_obs_op_X. It is also possi-
ble for the user to add their own observation operator here.
Figure 5 gives an overview of how the observation module
works.

The subroutine init_dim_obs_pdafomi is used to combine
the different observations. This subroutine provides an inter-
face between PDAF and the different observation modules.
init_dim_obs_pdafomi calculates the full dimension of the
observation vector by combining all the chosen observation

types.

3.3.4 Assimilation subroutine

The subroutine assimilation_pdaf handles the DA analysis
step. The DA algorithm is called according to the filter type
defined in the namelist.pdaf file. The corresponding filter
then updates the variables stored in the state vectors.

3.3.5 Pre- and post-processing subroutines

At each time step, the ensemble mean and standard devia-
tions of the state vector at the prediction and analysis stages
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Figure 5. Illustration of the observation module.

are computed by the prepoststep_ens_offline subroutine. By
default, all these values are written to the output netCDF file
Output.nc. This is done by the subroutine write_netcdf_pdaf
in the output_netcdf module which contains various subrou-
tines to write the results of the DA into files. In addition, if the
user requires the output of all the individual ensemble mem-
bers, the subroutine write_netcdf_pdaf_ens can write the re-
sults of each ensemble member to separate netCDF files Ouz-
put_ens_i.nc. Note that these DA output files are different
from the output files of the HGS model, which are stored
separately in the original format.

When data assimilation is complete for a time step, an im-
portant step is to write the updated states (and parameters)
back to the original HGS model format so that they can sub-
sequently be used as new initial conditions and parameters
for the next simulation time step. This is done by calling out-
put subroutines to write files that are compatible with HGS at
the end of the main HGS-PDAF program. The development
of these output subroutines is beyond the scope of this paper.

3.4 Scalability of HGS-PDAF

The HGS-PDAF code is parallelised with MPI and uses only
CPUs. For the scalability test, we used the illustrative ex-
ample described in Sect. 4. Different ensemble sizes varying
from 2 to 100 members/realisations were tested. Each model
was run on one individual core, thus peaking at 100 cores for
the case of 100 ensemble members. All the test runs were car-
ried out on JURECA-DC CPUs from the Jiilich Supercom-
puting Centre in Germany. The clock speed per computing
node is 2.25 GHz. The individual HGS simulation is not par-
allelised; i.e. each HGS model is run on one core. Figure 6
shows the scaling behaviour of HGS-PDAF on the JURECA-
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Figure 6. Computing time of HGS-PDAF on JURECA-DC for dif-
ferent ensemble sizes between 2 and 100 normalised by the time for
ensemble size two.

DC CPUs. The execution time is normalised with the time for
an ensemble size of two members. When the ensemble is in-
creased from 2 to 100, the execution time increases by about
50 %.

4 Tllustrative examples of the capabilities of
HGS-PDAF

Here, the capabilities of HGS-PDAF are illustrated using a
quasi-hypothetical numerical river—aquifer model designed
based on a real-world riverbank filtration site in the Swiss
pre-Alps which has already served for several studies as a
model system for tracer and DA method development (Tang
et al., 2018; see Popp et al., 2021; Schilling et al., 2022).
The model was thus designed to be representative of an allu-
vial river—aquifer system where groundwater is pumped for
drinking water supply from wells located in the direct vicin-
ity of a river, inducing so-called bank filtration. Such systems
are highly suitable for drinking water production owing to the
high K and natural filtration capacity of the alluvial sand and
gravel materials which make up the riverbed and the aquifer.
However, in such systems, the interactions between rivers
and the underlying aquifers can be highly dynamic, chang-
ing from losing to gaining conditions, and back, within just
a few tens of metres, and the heterogeneity of the alluvial
sand and gravel material can be very complex, with irreg-
ular paleochannels potentially leading to strong preferential
flow. Without suitable observations and integrated numeri-
cal flow and transport models, understanding and managing
such systems becomes a major challenge. Therefore, DA and
integrated surface—subsurface hydrological modelling tools,
in particular our HGS-PDAF, are of high interest to contin-
uously update and correct model predictions for optimal de-
cision support. This quasi-hypothetical model was chosen to
demonstrate the capability of HGS-PDAF to consistently re-
produce both system states and parameters even in a highly
dynamic and complex hydrological system.
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4.1 Basic model setup

The real-world alluvial sand and gravel aquifer system, ac-
cording to which the illustrative model was designed, is char-
acterised by a distinct paleochannel of well-sorted gravel that
exhibits substantially higher hydraulic conductivities com-
pared to the surrounding, unsorted alluvial sand and gravel
sediments (Schilling et al., 2022). The slightly abstracted,
generalised synthetic version of the real-world site model
has been introduced by Delottier et al. (2022b) for the de-
velopment of environmental gas tracer transport simulations
with an ISSHM and efficient data space inversion techniques
for complex heterogeneous aquifer systems (Delottier et al.,
2023).

