Geochemische Verwitterungstrend eines basaltischen Ausgangsgesteins nach dem spätpleistozänen Gletscherrückzug auf der Taimyrhalbinsel (Zentralsibirien) -Rekonstruktion an einer sedimentären Abfolge des Lama Sees

Geochemical weathering trends of a basaltic source rock after the retreat of Late Pleistocene glaciers on the Taymyr Peninsula (Central Siberia) - reconstruction using sedimentary sequences of Lake Lama

Stefanie K. Harwart

Ber. Polarforsch. 324 (1999) ISSN 0176 - 5027

Stefanie K. Harwart

Alfred-Wegener-Institut für Polar- und Meeresforschung Forschungsstelle Potsdam Telegrafenberg A43 D-14473 Potsdam

Die vorliegende Arbeit ist die unveränderte Fassung einer Dissertation, die im Dezember 1998 vom Fachbereich Geowissenschaften der Universität Potsdam angenommen wurde. Die Daten dieser Veröffentlichung sind über das Alfred-Wegener-Institut für Polar- und Meeresforschung (Anschrift siehe oben) verfügbar.

S	ummaryv
K	urzfassungvi
D	anksagungvii
1	Einführung 1
	1.1 Beschreibung des Arbeitsgebietes
	1.1.1 Geographische Lage
	1.1.2 Klima
	1.1.3 Geologischer Rahmen
	1.1.3.1 Charakterisierung der permo-triassischen Flutbasalte
	1.1.4 Verbieltung weitenszeitszeiticher Ofeischer Ausgeweiter des Lama Sees
	1.2 Verwitterung und Mobilität von Elementen
r	Untersuchungsmethoden 18
4	2.1. Probanduma 18
	2.2 Probenaufbereitung
	2.3 Altersbestimmungen
	2.4 Faktorenanalyse
	2.5 Hydrologische Untersuchungen
	2.6 Korngrößenverteilung
	2.7 Magnetische Suszeptibilität
	2.8 Mikroskopie
	2.9 Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma21
	2.9.1 Aufschlußverfahren
	2.9.2 Meßverfahren
	2.10 Rasterelektronenmikroskopie
	2.11 Röntgendiffraktometrie
	2.11.1 Gesamtmineralogie
	2.12 Distantiumeratogramanium 24
	2.12 Rongenhoreszenzanaryse
_	2.13 Strontiumisotope
3	Ergebnisse
	3.1 Charakterisierung des Ablagerungsraumes25
	3.2 Stratigraphie der Kernsequenz PG1111
	3.2.1 Lithostratigraphie
	3.2.3 Mineralogie
	3.2.4 Chemostratigraphie
	3.2.4.1 Geochemische Zusammensetzung des Gesamtsedimentes
	3.2.4.2 Geochemische Zusammensetzung der Tonfraktion42
	3.2.4.3 Korngrößenabhängige geochemische Variationen
	3.2.4.4 Strontiumisotope
4	Diskussion und Interpretation50
	4.1 Einflußfaktoren auf die Gesamtgeochemie des Lamaseesedimentes51

i

4.1.1 Liefergebiet	
4.1.2 Transport	
4.1.3 Diagenese	
4.1.4 Verwitterung	62
4.2 Verwitterung nach dem Rückzug der Spätweichselgletscher	66
5 Zusammenfassung und Ausblick	73
6 Literatur	76
7 Anhang	85

Abbildungsverzeichnis

Abb. 1: Lage und Topographie des Einzugsgebietes des Lama Sees
Abb. 2: Verteilung und Lage der wichtigsten Gesteinsformationen auf dem westlichen Teil der sibirischen Plattform
Abb. 3: Geologische Formationen in der Region des Lama Sees
Abb. 4: Ausdehnung der Vereisung während des letzten glazialen Maximums (LGM) im nördlichen Eurasien sowie die Entwicklung der Eisausdehnung bis in das Boreal nach Grosswald (1993)9
Abb. 5: Vereisungszentren im nördlichen Eurasien während des LGMs nach Velichko (1997)10
Abb. 6: Maximale Ausdehnung der Gletscher im nördlichen Zentralsibirien während der Früh- und Spätweichsel nach Astakhov (1997)11
Abb. 7: Modell zur Umweltentwicklung des Lama Sees seit der Ältesten Dryas
Abb. 8: Faktoren der Verwitterung und Bodenbildung in einem Profil von der nördlichen Polarregion bis zu den tropischen Gebieten am Äquator15
Abb. 9: Mobilität von wichtigen Elementen in Abhängigkeit von der Ionenladung z und vom Ionenradius r in oberflächennahen Systemen
Abb. 10: Übersichtsaufnahme des geöffneten Kernes PG111119
Abb. 11: Lokationen der Oberflächenkerne sowie der Kernsequenz PG1111 im zentralen Bereich des Lama Sees. 25
Abb. 12: Skizze zur Charakterisierung des Ablagerungsraumes der Kernsequenz PG1111 im zentralen Bereich des Lama Sees. 26
Abb. 13: pH-, Temperatur-, Sauerstoff- (O ₂) und Leitfähigkeitstiefenprofile des Seewassers an vier Positionen sowie meβbare Kationen an zwei Positionen des Lama Sees27
Abb. 14: Lithostratigraphie der Kernsequenz PG1111
Abb. 15: Kernausschnitt aus Abschnitt E _{lith.} (940 - 835 cm) der Kernsequenz PG111129
Abb. 16: Alter-Tiefen-Beziehung der Kernsequenz PG1111
Abb. 17: Gradierte Silt-Ton-Lagen der Kernsequenz PG1111
Abb. 18: Mineralogische Zusammensetzung der Gesamtfraktion und der < 2 μm - Fraktion in der Sedimentsequenz PG1111
Abb. 19: Verteilungsmuster der Hauptelemente in der Kernsequenz P1111
Abb. 20: Verteilungsmuster der auf Aluminium normierten Hauptelemente in der Kernsequenz PG1111.37
Abb. 21: Verteilungsmuster der Spurenelemente in der Kernsequenz PG1111
Abb. 22: Verteilungsmuster der auf Aluminium normierten Spurenelemente in der Kernsequenz PG1111.4.
Abb. 23: Verteilungsmuster der Hauptelemente in der Tonfraktion der Kernsequenz PG111143
Abb. 24: Verteilungsmuster der auf Aluminium normierten Hauptelemente in der Tonfraktion der Kernsequenz PG111144
Abb. 25: Verteilungsmuster der Spurenelemente in der Tonfraktion der Kernsequenz PG111146
Abb. 26: Mittlere geochemische Zusammenserzung der > 63 μm-, 63 - 2 μm- und < 2 μm- Fraktionen in PG1111 (n=4)

Abb. 27: Schematische Darstellung der Prozesse, die die Gesamtgeochemie des Lamaseesedimentes beeinflussen
Abb. 28: 2Nb-Zr/4-Y Diskriminierungsdiagramm nach Meschede (1986)52
<i>Abb.</i> 29: ε _{sr} -Ti/Y-Diagramm
Abb. 30: Durchschnittliche relative Anteile der Haupt- und Spurenelemente in der > 63 μm-, 63 - 2 μm - und in der < 2 μm - Fraktion nach der Normierung auf 100 %54
Abb. 31: XY-Diagramm der Faktorwerte von Faktor 1 _{HEges/Al} und Faktor 3 _{HEges/Al}
Abb. 32: XY-Diagramm der Faktorwerte von Faktor 1 _{SEges./Al} und Faktor 2 _{SEges./Al}
Abb. 33: Phosphor-, Mangan-, Eisen- und TOC-Verteilung in den obersten 17 cm der Sedimentsequent PG1111
Abb. 34: A: Phosphor-Mangan-TOC-Entwicklung von der Ältesten Dryas bis heute in der Kernsequenz PG1111. B: Stabilitätsdiagramm für Eisen- und Manganverbindungen60
Abb. 35: Anreicherung bzw. Verarmung von Haupt-, Neben- und Spurenelementen in verschiedenen Tiefen der Sedimentsequenz PG1111 bezogen auf das Liefergebiet
Abb. 36: Variationen in der geochemischen und mineralogischen Zusammensetzung eines Gneises (Morton-Redwood Falls, Minnesota) mit zunehmender Verwitterung
Abb. 37: Vergleich der geochemischen Zusammensetzung des unverwitterten Ausgangsgesteins, des Lamaseesedimentes und des Seewassers im CaO-Na ₂ O-K ₂ O-Dreicksdiagramm65
Abb. 38: Rasterelektronische Aufnahmen des Gesamtsedimentes der Kernsequenz PG111167
Abb. 39: Normierung der Hauptelementkonzentrationen in der < 2 μm - Fraktion und 2 - 63 μm - Fraktion aus verschiedenen Horizonten der Sedimentsequenz PG1111 auf Probe ₈₆₄₋₈₇₄ , die ausschließlich die Verwitterung vor der Spätweichsel reflektiert
Abb. 40: Prozentuale Ab- bzw. Zufuhr von Hauptelementen der < 2 μm - Fraktion in der Kernsequenz PG1111
Abb. 41: Prozentuale Ab- bzw. Zufuhr von Spurenelementen der < 2 μm - Fraktion in der Kernsequenz PG1111
Tabellenverzeichnis
Tab. 1: Allgemeine Daten des Lama Sees
Tab. 2: Mittlere Jahresklimadaten in der Region des Lama Sees. 4
Tab. 3: Relative Mobilitäten von Elementen unter oxischen, anoxischen, sauren und alkalischen Bedingungen
Tab. 4: Experimentell ermittelte mittlere Lebensdauer eines 1 mm Kristalls in Kontakt mit einer nichtgesättigten Lösung bei 25 ℃ und pH = 5
Tab. 5: Zur Auswertung der Röntgendiagramme der Gesamtmineralogie des Lamaseesedimentes genutzte Reflexe (CuKa-Strahlung).
Tab. 6: Zur Auswertung der Röntgendiagramme der Tonmineralogie des Lamaseesedimentes genutzte Reflexe (CoKa-Strahlung)
Tab. 7: Statistische Parameter der Hauptelementkonzentrationen im Gesamtsediment (HEges.) des Kerns 961111
Tab. 8: Faktormatrix _{HEges.} der Hauptelementkonzentrationen des Gesamtsedimentes in Kern PG1111 nach Anwendung der Hauptkomponentenanalyse und Varimax-Rotation
Tab. 9: Statistische Parameter der Spurenelementkonzentrationen im Gesamtsediment (SEges.) des Kerns PG1111
Tab. 10: Faktormatrix _{SEges} . der Spurentelementkonzentrationen des Gesamtsedimentes in Kern PG1111 nach Anwendung der Hauptkomponentenanalyse und Varimax-Rotation
Tab. 11: Statistische Parameter der Hauptelementkonzentrationen in der Tonfraktion des Kerns PG1111
Tab. 12: Statistische Parameter der Spurenelementkonzentrationen in der Tonfraktion des Kerns 45 PG1111 45

iii

Tab. 13: Mittelwerte und Standardabweichung der geochemischen Zusammensetzung der > 63 μ m -, 63 -
$2 \mu m - und < 2 \mu m - Fraktionen in PG1111$
Tab. 14: ${}^{87}Sr/{}^{86}Sr$ -Isotopenverältnisse und e_{sr} -Werte aus vier verschieden Tiefen des Kerns PG111150
Tab. 15: Durch unterschiedliche Umweltsituationen und Sedimentransportarten im Einzugsgebiet desLama Sees bedingte Sedimentstruktur, Geochemie und Mineralogie in der Kernsequenz PG1111.57
Tab. 16: a: Mineralphasen und deren Mineralchemie im Basalt und im Lamaseesediment. b: sekundäre Mineralneubildungen der Basalte und im Sediment

Summary

v

Summary

This thesis presents and discusses data on the chemical weathering of a basaltic source material on the basis of sediment sequences deposited in Lama Lake. The processes and the influences of various environmental conditions, such as vegetation, precipitation and erosion, on the chemical weathering can be determined and can be followed over periods of thousands of years by investigating a sediment sequence.

Lama Lake lies in the northern portion of the Taymyr Peninsula in Central Siberia, a region of continuous permafrost. The lake is fed by various tributaries from the Putorana Plateau. The Plateau is composed primarily of continental flood basalts of up to 4 km thickness. A sediment sequence (PG 1111) was recovered from Lama Lake which ranges from the Oldest Dryas (Late Weichselian) to present time. Palynological, sedimentological and biochemical initial investigations have shown that the surroundings of Lama Lake lay within the watershed area of the alpine glacial region of the Putorana Plateau, until the Allerød. A cooling during the Early Dryas did not lead to renewed expansion of the glaciated area. Higher plants developed during the Bølling and formed a continuous larch and spruce cover during the climatic optimum in the Boreal.