Geometrically, the model represents a three-
dimensional rectangular domain with dimensions of
500m x 300m x 30m (Fig. 7). A river of 20m width and
2 m depth is explicitly represented in the model at X = O m.
The horizontal resolution of the finite elements mesh varies
between 4 m along the river and riverbanks and 7 m on the
alluvial plain. Vertically, the model consists of 14 layers,
with thicknesses ranging from 0.5 to 4 m on the alluvial plain
and slightly smaller thicknesses underneath the river and
riverbanks. In total, the model consists of 112 240 nodes and
204 000 elements. Two riverbank filtration pumping wells,
spaced at 100 m and located at a distance of approximately
90 m parallel to the river, extract groundwater from a depth
of 14 m. The heterogeneity in K as typically found in such
alluvial river—aquifer systems is implemented via a highly
conductive paleochannel.

In the surface domain, constant boundaries are set for
the upstream with an inflow rate of 1.71m3s~!. A criti-
cal depth boundary is set as a boundary condition for the
outflow of the stream. In the subsurface domain, a head-
dependent Cauchy-type boundary condition was applied to
the groundwater flow. At the upstream, a constant hydraulic
head of 99.5 m was assumed, while at the downstream, a con-
stant hydraulic head of 93.2 m was considered. The conduc-
tance for these boundaries was set to 5.8 m?s~!. The model
was forced with transient boundary conditions to reproduce a
controlled pumping experiment in which pumps are first run-
ning at a constant rate of 400 m>h~! for 15d and are subse-
quently turned off for 50 d, after which they are again turned
back on to a constant rate of 400m>h~! for the remaining
30d of the experiment (Fig. 8). A coupling length of 0.001 m
is used to account for the exchange fluxes between the sur-
face and the subsurface domains. Figure 7 shows a three-
dimensional view of the model domain, boundary conditions
and paleochannel location, while Fig. 8 shows a schematic of
the transient pumping rates employed for the experiment.

In HGS, time steps are adaptive so that no specific restric-
tions were applied to maximum time step sizes, with the lim-
itation that the maximum time step size could not be larger
than the assimilation time step as defined for PDAF. The ini-
tial conditions were obtained for each model realisation in-
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Figure 7. Three-dimensional view of the model domain and model boundary conditions. Contours represent the groundwater table depth
below the surface. Locations of eight virtual observation wells are marked as stars. The location of the highly conductive paleochannel is
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Figure 8. Transient pumping rates during the simulation period.

dividually via a 1-year spin-up run with constant boundary
conditions corresponding to the conditions at the beginning
of the 95 d pumping experiment.

4.2 Prior ensemble and synthetic observations

In this study, the prior uncertainty of the system is charac-
terised by the observed variance of the initially generated en-
semble of hydraulic properties (i.e. the K). A comprehensive
description of the generation of the ensemble is described in
Delottier et al. (2023). Briefly, the prior ensemble was devel-
oped by using a stochastic alluvial feature generator ALLU-
VSIM (Pyrcz et al., 2009), geared towards the generation of
an alluvial sand and gravel aquifer with distinct paleochannel
features. To represent the well-sorted paleochannel and the
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unsorted surrounding sediments, two categorical parameter
fields were created and each of these two categories was pop-
ulated with a spatially uniform K (i.e. producing two types of
sediments with homogeneous properties each). In this way,
hydraulic conductivities were parameterised on a model ele-
ment basis, producing a heterogeneous parameter field. Dur-
ing DA, the K value of each of these numerical model el-
ements was adjusted. In addition to these heterogeneous K
fields, an ensemble of 100 realisations with different homo-
geneous K values was also considered for the experiments
for comparison purposes. These 100 homogeneous K values
were defined as the arithmetic averages of the 100 heteroge-
neous K fields.