Through geochemical analyses (major and trace elements) of the bulk sediment and of various particle size fractions and through multivariate statistical analysis of these results, influences on the geochemistry of the sediment, additional to the background weathering products of the sediment source material, were determined:

The total chemical signature of Lama Lake sediment is determined largely by the particle size spectrum, which in turn is controlled by the nature of the transport processes delivering the sediment. The Early Dryas is characterized by glacio-lacustrine contact, which led to the deposition of gravel and sand in a fine matrix. From the Late Dryas on, glacio-fluvial erosion dominated, resulting in the deposition of very fine clayey material. From the Allerød on, fluvial transport has led to the deposition of silty-clayey sediment.

Early diagenetic processes are recognizable in the sediments of core PG 1111, but have little influence on the geochemistry. These processes are related to dissolution and weathering processes on land. Indications of corresponding weathering processes since the Bølling have been observed in the Lama Lake catchment area.

The comparison with unweathered source material (continental flood basalts) to the Lama Lake sediment shows that basaltic material has been deposited in the lake since the Early Dryas and that it covers an intense chemical pre-Weichselian weathering of the basalt. Analysis of the finest sediment material in the sediment indicate that the Lama Lake catchment area underwent a new phase of chemical weathering in the Allerød. A weathering index shows a maximal removal of mobile elements from the Allerød to the Preboreal.

Kurzfassung

Kurzfassung

Die vorliegende Arbeit präsentiert und diskutiert die chemische Verwitterung eines basaltischen Ausgangsgesteins anhand einer erodierten und im Lama See abgelagerten Sedimentsequenz. Untersuchungen an einer Seesedimentsequenz bieten dabei die Möglichkeit, den Prozeß der chemischen Verwitterung über mehrere tausend Jahre zu verfolgen und den Einfluß unterschiedlicher Umweltbedingungen (z. B. Vegetation, Niederschlag, Erosion) auf die chemische Verwitterung zu erfassen.

Der Lama See liegt im nördlichen Zentralsibirien auf der Taimyrhalbinsel (ca. 69° N, 90° E); einer Region, die durch kontinuierlichen Permafrost gekennzeichnet ist. Das Gewässer wird von mehreren Zuflüssen aus dem Putorana Plateau gespeist, das im wesentlichen aus kontinentalen Flutbasalten, die eine Mächtigkeit von ca. 4 km erreichen können, aufgebaut wird. Die Sedimentbohrung PG1111 aus dem zentralen Bereich des Lama Sees umfaßt den Zeitraum der Ältesten Dryas (Spätweichsel) bis heute. Palynologische, sedimentologische und biochemische (TOC, δ^{13} C der organischen Substanz und von Karbonaten) Voruntersuchungen des Lamaseesedimentes haben gezeigt, daß das Umfeld des Lama Sees bis zum Allerød im Einflußbereich der Gebirgsvergletscherung des Putorana Plateaus lag. Eine Abkühlung während der Jüngeren Dryas führte zu keiner erneuten Gletscherausbreitung. Erste höhere Pflanzen entwickelten sich im Bølling und bildeten während des Klimaoptimums im Boreal einen dicht geschlossenen Lärchen-Fichtenwald. Vom Boreal bis heute charakterisieren periodische Wechsel von Waldtundra und Tundra die Region des Lama Sees.

Mit Hilfe von geochemischen Untersuchungen (Haupt- und Spurenelemente) des Gesamtsedimentes und an verschiedenen Korngrößenfraktionen der Sedimentsequenz PG1111 aus dem Lama See und durch die multivariate statistische Bearbeitung der Ergebnisse werden neben der chemischen Verwitterung des Ausgangsgesteins weitere Einflußfaktoren auf die Geochemie des Sedimentes erfaßt:

Der Gesamtchemismus des Lamaseesedimentes wird im wesentlichen durch Variationen im Korngößenspektrum gesteuert, die auf Transportartwechsel zurückzuführen sind. Die frühe Älteste Dryas ist durch glaziolakustrinen Kontakt charakterisiert, der zur Ablagerung von Kies und Sand in einer feinkörnigen Matrix führt. Ab der späten Ältesten Dryas dominiert die glazio-fluviatile Erosion mit dem Eintrag sehr feinen, tonigen Materials und ab dem Allerød führt fluviatiler Transport zur Ablagerung von siltig-tonigem Sediment.

Frühdiagenetische Prozesse sind in der Sedimentsequenz PG1111 zu erkennen, prägen den Chemismus des Seesedimentes jedoch nur im geringen Maß. Sie sind mit Lösungs- und Verwitterungsprozessen an Land verbunden. Hinweise auf entsprechende Verwitterungsprozesse finden sich ab dem Bølling im Einzugsgebiet des Lama Sees.

Der Vergleich von unverwittertem Ausgangsgestein (kontinentale Flutbasalte) und dem Lamaseesediment zeigt, daß im See von der Ältesten Dryas bis heute verwittertes basaltisches Material abgelagert ist und belegt eine tiefgreifende, chemische, vorweichseleiszeitliche Verwitterung der Basalte. Untersuchungen am Feinstmaterial des Lamaseedimentes lassen erkennen, daß das Einzugsgebiet des Lama Sees im Allerød von einer neu einsetzenden chemischen Verwitterung erfaßt wurde. Ein Verwitterungsindex belegt vom Allerød bis zum Preboreal die maximale Abfuhr mobiler Elemente.

Danksagung

Diese Arbeit entstand im Rahmen des Deutsch-Russischen Taimyr-Projektes Rekonstruktion der spätquartären Umweltentwicklung in Zentralsibirien, das vom BMBF (Bundesministerium für Bildung und Forschung) finanziell unterstützt wurde.

Für die Anregung und die fachliche Unterstützung dieser Arbeit und für die Hilfe zur Durchführung möchte ich mich bei Herrn Prof. Dr. H.-W. Hubberten bedanken.

Herrn Prof. Dr. H. Ruppert und Herrn Priv.-Doz. Dr. G. Matheis danke ich für die Übernahme der Begutachtung dieser Arbeit und für die eingehenden Diskussionen.

Besonderer Dank gilt Frau Dr. B. Hagedorn, die mit ihrer fachlichen Kompetenz und den zahlreichen unterstützenden Diskussionen wesentlich zur Fertigstellung dieser Arbeit beigetragen hat. Bei Herrn Dr. A. M. Siad bedanke ich mich für die Einführung in die Anwendung multivariater statistischer Untersuchungsmethoden und für die Klärung geochemischer Fragestellungen. Für ihre Diskussionsbereitschaft und konstruktive Kritik danke ich den Frauen Dr. O. Lysitzina, Dr. H. Oberhänsli, Dr. C. Siegert und den Herren Dr. M. Melles, Dr. V. Racholt und Dr. U.Wand.

Für die erfolgreiche Zusammenarbeit und die Einführung in die Gesteinsmagnetik möchte ich mich bei Herrn Dr. R. N. Nowaczyk bedanken. Die Messungen der magnetischen Suszeptibilitäten wurden am GeoForschungsZentrum, Potsdam durchgeführt. Bei den Röntgenfluoreszenzanalysen wurde mir von Priv.-Doz. Dr. G. Matheis geholfen, die Untersuchungen selbst wurden am geochemischen Labor (Technische Universität Berlin) durchgeführt. Frau Glenz danke ich für die hilfreiche Untersuchungen, Unterstützung bei den rasterelektronischen die am GeoForschungZentrum, Potsdam erfolgten. Die Bestimmung der ⁸⁷Sr/⁸⁶Sr-Isotopie erfolte im geochemischen Labor der Freien Universität Berlin unter der Leitung von Herrn Prof. Dr. H. Friedrichsen.

Für die Hilfe der am Alfred-Wegener-Institut, Forschungsstelle Potsdam, durchgeführten Laborarbeiten bedanke ich mich bei den Laborantinnen U. Bastian, M. Stapke und A. Eulenburg sowie bei Herrn L. Schönicke. Außerdem bedanke ich mich bei den Teilnehmern der Norilsk/Taimyr Expedition 1993 für die Kernentnahme, die die vorliegende Arbeit erst ermöglichte.

Frau Sass danke ich für ihre Hilfsbereitschaft bei der Suche und Bestellung spezieller Literaturwünsche. Für die Hilfe von organisatorischen Dingen möchte ich bei den Frauen C. Litz, B. Struschka, D. Kiewitt und besonders bei Frau H. Henschel, die immer Zeit für ein motivierendes Gespräch hat, bedanken.

Meinen Mitdoktoranden Christoph Abegg, Julia Boike, Tobias Ebel, Erich Hoops, Thomas Kulbe, Alexandra Raab, Markus Schwab, Gerald Vannahme und Bernd Wagner, die teilweise bereits den Weg zum 'Doktor' hinter sich haben, danke ich für fachliche Beiträge und private Unternehmungen.

Bei meiner Familie und meinen Freunden möchte ich mich für ihre Geduld und ihr Verständnis bedanken. Besonderen Dank gilt meinem Freund Dr. T. Denkler, der mich in idealer Weise fachlich und privat unterstützen konnte.

1 Einführung

Seesedimente können bei kontinuierlicher Ablagerung Klimaarchive über mehrere tausend Jahre darstellen. Typische Methoden zur Rekonstruktion des Paläoklimas an Seesedimenten sind die Palynologie (z.B. Gajewski 1995; Heusser 1994; Hyvärinen 1970; Sheng Hu et al. 1996; Sifeddine et al. 1996 und Wohlfarth et al. 1995), isotopengeochemische Untersuchungen an organischer Substanz und Frischwasserkarbonaten (z. B. Håkanson 1986; Hammarlund & Buchard 1996; Meyers & Horie 1993; Michel et al. 1989; Stuiver 1970; Talbot 1990; Talbot & Johannessen 1992 und Turney et al. 1997), Gesteinsmagnetik (z. B. Braitseva et al. 1997; Liddicoat & Coe 1997 und Williams et al. 1996), Sedimentologie (z. B. Johnson 1997; Leonard 1986 und Simola & Uimonen-Simola 1983) sowie die Mikropaläontologie (z. B. Bradbury 1997; Lotter et al. 1995 und Nygaard 1956).

Geochemische Untersuchungen in Seesedimenten konzentrieren sich oft auf den oberflächennahen Bereich und beschäftigen sich im wesentlichen mit der Mobilität und Fixierung von Haupt- und Spurenelementen in Abhängigkeit von Redox- und pH-Bedingungen (z.B. Aller 1994; Carignan et al 1985; Cline & Upchurch 1973 und Young & Harvey 1992). In kontaminierten Regionen liegt der Schwerpunkt von geochemischen Untersuchungen auf der Quantifizierung des anthropogenen Eintrages und in der Rekonstruktion möglicher Kontaminationsquellen (z.B. Dauvalter 1994; Kramar et al. 1992 und Pirrie et al. 1997).

Untersuchungen zur Klimaabhängigkeit der Geochemie von Seesedimenten über einen längeren Zeitraum existieren für die Rekonstruktion von Seespiegelschwankungen und marinen Einflüssen, indem über Salzgehalte lakustriner Ablagerungen und deren Porenwässern Evaporationsraten oder marine Transgressionen qualifiziert und quantifiziert werden (z.B. Hoelzmann 1993; Lewis & Weibezahn 1981; Olsson 1991).

Andere geochemische Untersuchungen an Seesedimentabfolgen von Mackereth (1966) und Pennington (1981b) zeigen, daß der Eintrag von Hauptelementen in das Sediment in Abhängigkeit von Glazial- und Nichtglazialzeiten schwankt: hohe Konzentrationen an Kalium, Natrium, Kalzium und Magnesium reflektieren Zeiten verstärkter glazialer Erosion und die ursprüngliche Zusammensetzung des Ausgangsgesteins. Niedrige Hauptelementkonzentrationen dagegen repräsentieren den Rückgang der Gletscher, verminderte Erosion sowie die Zunahme von Lösungsprozessen durch Bodenbildung.

Der Einfluß des Klimas auf die chemische Verwitterung wird in der Literatur kontrovers diskutiert: Felduntersuchungen und Laborexperimente belegen deutlich den Einfluß des Klimas, insbesondere des Niederschlages und der organischen Substanz, auf die chemische Verwitterung (Berner 1992; Clow & Drever 1996; Velbel 1993). Andererseits zeigten Untersuchungen entlang des Andengürtels von den Tropen bis in den arktischen Bereich, daß die Lithologie, unabhängig vom Klima, wesentlichen Einfluß auf die chemische Verwitterung hat (Edmond et al. 1995). Ähnliche Verwitterungsraten von Basalten wurden sowohl in kalten (Island, Nordatlantik) als auch in tropischen Klimaten (Réunion, Pazifischer Ozean) beobachtet (Gíslason & Arnórsson 1993; Louvat & Allègre 1997).

In Permafrostgebieten ist die chemische Verwitterung im wesentlichen auf die oberflächennahe jahreszeitliche Auftauschicht ('active layer') vom Beginn des Tauens im Frühjahr bis zum Zurückgefrieren im Herbst begrenzt. Verstärkenden Einfluß auf die chemische Verwitterung haben die Schneeschmelze im Frühjahr (Untersättigung der

Einführung

Bodenlösung), starke solare Einstrahlung, erhöhte UV-Bestrahlung von Mai bis August, steile Temperaturgradienten und häufige Tau-Gefrier-Zyklen (Ugolini 1986).

Ansatz der vorliegenden Arbeit ist es, klimainduzierte Verwitterungstrends im geochemischen Einzugsgebiet anhand von Variationen innerhalb einer Seesedimentabfolge zu rekonstruieren. Voraussetzung ist, daß verwittertes. geochemisch verändertes Ausgangsgestein erodiert und im See abgelagert wurde. Untersuchungen an einer Seesedimentsequenz bieten dabei die Möglichkeit, den Prozeß der chemischen Verwitterung über mehrere tausend Jahre zu verfolgen und zu quantifizieren. Die Untersuchungen heben sich damit von anderen Verwitterungsstudien ab, die sich auf die Löslichkeit von Mineralphasen in Böden oder auf die geochemische Zusammensetzung suspendierter und gelöster Fracht von Abflüssen in rezenten bis subrezenten Zeiten konzentrieren (z.B. Clow & Drever 1996; Louvat & Allègre 1997; Nesbitt et al. 1980; Tranter et al. 1996).

Der Lama See liegt im nördlichen Zentralsibirien auf der Taimyrhalbinsel (ca. 69° N, 90° E) und gehört zu einem System ost-west streichender Spaltenseen am westlichen Hang des Putorana Plateaus. Der See bedeckt eine Fläche von 466 km² mit einer maximalen Länge von 82 km und einer maximalen Breite von 13 km. Die größte Tiefe beträgt 254 m. Das Gewässer wird von mehreren Zuflüssen aus dem Putorana Plateau gespeist. Das Einzugsgebiet ist heute durch eine Waldtundra aus Fichten und Lärchen, durch die Ausbildung von kontinuierlichem Permafrost sowie durch ein Einzugsgebiet mit einheitlicher Lithologie (sibirische Flutbasalte) charakterisiert.

Im Rahmen des Deutsch-Russischen Taimyr-Projektes, das die Rekonstruktion der spätquartären Umweltentwicklung in Zentralsibirien zum Ziel hat, wurde die Sedimentsequenz PG1111 aus dem zentralen Bereich des Lama Sees mittels palynologischer, mikropaläontologischer, sedimentologischer und biochemischer Methoden untersucht (Hahne & Melles 1997; Harwart 1999; Kienel 1999). Die Ergebnisse zeigen, daß das Umfeld des Lama Sees seit dem Spätpleistozän von deutlichen Klimawechseln geprägt ist. Die Umweltgeschichte ist in der Ältesten Dryas durch einen Eisrandkontakt mit der Gebirgsvergletscherung des Putorana Plateaus und von der späteren Ältesten Dryas bis zum Allerød durch den Rückzug der Gletscher gekennzeichnet. Erste höhere Pflanzen entwickelten sich seit dem Bølling und bildeten während des Klimaoptimums im Boreal einen dicht geschlossenen Lärchen- und Fichtenwald.

Aufbauend auf der guten Rekonstruktion der Umweltentwicklung durch die vorangegangenen Untersuchungen und begünstigt durch ein lithologisch einheitliches Einzugsgebiet ist die Kernsequenz PG1111 aus dem Lama See gut geeignet für Verwitterungsstudien in Bezug auf Klimaänderungen über einen Zeitraum von mehr als 10.000 Jahren.

Ziel der vorliegenden Arbeit ist es, mit Hilfe von geochemischen Untersuchungsmethoden den Einfluß der chemischen Verwitterung im Einzugsgebiet des Lama Sees auf die Geochemie der Sedimente des Lama Sees seit dem Spätpleistozän qualitativ und quantitativ zu erfassen. Konkret werden dabei folgende drei Fragestellungen verfolgt:

1. Welche Prozesse und Faktoren (z.B. Ausgangsgestein, Erosion, Transport und Diagenese) haben, neben der chemischen Verwitterung im Einzugsgebiet, Einfluß auf die geochemische und petrographische Zusammensetzung der Sedimente im Lama See?

2. Inwieweit hat speziell die chemische Verwitterung im Einzugsgebiet Einfluß auf die geochemische Zusammensetzung der Sedimente?

3. Wie reagiert die chemische Verwitterung im Einzugsgebiet auf Änderungen der Umweltbedingungen seit dem Spätpleistozän in Mittelsibirien und welchen Einfluß haben diese Veränderung auf die geochemische Zusammensetzung der Seesedimente?

1.1 Beschreibung des Arbeitsgebietes

1.1.1 Geographische Lage

Der Lama See (ca. 69° N, 90° E) ist einer der typischen ost-west streichenden Spaltenseen entlang von Störungszonen, die den westlichen Hang des Putorana Plateaus durchziehen (Galizii & Parmuzin 1981; Abb. 1).

Abb. 1: Lage und Topographie des Einzugsgebietes des Lama Sees. Die eingefügte Kartenskizze zeigt die Lage des Lama Sees auf der Taimyrhalbinsel (Zentralsibirien) am nordwestlichen Rand des Putorana Plateaus.

Die Region ist durch Permafrost gekennzeichnet und erreicht in dieser Region heute in Abhängigkeit von Vegetationsbedeckung, Schneedecke und Korngröße Mächtigkeiten von bis zu 300 m (Demidyuk & Kondratéra 1989; Galizii & Parmuzin 1981). Hauptbodentyp ist die Braunerde mit hohem Anteil an quellfähigen Tonen, die je nach Gehalt an organischer Substanz und Grundwassereinfluß unterschiedlich stark humos und vergleyt ist (Demidyuk & Kondratéra 1989).

Geographische Lage

 ~	
 Höhe	53.0 m NN.
Länge	82.0 km
Breite	
Minimum	1.1 km
Maximum	13.0 km
Fläche	466 km^2
maximale Tiefe	254 m
Einzugsgebiet	6210 km²
Einzugsgebiet/See	13.3 km ² /km ²

Tab.1: Allgemeine Daten des Lama Sees.

Der Lama See bedeckt eine Fläche von 466 km², hat eine maximale Länge von 82 km und eine maximale Breite von 13 km, die maximale Wassertiefe beträgt 254 m (Demidyuk & Kondratéra 1989, Tab. 1).

Die Entwicklung des Seebeckens geht auf die Hebung des Putorana Plateaus und die Bildung von Störungszonen im späten Kanäozoikum zurück (Demidyuk & Kondratéra 1989; Galizii & Parmuzin 1981; Abb. 1 und 3). Der Lama See wird heute von mehr als 10 Zuflüssen mit Abflußhöhen von 300 bis 700 mm/a gespeist (Tab. 2). Sie drainieren aus den Anhöhen des Putorana Plateaus, das im Norden, Osten und Süden des Lama Sees Höhen von bis zu 1200 m erreicht (Abb. 1).

Ein Abfluß im Westen verbindet den Lama See mit dem Melkoye See, der wesentlich flacher ist und nach Norden über die Pyasina in den Pyasino See nördlich der Stadt Norilsk entwässert.

1.1.2 Klima

Die Region des Lama Sees ist durch kontinentales Klima mit hohen jährlichen und täglichen Temperaturschwankungen geprägt und zeigt im Vergleich zu anderen Gebieten in Zentralsibirien außergewöhnlich hohe jährliche Niederschlagsmengen (300 - 500 mm, Tab. 2).

Lufttemperatur	-9.8 °C
Maximum (Juli)	10 bis 15 °C
Minimum (Januar)	-25 bis -35 °C
Anzahl von frostfreien Tagen	37 Tage
Niederschlag	300 - 500 mm
Abflußmenge der Zuflüsse	300 - 700 mm
Schneebedeckung	8 - 9 Monate
Dauer der Schneeschmelze	25 - 35 Tage
Bodentemperatur (imJuli und in ca.20 cm)	5 bis 9 °C
Mächtigkeit des Permafrostes	100 - 300 m
Mächtigkeit der `active layer'	0.5 - 2.5 m
max. Windgeschwindigkeit	40 m/s
(bevorz. NE⇒SW und W⇒NE)	

Tab. 2: Mittlere Jahresklimadaten in der Region des Lama Sees.

Feuchte atlantische und arktische Luftmassen regnen über dem Mittelsibirischen Bergland an der Westseite des Putorana Plateaus (Luvseite) als Folge von Luftdruckgegensätzen und Zyklonbildungen ab (Franz 1973; Galizii & Parmuzin 1981). Die mittlere Jahreslufttemperatur beträgt -9.8°C, wobei maximale Temperaturen von 10 bis 15°C im Juli erreicht werden (Tab. 2). Von Oktober bis Mai ist auf dem See eine Eisdecke ausgebildet. Die Hauptschneeschmelze ist von Ende Mai bis Mitte Juni zu beobachten. Weitere wichtige Klimadaten sind in Tabelle 2 aufgeführt.

1.1.3 Geologischer Rahmen

Der Lama See liegt östlich der Stadt Norilsk am nordwestlichen Rand der sibirischen Plattform, die hier durch permo-triassische kontinentale Flutbasalte abgedeckt wird (Lightfoot et al. 1990; Naldrett et al. 1992; Wooden et al. 1993; Zolotukhin & Mukhamedov 1988, Abb. 2).

Abb. 2: Verteilung und Lage der wichtigsten Gesteinsformationen auf dem westlichen Teil der sibirischen Plattform.

Geologischer Rahmen

Die sibirische Plattform ist seit dem Ende des Präkambriums ein stabiler Kraton (Naldrett et al. 1992; Zolotukhin & Mukhamedov 1988) und mit spätproterozoischen bis kambrischen sedimentären und spätpaläozoischen bis permischen magmatischen Ablagerungen bedeckt bzw. durchdrungen. Die präkambrischen Formationen der sibirischen Plattform treten im Anabar-Massiv, im Aldan-Schild sowie im Ostsajan und im Jenissei-Gebirge zutage (Tröger 1984; Zolotukhin & Mukhamedov 1988).

Im späten Proterozoikum (Riphäikum bis frühes Paleozoikum) entwickelte sich im nordwestlichen Teil der sibirischen Plattform (Norilsk Region) eine nord-süd streichende Beckenstruktur (Tunguska Syneklise) mit Ablagerungen aus drei Zyklen mariner Transgressionen und Regressionen (Wooden et al. 1993). Die Ablagerungen der Tunguska Syneklise stellen eine 3700 bis 4700 m mächtige sedimentäre, teilweise kohleführende Abfolge aus kambrischen bis spätpermischen Dolomiten, Kalksteinen, marinen Tonsteinen, Mergeln und sulfatreichen Evaporiten dar, die durch lagunale und kontinentale Sedimente abgeschlossen wird (Lightfoot et al. 1990; Naldrett et al. 1995; Wooden et al. 1993).

Während der mittleren und späten Trias entwickelte sich westlich und nördlich der Norilsk Region ein Riftsystem, das mit einem aktiven Hotspot östlich der Uraliden in Zusammenhang gebracht wird (Naldrett et al. 1992; Wooden et al. 1993). Hinweise dafür sind das Auftreten von Krustenmaterial mit ozeanisch-geochemischer Signatur und die Ausdünnung kontinentaler Kruste (25 km) in Zentralsibirien (Tamrazyan 1971). Eine Folge des Riftings ist das Austreten großer Basaltmengen (sibirische kontinentale Flutbasalte), die die präkambrischen und paläozoischen Gesteine der nordwestlichen sibirische Plattform und der Tunguska Syneklise überlagern (Abb. 2 und 3).

Diese kontinentalen Flutbasalte bedecken eine Fläche von ungefähr 1.5*10⁶ km² (Zolotukhin & Mukhamedov 1988) und besitzen eine Mächtigkeit von ca. 4 km (Naldrett et al. 1992). Mit den Flutbasalten assoziiert sind ultramafische bis mafische Intrusiva, längliche 100 bis 300 m mächtige Zentralkörper mit randlich ausgebildeten 10 bis 30 m mächtigen Sills, und die Ausbildung von Nickel-Kupfer-Sulfid- und Platinlagerstätten (Naldrett et al. 1995; Zolotukhin & Mukhamedov 1988).