To generate synthetic observations against which the per-
formance of DA could be evaluated, one of the stochastic
realisations of the ALLUVSIM simulations was defined as
a reference heterogeneous K field or synthetic “truth”. This
reference heterogeneous K field is illustrated in Fig. 7. To
generate observations for the assimilation experiment, eight
locations within the model domain were chosen and daily
time series of hydraulic heads and soil water saturation at a
depth of 1.5 m were extracted from this reference simulation.
These observation time series were subsequently stochasti-
cally perturbed by a normally distributed error with a stan-
dard deviation of 5 cm for hydraulic heads and 1 % for soil
water saturation. The values of the observation errors are de-
termined by our prior knowledge and tuning experiments.
Different percentages such as 5 % and 10 % were tested and
subsequently defined to provide a more illustrative use case.

https://doi.org/10.5194/gmd-17-3559-2024



Q. Tang et al.: HGS-PDAF (version 1.0)

4.3 Data assimilation scenarios

To demonstrate the modularity and capability of HGS-PDAF,
20 different DA scenarios that cover combinations between

— single and multivariate assimilations of hydraulic heads
and/or soil moisture observations,

— updating either one or a combination of states (i.e. hy-
draulic heads and/or soil water saturation),

— joint update of one or a combination of states alongside
the parameter K, and

— one of two scenarios of prior uncertainty in K (i.e. het-
erogeneous or homogeneous properties)

were run. As a DA algorithm, the EnKF was chosen. The
assimilation interval is 1d. When hydraulic heads and soil
water saturation are updated together, the initial condition for
the next prediction cycle is only hydraulic head. In addition,
runs without DA (so-called “open-loop” runs) were carried
out for both the heterogeneous and the fully homogeneous K
scenarios.

Owing to the relatively small size of the simulated system,
no localisation was applied. For the heterogeneous K scenar-
ios, when K was updated with DA, a damping factor of less
than 1 was applied. For the homogeneous K scenarios, as the
assumption of homogeneity already acted as a regularisation
for the parameterisation of K, the enforced homogeneity in
K during the update always produced a large enough ensem-
ble spread; i.e. the damping factor is equal to 1. Table 1 gives
the values of the damping factor used for all DA scenarios.

For all the scenarios, hgs-pdaf was run on a highly paral-
lelised Linux cluster so that all individual ensembles in the
priors were executed in parallel. It took approximately 11h
for hgs-pdaf to complete one single scenario.

4.4 Results and discussion of the illustrative DA
experiment

The performance of DA with HGS-PDAF is evaluated by
comparing the simulated hydraulic heads and soil water sat-
uration to the synthetically observed hydraulic heads and
soil water saturation, respectively. The average relative dif-
ference (over the eight observation wells) between the sim-
ulated (represented by the ensemble mean) and synthetically
observed states are illustrated in Fig. 9. Results are presented
for all the scenarios and for the two different prior ensembles
(i.e. homogeneous and heterogeneous K fields).

It is remarkably clear from Fig. 9 how DA applied to an
ISSHM of a riverbank filtration site (by using HGS-PDAF)
is able to reduce the misfit for almost all scenarios and for the
two prior ensembles. Overall, the model performance (with
respect to both employed observation types) is significantly
better when starting from and allowing heterogeneous K-
fields to arise, compared to when employing the assumption
of homogeneity.
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Table 1. Overview of illustrative DA scenarios. The open-loop sce-
narios, that is, the scenarios without updating, are labelled “ol”. For
all scenarios with updating, the following naming convention ap-
plies: the first part of the name identifies the variables that were in-
cluded in the state vector (i.e. the variables that were updated), while
the second part identifies the observations that were assimilated. h,
k and s stand for hydraulic head, K and soil water saturation, re-
spectively. Individual damping factors and the conceptualisation of
the prior K values are also indicated for each scenario.

Simulation scenario  Damping factor  Prior K values

ol

h_h
hk_h
hs_h
hs_s
hs_hs
hsk_h
hsk_s
hsk_hs

homogeneous

e e e e e |

ol -
h_h 1
hk_h 0.1
hs_h 1
hs_s 1
hs_hs 1
hsk_h 0.02
hsk_s 0.02
hsk_hs 0.02

heterogeneous

For hydraulic heads, the best performance in reducing the
model misfit was obtained when assimilating hydraulic heads
and updating both hydraulic heads and K (DA_hk_h). Lit-
tle to no improvements were gained by assimilating also soil
water saturation alongside hydraulic heads. In the heteroge-
neous case, scenario DA_hk_h performed so well that the av-
eraged ensemble mean model error was reduced to reflect
the measurement error (5cm). On the other hand, scenario
DA_hsk_hs, in which hydraulic heads, soil water saturation
and K were all updated together based on observations of hy-
draulic heads and soil water saturation, performed the worst.
Even when a low damping factor was used, K values did
not improve and turned out highly unrealistic (results not
shown). On the other hand, spurious updates of K were not
observed in the DA_hsk_hs scenario when run with the ho-
mogeneity assumption, as the homogeneity assumption helps
to regularise the problem and ensures consistent estimates of
homogeneous K fields. The poor performance for updating
K in the heterogeneous scenario can likely be attributed to
the fact that updating categorical prior parameter fields vio-
lates the multi-Gaussian assumption inherent to the ensem-
ble Kalman filter (Evensen et al., 2022). In such cases, other
methods such as data space inversion (DSI) or multiple point
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Figure 9. Ensemble mean of the relative differences (averaged for all observation wells) between simulated and observed states (hydraulic
heads and soil water saturation) for (a, ¢) the homogeneous scenarios and (b, d) the heterogeneous scenarios. For the soil water saturation,

only scenarios where soil water saturation was updated are shown.

geostatistics (MPS) should produce better results (Remy et
al., 2009; Delottier et al., 2023).