Tektonisch wird die sibirische Plattform im Norden von dem Khatanga Trog und im Westen von der sibirischen Tiefebene begrenzt (Naldrett et al. 1992; Zolotukhin & Mukhamedov 1988; Abb. 2). Der Khatanga Trog trennt die sibirische Plattform von der Taimyr Plattform. Die Entstehung und Entwicklung des Troges ist nicht eindeutig geklärt. Während des Juras entstand hier offenbar ein Riftsystem, dessen Entwicklung durch die Öffnung des Kanadischen Ozeans und die damit verbundene Trennung des Taimyrblocks von Nordamerika unterbrochen wurde. Der kollidierende Taimyrblock verfaltete die jurassischen Ablagerungen des Khatanga Troges (Naldrett et al. 1992). Heute bedecken quartäre Ablagerungen den Khatanga Trog vollständig. Die sibirische Tiefebene trennt die sibirische Plattform von den Uraliden im Osten. Die mesozoischen und kanäozoischen Sedimente der Tiefebene bedecken das präkambrische bis paläozoische Grundgebirge des ural-ochotskischen Gebirgsgürtels, der sich von der Kara See im Nordwesten bis zur Ochotskischen und Japanischen See im Osten erstreckt (Chain & Koronovskij 1995). Das Orogen tritt südlich der sibirischen Plattform (Zentralkasachstan, Tien Shan, Altai-Sajan-Baikail Region) zutage.

1.1.3.1 Charakterisierung der permo-triassischen Flutbasalte

Das Einzugsgebiet des Lama Sees ist durch permo-triassische Flutbasalte geprägt (Abb. 3), die aus über 200 Lavadecken mit einer durchschnittlichen Mächtigkeit von 15

m und ca. 30 Tuffhorizonten (50 bis 400 m) bestehen (Naldrett et al. 1995; Wooden et al. 1993). Sie setzen sich im wesentlichen aus tholeiitischen (>90 vol.%), alkalinen (2.5 vol.%) und subalkalinen (1 vol.%) Basaltvarietäten zusammen (Wooden et al. 1993; Zolotukhin & Mukhamedov 1988).

Abb. 3: Geologische Formationen in der Region des Lama Sees. Die Geologie des Einzugsgebietes wird durch permo-triassische kontinentale Flutbasalte dominiert. Die basaltische Abfolge besteht aus 11 Sequenzen, die nach Naldrett et al. (1995) zu drei Gruppen I, IIa und IIb zusammengefaßt werden. Am östlichen Rand des Lama Sees erreichen kambrische bis oberpermische Ablagerungen der Tunguska Syneklise die Oberfläche, die ansonsten von quartären Ablagerungen abgedeckt sind.

Insgesamt können elf petrographisch verschiedene Hauptlavatypen unterschieden werden (Lightfoot et al. 1993; Naldrett et al. 1992; Naldrett et al. 1995; Wooden et al. 1993; Zolotukhin & Mukhamedov 1988). Vom Liegenden zum Hangenden heißen diese Ivakinsky (iv), Syverminsky (sv), Gudchinsky (gd), Khakanchansky (hk), Tuklonsky

(tk), Nadezhdinsky (nd), Morongovsky (mr), Mokulaevsky (mk), Kharaylakhsky (hr), Kumginsky (km) und Samoedsky (sm). Eine petrographische Beschreibung und geochemische Charakterisierung der Basaltsequenzen sind im Anhang in der Abb. A-1 und den Tabellen A-1, A-2 und A-3 aufgeführt. In der Norilsker Region besitzt die Ivakinsky-Gudchinsky Abfolge einen Volumenanteil von 7 vol. %, die Khakanchansky-Nadezhinsky Abfolge einen Anteil von 14 vol.% und auf die Morongovsky-Samoedsky Sequenz entfallen 79 vol.% (Wooden et al. 1993). Plagioklas, Augit und opake Minerale bilden den Hauptmineralbestand der Basalte (Lightfoot et al. 1990; Lightfoot et al. 1993; Wooden et al. 1993; Zolotukhin & Mukhamedov 1988). Einsprenglinge werden in der Regel von Plagioklasen gebildet. In subalkalischen Basalten dominieren Augitund in den pikritischen Basalten Olivineinsprenglinge. Generell nimmt der Anteil von Einsprenglingen innerhalb der gesamten Sequenz vom Liegenden zum Hangenden ab.

Naldrett et al. (1995) unterteilt die permo-triassischen Flutbasalte im Einzugsgebiet des Lama Sees auf der Basis des TiO2-Gehaltes in eine untere und obere Sequenz: Die untere Abfolge (Assoziation I) umfaßt subalkalische, tholeiitische und pikritische Basalte mit hohen Gehalten an TiO₂ (1.3 - 2.4 Gew.%) und setzt sich aus den Einheiten Ivakinsky, Syverminsky und Gudchinsky zusammen. TiO₂-ärmere (0.45 - 0.95 Gew. %), tholeiitische und teilweise olivinreiche Basalte charakterisieren die obere Abfolge (Assoziation II), die von den Sequenzen Tuklonsky, Nadezhdinsky, Morongovsky, Mokulaevsky, Kharaeylakhsky, Kumginsky und Samoedsky gebildet wird. Zwischen beiden Assoziationen befindet sich der 20 - 260 m mächtige Tuffhorizont Khakanchansky. Aufgrund ihrer Diagenese und ihrer geochemischen Zusammensetzung untergliedert Naldrett et al. (1995) Assoziation II in die Gruppen IIa (Tuklonsky und Nadezhdinsky) und IIb (Morongovsky, Mokulaevsky, Kharaeylakhsky, Kumginsky und Samoedsky): Die Tuklonsky Formation wird als ein zweites initiales pikritisches Magma interpretiert, das im östlichen Teil der Norilsk Region eruptierte und westlich davon als stärker fraktioniertes und durch oberes Krustenmaterial kontaminiertes Material an die Oberfläche tritt (Nadezhdinsky Formation; Naldrett et al. 1995). Die Nadezhdinsky Formation hebt sich in Relation zur Tuklonsky Formation durch höhere ⁸⁷Sr/⁸⁶Sr und Lm/Sm Werte ab (tk: ⁸⁷Sr/⁸⁶Sr: 0.705678, Lm/Sm: 2.51; nd: ⁸⁷Sr/⁸⁶Sr: 0.7072605; Lm/Sm: 3.95). Die Assoziation IIa überlagernden Schichten (Assoziation IIb) stellen eine Mischung aus Nadezhdinsky-Material und frisch eruptiertem Magma dar (⁸⁷Sr/⁸⁶Sr: 0.704996, Lm/Sm: 2.38).

Nach Naldrett et al. (1992) besitzt im Einzugsgebiet des Lama Sees Formation I eine Mächtigkeit von 100 bis 300 m, Formation IIa eine Mächtigkeit von 200 bis 700 m und Formation IIb eine Mächtigkeit von > 1000 m.

In der Tab. A-3 im Anhang sind Konzentrationen, Mittelwert und Standardabweichung der Haupt-, Neben- und Spurenelemente der drei von Naldrett et al. (1995) definierten Basaltgruppen I, IIa und IIb angegeben.

1.1.4 Verbreitung weichseleiszeitlicher Gletscher

Für die Rekonstruktion weichseleiszeitlicher Vergletscherungen in der Nordhemisphäre existieren verschiedene Modelle. Grosswald (1980), Grosswald (1988) und Grosswald & Hughes (1995) vertreten eine Maximalvariante und beschreiben die letzte Vereisung (Weichsel/Zyryan) als einen zusammenhängenden panarktischen Eisschild, der den gesamten arktischen Schelf sowie große Teile des nordamerikanischen und des eurasischen Kontinentes bedeckte. Seine maximale (letztes glaziales Maximum) erreichte dieser Eisschild um 18.000 B.P. (Abb. 4).

Abb. 4: Ausdehnung der Vereisung während des letzten glazialen Maximums (LGM) im nördlichen Eurasien sowie die Entwicklung der Eisausdehnung bis in das Boreal nach Grosswald (1993). 1=Eisgrenze, sicher (durchgezogen) und vermutet (gestrichelt), 2=Grenze zwischen der Kara See- und der Skandinavischen Provinz während des LGMs, 3=Eisfließlinie, 4=schwimmender Eisschelf, 5=eisfreier Ozean, 6=proglaziale Seen.

Eine zweite, weit größere Gruppe von Wissenschaftlern geht von einer geringeren Vereisung aus und beschreibt verschiedene Vereisungszentren, die sich aufgrund unterschiedlicher Klimaverhältnisse (Kontinentalität) in ihrer Ausdehnung asynchron und asymmetrisch verhielten (Astakhov 1997; Astakhov & Isaeva 1988; Danilov et al. 1985; Möller & Bolshiyanov 1998; Romanovsky 1993; Sulerzhitsky 1995; Vasil'chuk et al. 1984; Velichko et al. 1997). Weite Areale der Hocharktis Kanadas sowie Mittelund Ostsibiriens blieben zu der Zeit nahezu eisfrei, als der Laurentische Eisschild (südliches Nordamerika) sowie der Devenische und Skandinavisch-Eurasische Eisschild seine größte Ausdehnung erreichten (22-10.000 B.P.; Abb. 5). Umgekehrt proportional zur Inlandsvereisung entwickelte sich der Permafrost in den nicht vergletscherten Gebieten, der während des Spätpleistozäns seine maximale latitudinale Ausdehnung in Ostasien zeigte.

Für Zentralsibirien wird die Kara See als Vereisungszentrum der Inlandsvereisung angesehen (Astakhov 1997; Astakhov 1992; Grosswald 1980; Grosswald 1983; Grosswald & Hughes 1995; Velichko 1993). Schelf- und Gebirgsvergletscherungen waren während des frühen Weichselglazials (Zyryan) wesentlich aktiver als im

Spätweichsel (Sartan) und breiteten sich bis in die sibirische Tiefebene aus (Astakhov 1997) (Abb. 6).

Abb. 5: Vereisungszentren im nördlichen Eurasien während des LGMs nach Velichko (1997). I=vergletscherte Gebiete, II=Eisgrenze, sicher (a), vermutet (b), III=Grenze zwischen verschiedenen Eisdecken, IV Zone sich gegenseitig beeinflussender Eisdecken, $V+VI=Eisflie\betarichtung, VII=Seeis; VIII=seasonales Seeis; IX=Küstenlinie während des$ LGMs.

Nach dem Rückzug der Gletscher während des Weichselinterstadials (Karkinsk) expandierten diese im Spätweichsel erneut, diesmal ausgehend von Novaja Semlya, in die Pechora Ebene und auf die westliche Yamalhalbinsel (Abb. 6). Die östlichste Grenze des Eisschildes liegt nach Astakhov (1997) am westlichen Rand der Yamalhalbinsel, östlich von dieser gibt es keine sicheren Anzeichen einer großflächigen Vereisung nach 35.000 bis 30.000 B.P. Eine Ausnahme bildeten die Gebirgsvergletscherungen des Putorana Plateaus und des Byrranga Gebirges auf der Taimyrhalbinsel (Astakhov 1997; Kind 1974; Velichko et al. 1997). Der Zeitraum von 22.000 bis 10.000 B.P. wird als die kälteste Periode im Spätweichsel betrachtet.

Ergebnisse im Rahmen des Taimyrprojektes weisen auf eine minimale Gletscherausdehnung im Spätweichsel hin. Untersuchungen an Permafrostprofilen in der Region des Labaz Sees als auch an Sedimenten des Levinson-Lessing Sees im südlichen Byrranga Gebirge (beide Taimyrhalbinsel) belegen, daß die Tieflandgebiete durch keine neue Vergletscherung im Spätweichsel erfaßt wurden (Ebel et al. 1999; Siegert et al. 1999).

Abb. 6: Maximale Ausdehnung der Gletscher im nördlichen Zentralsibirien während der Frühund Spätweichsel nach Astakhov (1997). 1=vermutete Grenze der Spätweichselvergletscherung, 2=vermutete Grenze der Frühweichselvergletscherung, 3=Eisfließrichtung, 4=Endmoränenzüge.

Erste Anzeichen einer Erwärmung um 15.000 B.P. sind in alluvialen und limnischen Formationen sowie in der Entwicklung von Böden und Torfen auf der Yamalhalbinsel, auf Novaya Zemlya und in der unteren Jenisseiregion zu finden (Arkhipov et al. 1980; Astakhov 1989a; Kind 1974). Nach Krivonogov (1988) dominierte jedoch weiterhin kühles Klima mit Permafrostbedingungen, sodaß die heutigen Tundrenzonen um ca. 900 km weiter nach Süden reichten. Nach einer erneuten Kältephase mit Lössablagerungen und der Ausbildung von Eiskeilsystemen ist eine Klimaverbesserung um ca. 12.000 -11.000 B.P. in Pollenspektren der Pechora Ebene, im südlichen Westsibirien und auf der Taimyrhalbinsel dokumentiert (Hahne & Melles 1997; Hahne & Melles 1999; Kienel 1999; Krivonogov 1988). Altersbestimmungen an gewarvten, tonigen Sedimenten am westlichen Rand des Putorana Plateaus lassen ein letztes Expandieren der Gebirgsvergletscherung um 10.700 \pm 200 B.P. vermuten (Kind 1974).

Ein drastischer Klimawechsel zum Holozän (ca. 10.000 B.P.) ist belegt durch die Entwicklung von Torfen in hohen Breiten (Novaya Zemlya, Yamalhalbinsel), das Verschwinden des Mammuts, die Ausbildung von Thermokarst und die Ausbreitung des borealen Waldes nach Norden (Astakhov & Isaeva 1988; Korotkevich & Makeyev 1991; Siegert et al. 1999). Zahlreiche in situ fossile Lärchenstümpfe auf der östlichen Taimyrhalbinsel belegen, daß die Baumgrenze um 10.500 B.P. etwa 600 km nördlicher lag als heute (Belorusova et al. 1987). In Anlehnung an palynologische Untersuchungen an Seesedimenten des Levinson-Lessing und des Lama Sees im Rahmen des Taimyrprojektes ist das Holozäne Klimaoptimum dem Preboreal und Boreal zuzuordnen (Hahne & Melles 1999).

1.1.4 Spätquartäre Umweltentwicklung im Einzugsgebiet des Lama Sees

Nach Galazii & Parmuzin (1981) liegt der Lama See heute in einer Waldtundra aus Fichten und Lärchen mit vereinzelten Birkenbeständen. Die Vegetation unterliegt aufgrund der ausgeprägten Morphologie mit Höhenunterschieden von über 1000 m einer vertikalen Vegetationsgliederung. In geringen Höhen bilden sich Lärchen-Fichtenwälder mit wenigen Birken aus, die mit zunehmender Höhe in reine Lärchenwälder mit vereinzelten verkrüppelten Birken übergehen. Oberhalb der Baumgrenze in etwa 200 bis 400 m NN. dominieren Erlenbüsche mit Flechten, Kräutern und Grass.

Die Region des Lama Sees ist durch kontinuierlichen Permafrost, Kargletscher in den höheren Regionen des Putorana Plateaus, Schneefelder und durch hohe jährliche Niederschlagsmengen geprägt (Galazii & Parmuzin 1981; Kap. 1.1.1).

Mit Hilfe von palynologischen, mikropaläontologischen, biochemischen und sedimentologischen Untersuchungen an der Kernsequenz PG1111 konnte gezeigt werden, daß die Umweltbedingungen am Lama See seit dem Spätpleistozän starken Schwankungen unterlagen (Hahne & Melles 1997; Hahne & Melles 1999; Harwart et al. 1999 ; Kienel 1999; Abb. 7).

Das Lamaseesediment ist von der Ältesten Dryas bis zum Allerød durch hohen minerogenen Eintrag und Sedimentlaminierung charakterisiert, die auf glaziale Erosion durch die Gebirgsvergletscherung des Putorana Plateaus zurückgeführt werden (Harwart et al. 1999). Mineralogische und sedimentologische Untersuchungen reflektieren Phasen des Eisrandkontaktes, des Gletscherrückzuges und einen vollständigen Rückzug der Gletscher aus dem Einzugsgebiet des Lama Sees vom Ende der Ältesten Dryas bis ins mittlere Allerød (Abb. 7). Die isotopengeochemische Zusammensetzung der organischen Substanz im Sediment (= 0.2 Gew.%) signalisiert einen erhöhten Eintrag an Bicarbonat, der möglicherweise durch HCO₃-reiche Schmelzwässer verursacht ist, und/oder spiegelt den durch eine ganzjährige Eisdecke limitierten CO₂-Austausch von Atmosphäre und Seewasser wider.

Palynologische Untersuchungen charakterisieren das Umfeld von der Ältesten Dryas bis zum Allerød als arktische Tundra mit sehr kalten und trockenen Klimabedingungen. Der Anstieg von Baumpollen (Strauchbirke) von 10 auf 25 % verweist auf eine kurzfristige Erwärmung im Verlauf des Bøllings (Hahne & Melles 1997). Während des Allerøds steigt die Baumpollenkonzentration erneut von 10 auf 50 %. Dies ist im wesentlichen auf die Ausbreitung von Strauchbirken zurückzuführen. Erstmals tritt die Lärche sporadisch im Einzugsgebiet auf. Der Rückgang von Baumpollen (von 50 auf 30 %) während der Jüngeren Dryas kennzeichnet ein kaltes und feuchtes Klima, das die Birken teilweise, aber nicht vollständig verdrängt (Hahne & Melles 1997).

Abb. 7: Modell zur Umweltgeschichte des Lama Sees seit der Ältesten Dryas; aus Harwart et al. (1999).

Verwitterungsprozesse

Diese Klimaverschlechterung verursachte aber keine erneute Gletscherausbreitung, da weder Sedimentstrutkur noch Korngrößenzusammensetzung des Lamaseesedimentes auf Gletschertätigkeit im Einzugsgebiet hinweisen (Harwart et al. 1999). Unterstützt wird diese Beobachtung durch den Eintrag isotopisch leichter organischer Substanz und das erste Auftreten von Diatomeen, die gegen Schmelzwässer und eine kontinuierliche Eisdecke sprechen (Harwart et al. 1999; Kienel 1999).

Eine signifikante Erwärmung erfährt die Region im Preboreal, die dann im Boreal ihr Maximum erreicht. Der Anteil an Baumpollen steigt von 50 auf 75 bis 90% (Hahne & Melles 1997). Die Vegetation zeichnet sich zunächst durch Strauchbirken aus, die infolge der stetigen Erwärmung von Birken, Lärchen und Pappeln verdrängt werden. Zu Beginn des Klimaoptimums im Boreal erreicht die Lärche mit 30 % ihren maximalen Anteil und bildet einen dichten Lärchenwald mit Erlenbüschen. Während des Boreals breitet sich die Fichte aus und drängt die Lärche auf 10 % zurück. Hahne & Melles 1997 führen dies auf erhöhte Niederschlagsmengen zurück.

Parallel zur Vegetationsentwicklung an Land erreicht die organische Substanz (TOC) des Sedimentes im Boreal ihr Maximum (0.9 Gew%), was auf eine Zunahme von aquatischer und terrestrischer Primärproduktivität zurückgeführt wird (Harwart et al. 1999). Zeitgleich treten höchste Diatomeenkonzentrationen auf, die aufgrund der Diatomeenvergesellschaftungen auf höchste mittlere Jahresoberflächentemperaturen des Seewassers hinweisen (Kienel 1999). Ein isotopengeochemischer Wechsel der organischen Substanz im Sediment zu leichten δ^{13} C-Werten spiegelt möglicherweise Änderungen der Landvegetation mit veränderter Isotopensignatur wider. Gleichzeitig kann der Zufluß von leichtem δ^{13} C-Grundwasser die Zusammensetzung der aquatischen Pflanzen zu leichteren δ^{13} C-Werten verschoben haben. Ursache könnten verstärkte Bodenbildung durch erhöhte Pflanzentätigkeit (Wurzeltätigkeit und Atmung), vermehrter Abbau abgestorbener Substanz sowie der Rückgang bzw. das Verschwinden von Permafrostbedingungen sein.

Der Rückgang von Luftund Wassertemperaturen sowie erhöhte Niederschlagsmengen charakterisieren das Ende des Klimaoptimums (Hahne & Melles 1997; Kienel 1999). Dennoch breitet sich die Fichte kontinuierlich aus und wird während des Atlantikums zur dominaten Baumart. Die Lärche bleibt weiterhin wichtig, ist aber wegen geringer Pollenproduktion weniger vertreten. Während des Subboreals schwankt die Dichte des Waldes als Reaktion auf wechselnde Temperaturenbedingungen und führt zu Variationen in Pollenkonzentrationen und in der Isotopenzusammensetzung des sedimentären TOC.

Einen weiteren Temperaturückgang beobachten Hahne & Melles (1997) an der Subboreal/Subatlantikum Grenze, die zur Öffnung des Lärchen-Fichtenwaldes und zur Ausbreitung der Tundrenvegetation führt. Bis heute charakterisiert der periodische Wechsel von Waldtundra und Tundra die Region des Lama Sees.

1.2 Verwitterung und Mobilität von Elementen

Die Bedeutung des Einflusses von Klima (z.B. Niederschlag, Evaporation, Temperatur) auf die Bodenbildung und die Intensität der Verwitterung gibt das klassische Diagramm von Strakhov (1967) wider, das Verwitterungsfaktoren und die Tiefe der Verwitterung in einem Profil von der nördlichen Polarregion bis zu den tropischen Gebieten am Äquator darstellt:

Verwitterungsprozesse

Abb. 8: Faktoren der Verwitterung und Bodenbildung in einem Profil von der nördlichen Polarregion bis zu den tropischen Gebieten am Äquator darstellt; nach Strakhov (1967).

Bei der chemischen Verwitterung findet ein Lösungsprozeß von Mineralen statt, die nicht mehr im thermodynamischen Gleichgewicht mit ihrer Umgebung sind, und der zur Neubildung von Tonmineralen und/oder Oxiden und Hydroxiden durch Ausfällung führen kann (Jasmund 1993; Ugolini 1986):

Für die Silikatverwitterung gelten vereinfacht z. B. folgende Reaktionen:

 $CaAl_2Si_2O_8$ (Anorthit) + $2CO_2$ + $3H_2O \rightarrow Al_2Si_2O_5(OH)_4$ (Kaolinit) + Ca^{++} + $2HCO_3^{-+}$

 $(Mg,Ca)SiO_3 (Ca-Mg-Orthopyroxen) + 2CO_2 + 3H_2O \rightarrow H_4SiO_4 + (Mg,Ca)^{++} + 2HCO_3^{-+}$

Dabei führt die Umsetzung von atmosphärischem CO_2 (g) in Hydrogencarbonat (H₂CO₃) zu einem sauren Bodenmilieu, das das Lösen von Mineralen und die Freisetzung von Kationen fördert (Kelts & Hsü 1978) :

 $CO_{2}(g) + H_{2}O \rightarrow H_{2}CO_{3}^{*}(aq)$ $H_{2}CO_{3}^{*}(aq) \rightarrow HCO_{3}^{-} + H^{+}$ $HCO_{3}^{-} \rightarrow CO_{3}^{2-} + H^{+}$

In arktischen Böden kann der CO_2 -Druck 5 - 10 mal größer sein als in der Atmosphäre und theoretisch pH-Werte von 4.4 erzeugen (Sletten & Ugolini 1990).

Zusätzlich zum pH-Wert beeinflussen Eh-Bedingungen sowie Ionenladung und Ionenradius die Löslichkeit und Mobilität von adsorptiv gebundenen Kationen bei Verwitterungsprozessen (Tab. 3 und Abb. 9).

Beim Kationenaustausch konkurrieren alle in der Bodenlösung vorkommenden Kationen um die Austauscherplätze an der Oberfläche von Austauschern (z.B. Tonminerale, Huminstoffe). Die Konkurrenzfähigkeit der Kationen ist je nach ihren Eigenschaften und nach der Art des Austauschers sehr unterschiedlich und bewirkt, daß der Anteil eines Kations am Kationenbelag nicht nur von seinem Anteil in der Gleichgewichtslösung, sondern auch von seiner Konkurrenzfähigkeit gegenüber anderen

Verwitterungsprozesse

Kationen bestimmt wird. Allgemein nimmt die Immobilität mit abnehmendem Ioneneradius und zunehmender Ionenladung zu (Schachtschabel et al. 1989):

Tab. 3: Relative Mobilitäten von Elementen unter oxischen, anoxischen, sauren und alkalischen Bedingungen; aus Siad (1994).

Mobilität	Milieu der Bodenlösung				
	oxisch	sauer	alkalisch	anoxisch	
Ca, Na, Mg, Sr					
hoch	Zn				
	and the second	Cu, Co, Ni			
mittel	Cu, Co, Ni				
gering	Si, Ti, K, P, Pb, Ba				
	Fe, Mn				
	Al, Ti, Cr, Zr				
sehr gering bis immobil	Fe, Mn			Cu, Co, Ni, V, Pb, Ba	
			Zn		

Abb. 9: Mobilität von wichtigen Elementen in Abhängigkeit vn der Ionenladung z und vom Ionenradius r in oberflächennahen Systemen; modifiziert nach Gill (1993).

Der Abtrag von Kationen wird außerdem von der Menge und der Jahresverteilung der Niederschläge bestimmt, da mit zunehmender Wasserinfiltration der Sättigungsgrad

der Bodenlösung abnimmt, wodurch die Verwitterungsrate zunimmt (Clow & Drever 1996; Righi & Meunier 1995).