For soil water saturation, the overall model performance
was less improved by DA compared to the improvement for
the reproduction of hydraulic heads. The largest improve-
ment was achieved when hydraulic heads, saturation and K
were updated jointly using both observations of hydraulic
heads and soil water saturation (scenario DA_hsk_hs). On the
other hand, very little improvement on model performance
could be achieved when only observations of soil water sat-
uration were assimilated, irrespective of the combination of
states (and parameters) chosen to be updated. This poor per-
formance of using soil water saturation observations for DA
of an ISSHM is likely explained by the fact that soil wa-
ter saturation observations stem from locations relatively far
away from the stream and which therefore did not show a
strong variation throughout the pumping experiment. In this
specific configuration, the information contained in observa-
tions of saturation was thus limited and could not match up
against the information contained in hydraulic heads, which
varied strongly throughout the pumping experiment.

Concerning reproducing the true K field, as long as the K
fields were updated from heterogeneous priors and heteroge-
neous structures were allowed to arise during updating, a rea-
sonably good overall agreement could already be achieved
by only using hydraulic heads (Figs. 9 and 10). This is cer-
tainly partly owed to the fact that the initially chosen het-
erogeneous prior was a priori a good approximation of the
synthetic truth, as can be directly seen in the two examples
illustrated in Fig. 10 as well as in the relatively good perfor-
mance of the heterogeneous open-loop run. As such, this il-
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lustrative case highlights the importance of choosing as good
a prior as possible in such heterogeneous K systems, particu-
larly because paleochannel facies are, as outlined previously,
difficult to identify from hydraulic head observations alone.
Nevertheless, even though the performance of DA was gen-
erally good even for K, the non-multi-Gaussian connectivity
of the structures could not be preserved perfectly during DA
with HGS-PDAF, as can be seen in Fig. 10. As outlined pre-
viously, however, this is an expected outcome of DA with a
multi-Gaussian method such as EnKF.

5 Conclusions

We have here introduced a new data assimilation framework
for fully integrated surface—subsurface hydrological models
by providing a coupling between the ISSHM HGS and the
DA software PDAF. This highly modular DA framework al-
lows for the single and multivariate assimilation of several
types of observational data, including hydraulic heads, soil
water saturations and solute concentrations, as well as an in-
dividual or joint update of several model states and param-
eters, including hydraulic heads, soil water saturation, so-
lute concentrations and hydraulic conductivities. The scal-
ability of HGS-PDAF was evaluated at the Jiilich Supercom-
puting Centre in Germany, and the usability and modularity
of HGS-PDAF was illustrated with a synthetic river—aquifer
and bank filtration model and the standard ensemble Kalman
filter method (one of several DA algorithms provided by
PDAF).
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Figure 10. Posterior estimates of K fields with heterogeneous priors for three different scenarios and two individual realisations. The bottom
row indicates the probability of occurrence of a paleochannel, calculated by considering a given threshold (i.e. 600 md~!) above which a

buried paleochannel facies is potentially identified.

Compared to existing hydrological data assimilation sys-
tems, the advantage of the newly developed HGS-PDAF lies
in its consideration of ISSHM; its large selection of different
assimilation algorithms as provided by PDAF; its modularity
with respect to combining observations, states and parame-
ters to be considered for DA; and the flexibility and ease at
which new observations, states and parameters may be added
to the already implemented ones. While in the current ver-
sion of HGS-PDAF only global filters are implemented, the
implementation of localised filters is planned for the next it-
eration.
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Table A1. Data assimilation approaches in PDAF and their known application fields.