Die mineralogische Zusammensetzung des Ausgangsgesteins hat weniger Einfluß auf die Art der Bodenbildung als auf die Verwitterungsrate, da verschiedene Minerale unterschiedlich schnell in Lösung gehen. Die Stabilität von Mineralen nimmt allgemein in der Reihenfolge Quarz > K-Feldspat > Plagioklas = Pyroxene > Olivin ab (Goldich 1938). Die Verwitterungsrate von Olivinen und Orthopyroxenen steigt mit der Zunahme des Magnesiumgehaltes, die des Plagioklas mit zunehmendem Kalziumgehalt (Gíslason et al. 1993).

Experimentelle Untersuchungen zur Silikatverwitterung zeigen, daß die Reaktionskinetik einem komplexen Zusammenspiel von Temperatur, Oberflächendefekten, Bindungsraten, Sättigung der Lösung, Ionenstärke und pH-Bedingungen unterliegt (Lasaga et al. 1994; Nesbitt et al. 1997; Tab. 4). Mit steigender Temperatur erhöht sich die Kinetik der Verwitterungsreaktionen.

Tab. 4: Experimentell ermittelte mittlere Lebensdauer eines 1 mm Kristalls in Kontakt mit einer nicht gesättigten Lösung bei 25 °C und pH = 5; aus Lasaga (1994).

Mineral		Abbaurate [mol/m ² /s]	Lebensdauer [J.]
Quarz		-13.39	34 000 000
Albit	,	-12.26	575 000
Diopsid		-10.15	6 800
Anorthit		-8.55	112

Die Verbreitung und Art der Vegetation hat einen komplexen Einfluß auf die chemische Verwitterung, da pflanzliches Hydrogenkarbonat und organische Säuren Silikate anlösen (Berner 1992; Ugolini 1986). CO₂ und organische Säuren gelangen über Atmung, Mineralisation und Humifizierung abgestorbener organischer Substanzen und über die direkte Abgabe von Pflanzen in die Bodenlösung. Art und Menge hängen von der Vegetation und deren Abbau ab, der im wesentlichen durch die Temperatur gesteuert wird. Hohe Temperaturen führen zu starker biologischer Aktivität und verstärktem Abbau organischer Substanz (Righi & Meunier 1995). Zusätzlich steigert die Vegetation die physikalische Verwitterung, die Tiefe der Bodenbildung und das Rückhaltevermögen von Wasser.

In kalten und ariden Klimaten dominiert die physikalische Verwitterung aufgrund von geringen Niederschlägen, niedrigen Temperaturen und spärlicher Vegetationsdecke gegenüber der chemischen Verwitterung und bewirkt die mechanische Zerkleinerung des Ausgangsgesteins (Ugolini 1986). Prozesse der physikalischen Verwitterung sind die Frostsprengung (Eiskristalle, Eiskeile), beruhend auf starken Temperaturschwankungen (Volumenänderung von Mineralphasen und des Gesteins) oder auf dem Wachstum von Salzkristallen, und die Windabrasion. Die Frostsprengung ist abhängig vom Wassergehalt und damit indirekt von Porengröße und Permeabilität des Gesteins, von der Frequenz der Tau-Gefrier-Zyklen, vom Ionengehalt der Bodenlösung sowie von der Resistenz des Gesteins. Quarz und Pyroxene sind gegenüber kryogenen Verwitterungsprozess weniger stabil als Plagioklas und reichern sich in den relativ feineren Fraktionen an, Plagioklas bevorzugt in den relativ gröberen Fraktionen (Konishchev 1982).

Trotz limitierender Faktoren gibt es in kalt-ariden Gebieten chemische Verwitterung, die durch das Freilegen von frischen Mineraloberflächen (physikalische Verwitterung) und im wesentlichen durch anorganische und organische Säuren (z.B. primitive Mikroorganismen) gesteuert wird und nicht mit einer Tonmineralneubildung verbunden sein muß (Righi & Meunier 1995; Ugolini 1986; Wilson & Jones 1983). Gelöste Ionen (vor allem Aluminium, Eisen, Mangan und Schwermetalle) können Komplexe mit organischen Säuren bilden und aus dem Verwitterungssystem transportiert und/oder als Oxide/Hydroxide (hauptsächlich Eisen und Mangan) ausgefällt werden.

2 Untersuchungsmethoden

2.1 Probenahme

Im Sommer 1993 sind im zentralen Bereich des Lama Sees 18 Oberflächenkerne und eine Sedimentsequenz bis zu einer Tiefe von 11.12 m (PG1111) von einer schwimmenden Plattform erbohrt worden (Abb. 11). Die Koordinaten der Probenahmepunkte wurden mit dem GPS (Globales Positionierungs System; Genauigkeit: \pm 100 m) aufgenommen. Die Koordinaten der in dieser Arbeiten verwendeten Kenrsequenzen sind im Anhang in den Tabellen A- 4 und A-5 aufgelistet.

Die Sedimentkerne haben einen Kerndurchmesser von 6 cm. Während ungestörte Oberflächenkerne (0-75 cm) mit Hilfe eines Schwerlots (SL) gewonnen wurden, kam für die Gewinnung der langen Sedimentabfolge ein Kolbenlot (KOL) zum Einsatz, mit dem Teilsequenzen mit einer Maximallänge von 3 m und einer Überlappung von 50 cm erbohrt wurden. Bei der Kolbenlottechnik wird ein Kernrohr mit einem Gewicht in das Sediment gerammt. In der gewünschten Bohrtiefe wird der Kolben, der an der Kernrohrspitze arretiert ist, entriegelt, womit der eigentliche Bohrvorgang und die Kerngewinnung beginnen. Die Aufnahme des Sedimentes erfolgt über PVC-Liner, die sowohl bei der Kolbenlot- als auch bei der Schwerelottechnik im Kernrohr eingesetzt sind. Eine detaillierte Erläuterung der Probenahmetechnik ist bei Melles et al. (1994b) nachzulesen.

Für den Transport wurden die Kerne in 1 m lange Abschnitte geteilt und an den Enden mit Plastikkappen verschlossen. Am Alfred-Wegener-Institut in Potsdam werden die Kerne in einem Kühlcontainer bei einer Temperatur von 4°C gelagert.

2.2 Probenaufbereitung

Zur Kernbeschreibung und Probenentnahme wurden die Sedimentkerne 1995 im Labor in Längsrichtung halbiert (Abb. 10). Das Fotografieren der offenen Kerne und die Beschreibung von Sedimentfarbe und Sedimentstruktur erfolgte unmittelbar nach der Öffnung, um eine Verfälschung der Farbe durch Oxidation organischer Substanz und reduzierter Phasen zu vermeiden. Als Grundlage der Farberfassung dienten die Munsell Soil Color Charts (1992).

Während eine Kernhälfte als Archiv im Kühlcontainer gelagert wird, erfolgte an der zweiten Kernhälfte die Beprobung von 1 cm Scheiben, deren Wassergehalt bestimmt wurde und die darauf als Einzelproben für sedimentologische, geochemische, biochemische, palynologische und mikropaläontologische Untersuchungen genutzt wurden. Die Proben zur Analyse von biochemischen (Harwart et al. in press) und geochemischen Parametern wurden mit einer Achatplanetenkugelmühle < 63 μ m gemahlen und homogenisiert. Mit Ausnahme des Wassergehaltes, der im Verhältnis zum Naßgewicht angegeben wird, beziehen sich alle %-Daten auf das Trockengewicht des Probenmaterials.

Abb. 10: Übersichtsaufnahme des geöffneten Kernes PG1111.

Der Probenabstand im Kern PG1111 beträgt für die Bestimmung der Haupt-, Nebenund Spurenelementverteilung im Gesamtsediment 5 bis 10 cm.

Für die Interpretation der geochemischen Variationen im Gesamtsediment und die Beurteilung des Einflusses der chemischen Verwitterung auf die Geochemie des Seesedimentes erfolgte zusätzlich an nicht gemahlener Probensubstanz die Bestimmung der Haupt-, Neben- und Spurenelementverteilung der Tonfraktion (< 2 μ m) in 5 bis 50 cm, sowie parallel die Sand - (> 63 μ m), Silt - (2 - 63 μ m) und Tonfraktion (< 2 μ m) an vier ausgewählten 10 cm - Mischhorizonten (488 - 498 cm, 653 - 663 cm, 728 - 738 cm und 864 - 874 cm). Die Korngrößenzusammensetzung wurde in Abständen von 50 bis 100 cm bestimmt. Die Gewinnung der Tonfraktion (< 2 $\mu m)$ und die Auftrennung in Ton-(< 2µm), Silt- (2 - 63 µm) und Sandfraktionen (>63 µm) erfolgte analog zur Korngrößenbestimmung mit der Zentrifuge (vgl. Kap. 2.6). Auf die Ultraschallbehandlung wurde jedoch verzichtet und ausschließlich bidest. H $_2O$ beim gesamten Trennungsvorgang verwendet, um eine Verfälschung der ursprünglichen geochemischen Zusammensetzung zu vermeiden.

Parallel der 10 cm - Mischhorizonte wurden Dünnschliffe sowie Präparate für die Rasterelektronenmikroskopie hergestellt, um Änderungen in der Sedimentstruktur und in den Oberflächeneigenschaften der Sedimentpartikel besser zu erfassen.

Um Verluste durch das beim Zentrifugieren abgegossene Wasser abzuschätzen, wurde für drei Proben die geochemische Zusammensetzung des Zentrifugenwassers mit der ICP-OES bestimmt (Kap. 2.9; Anhang: Tab. A-20).

2.3 Altersbestimmungen

An insgesamt sechs Proben, zwei Gesamtsedimentproben und vier Pollenkonzentraten, aus der Kernsequenz PG1111 erfolgten ¹⁴C-AMS-Datierungen (Accelerator Mass Spectrometry) im Research Laboratory for Archeology and the History of Art in Oxford. Die Pollenkonzentrate wurden durch die Lösung silikatischer Mineralphasen mit 70% iger Flußsäure und anschließender Ultraschallsiebung (Siebgröße: 6 * 8 µm) hergestellt (Hahne & Melles 1997).

Alle in der vorliegenden Arbeit angegebenen ¹⁴C-Alter sind unkalibrierte und konventionelle Alter, die sich auf die Konvention nach Stuiver & Polach (1977) beziehen. Eine Korrektur unterschiedlicher ¹⁴C-Aktivität in der Atmosphere erfolgte über δ^{13} C-Werte des Probenmaterials (Geyh 1971; Geyh 1983).

2.4 Faktorenanalyse

Die Faktorenanalyse basiert auf dem Prinzip, eine hohe Anzahl von Variablen großer Datensätze auf eine überschaubare Anzahl unabhängiger theoretischer Merkmale zu reduzieren (Backhaus et al. 1990; Swan & Sandilands 1995). Diese werden je nach Methodik und Autor als Faktoren, components oder principal components (PCs) bezeichnet (Davis 1986; Hartung & Elpelt 1995; Swan et al. 1995). Grundlage der vorliegenden Arbeit ist die *Hauptkomponentenanalyse* mit anschließender Rotation nach der *Varimax-Methode*. Eine detaillierte Beschreibung der angewandten Methodik ist im Anhang nachzulesen (Kap. 7.2.4).

2.5 Hydrologische Untersuchungen

Die Bestimmung der hydrologischen Parameter des Lama Sees (Temperatur, pH-Wert, Sauerstoffgehalt und elektrische Leitfähigkeit) erfolgte mit Tiefensonden der Firma Wissenschaftliche Technische Werkstätten Weilheim (WTW).

Die Konzentrationen gelöster Kationen wurden an angesäuerten (konz. HNO₃) und gefilterten (0.45 μ m Filtergröße) Wasserproben mit Hilfe der ICP-OES bestimmt (s. Kap. 2.9).

2.6 Korngrößenverteilung

20

Für die Korngrößenanalyse ist das Sediment mit einer 1:5 verdünnten 0.1 M Na₄P₂O₇ Lösung 20 Minuten mit einem Magnetrührer aufgewirbelt worden. Auf Wasserstoffperoxid zur Oxidation organischer Substanz sowie als Dispergierungsmittel wurde verzichtet, um den Tonmineralbestand einer möglichst geringen chemischen Vorbehandlung auszusetzen (Stucki et al. 1984; Veerhoff 1992). Zur weiteren Dispergierung erfolgte eine 10 minütige Behandlung mit Ultraschall (20 khz, 70 watt). Die Sandfraktion wurde mit Naßsiebung durch ein 63 µm Sieb vom restlichen Sediment getrennt.

Die Abtrennung der $< 2 \ \mu m$ Fraktion erfolgte aus der $< 63 \ \mu m$ Suspension mit Hilfe der Zentrifugentrennung. Die dafür benötigten Zentrifugengeschwindigkeiten wurden mit dem Programm Centrifuge (Vers. 2.9.93) von S. Krumm (Geologisches Institut Erlangen) berechnet und durch die Bestimmung der Korngrößenverteilung der zentrifugentechnisch getrennten Ton- und Siltfraktion mit einem Sedigraphen (Micromeritics 5000ET, Fa. Coulter Electronics) überprüft.

Die abgetrennte Tonfraktion wurde zur Beladung und Fällung der Tonpartikel mit 50-%iger MgCl₂-Lösung versetzt, durch zweimaliges Zentrifugieren gewaschen und bei = 40 °C getrocknet. Die Korngrößenverteilung innerhalb der Siltfraktion (2- 4 μ m, 4 - 8 μ m, 8 - 16 μ m, 16 - 32 μ m) wurde mit dem Sedigraphen ermittelt und dann ebenfalls bei = 40 °C getrocknet.

2.7 Magnetische Suszeptibilität

Die magnetische Suszeptibilität k (k = J_i/H) quantifiziert den Zusammenhang zwischen der induzierten Magnetisierung einer Probe J_i und einem angelegten äußeren Magnetfeld H und charakterisiert damit die Magnetisierbarkeit eines Sedimentes (Nowaczyk 1991). Die Bestimmung von k erfolgte an der Oberfläche der geöffneten Sedimentkerne mit einem *Bartington Magnetic Susceptibilty Meter* in Verbindung mit einem MS2F Sensor mit einer Auflösung von 12 mm im Labor für Paläo- und Gesteinsmagnetismus des GeoForschungsZentrum Potsdam. Der Meßabstand betrug 0.5 cm. Eine genaue Beschreibung des Meßprinzips kann bei (Nowaczyk 1991) nachgelesen werden.

2.8 Mikroskopie

Mikroskopische Untersuchungen zur Beschreibung von Sedimentstruktur und -textur wurden mit einem Durchlichtmikroskop durchgeführt. Für die Dünnschliffpräparation wurden Sedimentblöcke (ca. 10 cm * 1 cm) aus dem Kernliner herausprepariert, in eine Aluminiumbox übergeben, mit Flüssigstickstoff `schockgefroren´ und in mehreren Arbeitsgängen im Einbettungsmittel Araldit (XW396/397) getränkt. Nach dem Aushärten und der Entfernung der Aluminiumbox konnte die Dünnschliffpräparation erfolgen.

2.9 Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma

Die Haupt-, Neben- und Spurenelementkonzentrationen wurden mit Hilfe einer ICP-OES an insgesamt 28 Tonproben (1 cm-Scheiben) sowie an der Ton-, Silt- und Sandfraktion von 10 cm-Mischhorizonten (488 - 498 cm, 653 - 663 cm, 728 - 738 cm und 864 - 874 cm) ermittelt.

2.9.1 Aufschlußverfahren

Mit Hilfe eines hochkonzentrierten Säuregemisches aus 40%-iger Flußsäure, 65%iger Salpetersäure und 70%-iger Perchlorsäure sowie einer PICOTRACE -Druckaufschlußapparatur sind Silikate und organische Substanz nahezu vollständig in Lösung gebracht worden. 50 - 100 mg pulverisierte Probensubstanz wurden bei einer Temperatur von 175 °C und einer Dauer von 20 h zersetzt. In einem geschlossenen System wurde das Säuregemisch und die zersetzte Probensubstanz 5 h lang bei einer gleichbleibenden Temperatur von 180 °C abgeraucht bis ein fast eingetrockneter Rückstand vorlag.

Nach dem Abkühlen wurde der Rückstand mit 1 ml konz. HNO₃ und 5 ml H_2O bidest. aufgenommen und entsprechend einer Verdünnung von 1:500 aufgefüllt. Anschließend ist die Lösung in PE-Flaschen umgefüllt und bis zur Messung gekühlt aufbewahrt worden (T=4°C).

2.9.2 Meßverfahren

Zur Bestimmung der Haupt- (Al, Ca, K, Mg, Fe, Na), Neben- (Mn, P, Ti) und Spurenelemente (Ba, Co, Cr, Cu, Ni, Nb, Pb, Sr, V, W, Zn, Zr) kam ein ICP-Emissions Spektrometer Optima 3000xl der Firma Perkin Elmer zum Einsatz. Die ICP-OES ist ausgestattet mit einem Polychromator, der den Wellenlängenbereich 167 bis 782 nm abdeckt und zweidimensionale Spektren erzeugt, die über zwei optische Kanäle (ultraviolette Strahlung: 167 - 375 nm und sichtbares Licht: 375 - 782 nm) fokussiert und simultan von zwei Detektoren (Segmented-array Charged-coupled device Detector (SCD)) aufgenommen werden. Charakteristische Emissionsspektren werden durch Atomisierung und Ionisierung in einem Argon-Plasma erzeugt, in das die hergestellte Lösung über ein Zerstäubersystem eingebracht wird.

Vor der Messung der Probensubstanz ist für jedes Element eine Eichkurve im entsprechenden Konzentrationsbereich erstellt worden. Die Elementkonzentrationen verwendeter Eichlösungen sowie die zur Auswertung genutzten Wellenlängen sind im Anhang Tab. A-13 angegeben.

Messungen internationaler Referenzstandards (GSD 4, 5, 6) belegen eine externe Präzision von \pm 5 % für die Haupt- und Nebenelemente und \pm 10 % für die Spurenlemente. Eine Auflistung der relativen Fehler aller Elemente befindet sich in Tab. A-13 im Anhang.

Zur Bestimmung der Hauptelementkonzentrationen erfolgte eine zusätzliche Verdünnung von 1:5, sodaß eine Endverdünnung von 1:2500 für die Haupt- und Nebenelementkonzentrationen und 1:500 für die Spurenelementkonzentrationen in der Meßlösung vorlag.

2.10 Rasterelektronenmikroskopie

möglicher Veränderungen Auftreten in der Morphologie und das Verwitterungsstrukturen Hilfe bei Sedimentkörnern wurden mit der Rasterelektronenmikroskopie erfaßt. Das Probenmaterial wurde aus den Kernabschnitten 488 - 498 cm, 653 - 663 cm, 728 - 738 cm und 864 - 874 cm durch Andrücken eines mit Kohlenstoff beschichteten, elektrisch leitenden Stempelkissens auf die Kernoberfläche gewonnen, getrocknet und mit Kohlenstoff und Gold bedampft. Die Aufnahmen wurden mit dem DMS 962 der Firma Zeiss, GeoForschungsZentrum Potsdam, und einer Anregungsspannung von 20 kV durchgeführt.

2.11 Röntgendiffraktometrie

Zur halbquantitativen Bestimmung der mineralogischen Hauptkomponenten des Gesamtsedimentes und der Tonfraktion wurden röntgendiffraktometrische Untersuchungen durchgeführt. Die Auswertung aller Röntgendiffraktogramme erfolgte mit dem Programm MacDiff Vers. 3.1. von R. Petschick (Geologisch-Paläontologisches Institut der J.W. Goethe Universität Frankfurt).

2.11.1 Gesamtmineralogie

Zur Bestimmung der mineralogischen Zusammensetzung des Gesamtsedimentes kam ein Diffraktometer D5000 der Firma Siemens (Strahlung: CuK α , Wellenlänge: 1.5402 Å, Spannung: 40 kV, Stromstärke: 30 mA, Winkelbereich: 1 - 70 2°Theta) des analytischen Labors des GeoForschungsZentrums Potsdam zum Einsatz. Zuvor wurden alle Proben mit 10 Gew.% Al₂O₃ (Korund) versetzt, homogenisiert und zu Preßtabletten

verarbeitet. Korund als Standard bewirkt anhand der Intensitäten von Peakflächen eine halbquantitative Bestimmung der Mineralphasen.

Tab. 5: Zur Auswertung der Röntgendiagramme der Gesamtmineralogie des Lamaseesedimentes genutzte Reflexe (CuK α -Strahlung); X1: Brindley & Brown (1980); X2: Thorez (1976).

Reflex	Netzebenenabstand [Å]	Winkel [2°Theta]	Netzebene [hkl]
Smektit ^{x1}	±14.4 (ungequollen)	6.2	[001]
Kaolinit ^{x1}	7.1	14.4	[100]
111it ^{×2}	4.5	19.8	[110]
Quarz	4.3	20.9	[100]
K-Feldspat	3.8	27.5	[130]
Plagioklas	3.2	27.9	[040]
Augit (Clinopyx.)	3.0	29.8	[-221]
Korund (Standard)	3.5	25.6	[012]

2.11.2 Tonmineralogie

Für die Bestimmung der Tonmineralogie wurden Texturpräparate der < 2μ m-Fraktion hergestellt. Hierfür wurden 40 mg Probenmaterial in 5 ml bidest. H₂O mit 20 minütiger Ultraschallbehandlung dispergiert und anschließend mit 1% iger MoS₂-Suspension (Standard) versetzt. Durch Absaugen der Suspensionsflüssigkeit wird die Festphase auf den Objektträger aufgebracht.

Mit einem Diffraktometer PW 1700 der Firma Philipps (Strahlung: CoKa, Spannung 40 kV, Stromstärke: 40 mA) wurden luftgetrocknete (Winkelbereich: 1 - 18 2°Theta) und glykolisierte (Winkelbereich: 1 - 40 2°Theta) Proben mit einer Geschwindigkeit von 0.02°2Theta/sec. analysiert.

Tab. 6: Zur Auswertung der Röntgendiagramme der Tonmineralogie des Lamaseesedimentes genutzte Reflexe (CoKa-Strahlung); X1: Brindley & Brown (1980).

Reflex	Netzebenenabstand [Å]	Winkel [2°Theta]	Netzebene [hkl]
Smektit ^{x1}	±16.7 (gequollen)	5.2	[001]
111it ^{×1}	10.0	10.3	[001]
Kaolinit ^{x1}	7.1	14.4	[100]
MoS ₂ (Standard)	6.2	16.7	[002]
Quarz	4.3	20.9	[100]
K-Feldspat	3.8	27.5	[130]
Plagioklas	3.2	27.9	[040]
Augit (Clinopyx.)	3.0	29.8	[-221]

2.12 Röntgenfluoreszenzanalyse

Die Haupt-, Spuren- und Nebenelementverteilung des Gesamtsedimentes wurde an 125 Proben des Kernes PG1111 und an 9 Oberflächenproben mit Hilfe der Röntgenfluoreszenzanalyse (RFA) im geochemischen Labor der Technischen Universität Berlin analysiert. Zur Bestimmung des Glühverlustes wurden 1,5 g Probensubstanz für zwei Stunden auf 1000°C erhitzt und nach der Abkühlung ausgewogen. Aus 0.6 g geglühter Probensubstanz und 3.6 g Flußmittel (MERCK Spectromelt A12) wurden Schmelztabletten hergestellt und an einer Philips PW 1404/10 Anlage mit wellenlängendispersivem Röntgenspektrometer analysiert. Dazu wurde das Meßprogramm OXIQUANT verwendet, das mit natürlichen Gesteins- und Mineralstandards geeicht ist.

Zur Auswertung wurden nur Analysen herangezogen, bei denen sich aus der Addition von Elementanteilen und Glühverlust Summen zwischen 98.5 Gew.% und 101.5 Gew.% ergaben. Ergebnisse, Meßfehler und Nachweisgrenzen der RFA befinden sich im Anhang (Tab. A-12).

2.13 Strontiumisotope

Das Strontiumisotopenverhältnis⁸⁷Sr/⁸⁶Sr ist für jeden Gesteinstyp signifikant und wird in dieser Arbeit als Tracer für das Ausgangsgestein genutzt, um mögliche Liefergebietswechsel seit der Spätweichsel zu rekonstruieren.

 87 Sr/ 86 Sr ist vom Alter und vom Rb/Sr-Verhältnis eines Gesteins abhängig, da sich 87 Sr aus radiogenem 87 Rb durch beta-Zerfall bildet. Als inkompatibles Element ist Rubidium gegenüber Strontium in stärker fraktionierten Gesteinen (z.B. Granit) mehr angereichert als in gering fraktionierten Gesteinen (z.B. Basalt). Hohe 87 Sr/ 86 Sr-Werte sind daher für stark fraktionierte und niedrige 87 Sr/ 86 Sr-Verhältnisse für \pm gleichalte schwach fraktionierte Gesteine zu erwarten.

Zur Bestimmung des ⁸⁷Sr/⁸⁶Sr-Verhältnisses des Sediments wurden vier Proben aus der Kernsequenz PG1111 in 23.5, 143.5, 909.5 und 1049.5 cm Sedimenttiefe in einem Teflongefäß mit einem hochkonzentrierten und suprapuren Säuregemisch aus HF, HNO₃ und HCl gelöst. Vor der Isotopenmessung wurden die Sr-Isotope mit einem Kationenaustauscherharz aus der Lösung separiert und dann mit einem Finnigan MAT 261[®] Multi-Kollektor Massenspektrometer im Isotopenlabor der Freien Universität in Berlin gemessen.