Data assimilation approaches

Fields of application

Examples in hydrogeology (if not
applicable, we give references in
other fields and mark them with *)

Ensemble based Global EnKF Meteorology, oceanography, hydrology, Tang et al. (2017, 2018)
hydrogeology, land surface
ETKF Meteorology, oceanography, hydrology, Zhang et al. (2016), Rasmussen et
hydrogeology, land surface al. (2016)
SEIK Meteorology, oceanography, hydrology, Schumacher (2016)
hydrogeology
ESTKF  Meteorology, oceanography, hydrology, Y. Li et al. (2023)
hydrogeology
NETF Meteorology, oceanography Todter et al. (2016), Nerger (2022)*
PF Meteorology, oceanography, hydrology, Berg et al. (2019), Abbaszadeh et
hydrogeology, land surface al. (2018)
SEEK Meteorology, oceanography Brasseur and Verron (2006), Buten-
schon and Zavatarelli (2012)*
Local LEnKF  Meteorology, oceanography, hydrology, Hung et al. (2022), F. Li et
hydrogeology, land surface al. (2023)
LETKF Meteorology, oceanography, hydrology, Sawada (2020)
hydrogeology, land surface
LSEIK  Meteorology, oceanography Liu and Fu (2018), Liang et
al. (2017)*
LESTKF Meteorology, oceanography Zheng et al. (2020)*
LNETF  Meteorology, oceanography Feng et al. (2020)*
LKNETF Meteorology, oceanography Shao and Nerger (2024)*
Variational 3DVAR  Meteorology, oceanography, hydrology Cummings and Smedstad (2013),

Li et al. (2008)*
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Appendix B: namelist files

The parameters that need to be defined in the namelist.hgs
file are listed in Table B1. These parameters are used for the
HGS model.

The parameters that can be defined in the namelist.pdaf file
are listed in Table B2. These parameters are used for data as-
similation. If the values of these parameters are not specified
in namelist.pdaf, default values are used. A detailed descrip-
tion of these parameters can be found from the PDAF website
(http://pdaf.awi.de, last access: 19 April 2024).

Table B1. Parameters defined in namelist.hgs.

Parameter name  Description

prefix String, file name of the HGS model

insuffix String, the suffix of the files storing the initial conditions

outsuffix String, the suffix of the output files

isolf “True” if overland flow is also simulated and “false” if only groundwater flow
isconc “True” if mass transport is simulated and “false” if not

hgs_version

“1” for HGS versions before 2013 and “2” for HGS 2013 and newer versions

Table B2. Parameters defined in namelist.pdaf.

Parameter name

Description

n_modeltasks
dim_ens
dim_lag
type_forget
forget
type_trans
type_sqrt
incremental
step_null
write_da
write_ens
str_daspec
printconfig
istep

screen
assim_o_head
path_obs_head
file_head_prefix
file_head_suffix
state_type
rms_obs_head
head_fixed_rmse
ResultPath
assim_o_sat
path_obs_sat
file_sat_prefix
file_sat_suffix
rms_obs_sat
sat_fixed_rmse
damp_k

Sr

Number of parallel model tasks, default is 1
Ensemble size
Number of time instances for smoother

Type of forgetting factor. “0” for fixed, “1” global adaptive and “2” for local adaptive for LSEIK/LETKF/LESTKF

Values of forgetting factor

Type of ensemble transformation. Values differ for local filters. Detailed information on these values can be found in the code

Type of transform matrix square root. “0” for symmetric square root, “1” for Cholesky decomposition
“1” if incremental updating is performed. Only used in SEIK/LSEIK

Initial time step of assimilation

Whether to write the output file for DA*

Whether to write the output files for each realisation™

String to identify assimilation experiment

Whether to print information on all configuration parameters™®

Real time step for HGS and PDAF

Write screen output. “1” for output and “2” for adding timing information

Whether to assimilation the hydraulic head observations*

Path to the file storing the head observations

Prefix of the file name for the head observations

Suffix of the file name for the head observations

Define variables included in the state vector

Observation error value used for the head

Whether to use a fixed value or the error values provided from the head observation file*
Path to the DA output file(s)

Whether to assimilation the soil water saturation observations™

Path to the file storing the soil water saturation observations

Prefix of the file name for the soil water saturation observations

Suffix of the file name for the soil water saturation observations

Standard deviation value used for the soil water saturation observations

Whether to use a fixed value or the error values provided from the soil water saturation observation file*
Damping factor for hydraulic conductivity

Maximum saturation degree

* “True” if yes and “false” if no.

https://doi.org/10.5194/gmd-17-3559-2024

Geosci. Model Dev., 17, 3559-3578, 2024


http://pdaf.awi.de

3574

Code and data availability. The current version of HGS-PDAF is
available from GitHub (https://github.com/qiqi1023t/HGS-PDAF_
v1.0_GMD, last access: 19 April 2024) under the GNU Gen-
eral Public License v3.0. The exact version of the model used
to produce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.10000886, Tang et al., 2023), as are
input data and scripts to run the model and produce the plots for all
the simulations presented in this paper.
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