Isotopenfraktionierungen während des Meßvorganges wurden mit Hilfe des stabilen Isotopenverhältnisses ⁸⁸Sr/⁸⁶Sr = 8.37521 korrigiert. Eine Überlagerung der Messung durch ⁸⁷Rb wurde durch simultanes Messen von ⁸⁵Rb über das ⁸⁷Rb/⁸⁵Rb-Verhältnis von 0.385706 korrigiert.

Die Ergebnisse zeigen einen relativen Fehler von 0.01 %. Die Überprüfung mittels NBS 987 Standards ergeben Werte von $0.710150 \pm 17*10^{-6}$.

3 Ergebnisse

3.1 Charakterisierung des Ablagerungsraumes

Die Bohrlokation PG1111 befindet sich im Einflußbereich des Mikchangdozuflusses, der nördlich der Bohrlokation PG1111 ein Delta bildet (Abb. 11).

Abb. 11: Lokationen der Oberflächenkerne sowie der Kernsequenz PG1111 im zentralen Bereich des Lama Sees.

Korngrößenuntersuchungen des Oberflächensedimentes (0 - 2 cm) zeigen, daß die Korngröße mit der Entfernung von der nördlichen Uferlinie (65 Gew.% Sand, 32 Gew.% Silt, 3 Gew.% Ton) kontinuierlich abnimmt und in der Mitte des Lama Sees an Bohrlokation PG1111 eine Zusammensetzung von 53 Gew.% Silt und 47 Gew.% Ton erreicht (Abb. 12).

Die in Abb. 12 dargestellten Oberflächenkerne lassen sich auf der Basis des Wassergehaltes gut miteinander korrelieren. Eine genaue Beschreibung der Oberflächenkerne ist im Anhang Tab. A-4 nachzulesen. Der ebene Seeboden um PG1111 sowie der hohe Gehalt an Ton lassen ungestörte Sedimentationsbedingungen im Umfeld der Bohrlokation PG1111 erwarten.

Die durchschnittliche geochemische Zusammensetzung der Oberflächensedimente (0 - 2 cm) mit relativ geringen SiO₂ - Gehalten (<50 Gew.%) und hohen FeO_{tot}- (>10 Gew.%), MgO - (\pm 5 Gew.%) und CaO - (>5 Gew.%) Gehalten zeigt, daß der sedimentäre Eintrag von den kontinentalen Flutbasalten im Einzugsgebiet dominiert wird (Abb. 12).

Hydrochemische Untersuchungen des Seewassers ergeben nur geringe Konzentrationen von gelösten Anionen und Kationen (Summe gelöster Kationen und Anionen (TDS): 50 mg/l). Meßbare Kationenkonzentrationen in der Wassersäule liefern Kalzium (8 - 15 mg/l), Magnesium, Natrium und Silizium (alle < 5 mg/l; Abb. 13).

Abb. 13: pH-, Temperatur-, Sauerstoff- (O_2) und Leitfähigkeitstiefenprofile an vier Positionen sowie meßbare Kationen (Kalzium, Magnesium, Natrium und Silizium) an zwei Positionen des Lama Sees; Sommer 1997.

Hydrologische Untersuchungen vom August 1997 charakterisieren den Wasserkörper des Lama Sees als einen oligotrophen, leicht alkalischen See (pH: 7 - 8) mit

Lithostratigraphie

Sauerstoffgehalten von 12 - 13 O₂ mg/l und geringer elektrischer Leitfähigkeit, die in der Tiefe leicht ansteigt (elektr. Lf: 80 - 110 μ S/cm³; Abb. 13). Im Sommer bildet sich eine Stratifizierung mit erhöhten Temperaturen (9 - 11 °C) und leicht erniedrigten Sauerstoffgehalten (< 13 O₂ mg/l) im Oberflächenwasser aus (Abb. 13).

Das helle, olivbraune Sediment in den obersten Zentimetern reflektiert oxische Bedingungen im oberfächennahen Sediment (Anhang: Kap. 7.2.1).

3.2 Stratigraphie der Kernsequenz PG1111

3.2.1. Lithostratigraphie

An der Bohrlokation PG1111 ist eine 11.12 m lange Sedimentsequenz, bestehend aus einem Schwerelotkern (50 cm Länge) und vier Kolbenlotkernen (300 cm Länge), gewonnen worden (Abb. 11 und 14).

Abb. 14: Lithostratigraphie der Kernsequenz PG1111. Auf der Basis von Sedimentstruktur, Korngröße, Wassergehalt und magnetischen Suszeptibilitäten lassen sich sechs lithologische Einheiten F_{Luth} , E_{Luth} , D_{Luth} , C_{Luth} , B_{Luth} , und A_{Luth} , differenzieren.

Lithostratigraphie

Die Korrelation der Kernsegmente basiert auf der Lithologie, dem Wassergehalt, der magnetischen Suszeptibilitäten und auf biochemischen Parametern des Sedimentes der überlappenden Intervalle (Harwart et al. in 1999). Mit Ausnahme der Kolbenlotkerne 5 und 6, die Differenzen in den biochemischen Parametern zeigen, besteht eine eindeutige Übereinstimmung der Parameter in den überlappenden Bereichen (Harwart et al. in 1999). Für die graphische Darstellung und die Kalkulation der Sedimentationsrate wird zwischen den Kolbenlotkernen 5 und 6 eine direkte Angliederung des tieferliegenden Kerns 3 an Kern 2 angenommen (Abb. 14).

Basierend auf den in Abb. 14 dargestellten Parametern (Sedimentfarbe, Sedimentstruktur, Korngrößenzusammensetzung, Wassergehalt und magnetischer Suszeptibilitäten) können sechs Bereiche $F_{Lith.}$, $E_{Lith.}$, $D_{Lith.}$, $C_{Lith.}$, $B_{Lith.}$ und $A_{Lith.}$ differenziert werden.

Abb. 15: Kernausschnitt aus Abschnitt $E_{Lith.}$ (940 - 835 cm), der aus zyklisch alternierenden fein laminierten Sequenzen mit Laminae < 1mm bis 1 mm und gröber laminierten Sequenzen mit 2 bis 5 cm dicken Laminae aufgebaut wird, und aus Abschnitt $D_{Lith.}$ (835 - 735 cm) der aus sehr feinen kontinuierlichen Laminae < 1mm besteht.

Die Einheiten F_{Lith} (1112 - 940 cm), E_{Lith} (940 - 835 cm) und D_{Lith} (835 - 735 cm) bestehen im wesentlichen aus hellem, olivbraunem, siltigem Ton und sind aus < 1 mm bis ca. 10 mm mächtigen Laminae aufgebaut, die eine Gradierung von olivbraunem Silt zu hellem, olivbraunem Ton zeigen. Mit erhöhten Siltgehalten korrelieren verringerte Wassergehalte und erhöhte magnetische Suszeptibilitäten.

Chronostratigraphie

Geringe Gehalte an Sand (< 1 Gew.%), insbesondere Grobsand und Kiesel bis 2 cm Durchmesser charakterisieren Einheit $F_{Lith.}$, die von 981 bis 940 cm mit einem schräggeschichteten Horizont abgeschlossen wird.

Kiesel und Grobsandanteil verschwinden in Abschnitt $E_{Lith.}$, der aus zyklisch alternierenden fein laminierten Sequenzen mit Laminae < 1mm bis 1 mm und gröber laminierten Sequenzen mit 2 bis 5 cm dicken Laminae aufgebaut wird (Abb. 15).

Die Laminierung in Abschnitt D_{Lith} dagegen ist sehr fein und kontinuierlich, sie besteht aus Laminae < 1mm (Abb. 15).

Der Übergang zur Einheit $C_{\text{Lith.}}$ ist charakterisiert durch einen Wechsel von hellem, olivbraunem, siltigem Ton zu grauschwarzem, tonigem Silt mit mm - bis cm -Laminierung (Farbwechsel von grau nach schwarz), eine deutlich Abnahme des Wassergehaltes sowie durch die Zunahme der magnetischen Suszeptibilitäten. Einheit $C_{\text{Lith.}}$ (735 - 600 cm) zeigt unregelmäßige, dunkelgraue Laminae mit Mächtigkeiten von < 1 mm.

1 bis 2 cm mächtige schwarze Lagen, die besonders nach Benetzung mit Salzsäure nach Schwefel riechen, charakterisieren Abschnitt B_{Lith} (600 - 500 cm).

Einheit A_{Lith.} (500 - 0 cm) zeigt 1 mm bis 2 cm mächtige schwarze Lagen, die im Gegensatz zu B_{Lith.} jedoch wesentlich unregelmäßiger, teilweise sogar fleckenförmig ausgebildet sind. Die obersten 22 cm entwickeln sich zu einem homogen olivbraunen bis gelbbraunen Bereich, der zwischen 6.5 bis 7.5 cm von Millimeter mächtigen braunen Lagen durchzogen ist.

3.2.2 Chronostratigraphie

Abb. 16: Alter-Tiefen-Beziehung der Kernsequenz PG1111. Auf der Basis von palynologischen, geochemischen und sedimentologischen Untersuchungen ergibt sich eine durchschnittliche Sedimentationsrate von 0.6 bis 1.0 mm/a.

Die zeitliche Einteilung der Sedimentsequenz PG1111 basiert auf Pollenuntersuchungen, die mit datierten Pollendiagrammen aus Sibirien und Sauerstoffisotopenkurven aus einem Eiskern des Severnaya Zemlya Archipelago im Norden der Taimyr Halbinsel korreliert wurden (Hahne & Melles 1997; Hahne & Melles 1999; Klementyev et al. 1991). Basierend auf den nach Mangerud et al. (1974) und Khotinsky (1984) definierten Chronozonen reicht die Sedimentsequenz PG1111 nach Hahne & Melles (1997) bis in die Älteste Dryas zurück (Abb. 16).

Die kalkulierte Sedimentationsrate von 0.6 bis 0.7 mm/a (durchschn. 0.65 mm/a) wird bestätigt durch ²¹⁰Pb Akkumulationsraten von 0.057 bis 0.027 gcm²/a, die Sedimentationsraten von 0.7 mm/a während der letzten 100 Jahre belegen (Hagedorn 1999). Zusätzlich diskutieren Harwart et al. (1999) eine Sedimentationsrate von ebenfalls < 1 mm/a im Spätpleistozän (Bølling - Allerød), indem sie die < 1 mm mächtigen, gradierten Laminae zwischen 835 und 735 cm als Jahreslagen interpretieren (Abb. 17).

Terrestrische Makroreste, die wesentlich besser zur absoluten Altersbestimmung geeignet sind (Abbott & Stafford 1996; Björck et al. 1996), wurden im Lamaseesediment nicht gefunden. Alle Radiokarbonalter des Gesamtsedimentes und der Pollenkonzentrate zeigen höhere Alter als die anhand der Pollenuntersuchungen bestimmten Alter (Abb. 16). Das Gesamtsediment zeigt ca. 5000, die Pollenkonzentrate 5600 bis 9300 Jahre höhere Alter. Diese Diskrepanz könnte auf Hartwassereffekte zurückgehen, die in Seesedimenten um bis zu 7200 Jahre erhöhte Alter verursachen können (Hajdas et al. 1995; Pennington 1981a; Wohlfarth et al. 1995). Detritische ¹⁴C-freie Kohle- und Karbonatpartikel aus den sedimentären Ablagerungen der Tunguska Syneklise im Einzugsgebiet des Lama Sees oder der Eintrag alten organischen Kohlenstoffs, der in Tundrengebieten zurückgehalten und gespeichert werden kann, könnten ebenfalls die hohen Alter im Sediment verursacht haben (Abbott & Stafford (1995).

Abb. 17: Gradierte Silt-Ton-Lagen der Kernsequenz PG1111, welche während der Gletscherrückzugsphase in der späten Ältesten Dryas abgelagert wurden (Polarisationsmikroskop, gekreuzte Nicols, Vergrößerung: x12.5, Sedimenttiefe: ca. 870 cm). Grobkörnige, siltige Lagen repräsentieren Zeiten vermehrten Sedimenteintrages als Folge der Schneeschmelze im Frühling, die feinen, tonigen Lagen verweisen auf Zeiten verminderten Sedimentinputs im Sommer und Winter (Warvenbildung) (Brodzikowski & Van Loon 1987; Johnson 1997; Simola & Uimonen-Simola 1983).

Abb. 18: Mineralogische Zusammensetzung der Gesamtfraktion (Gesamtmineralogie) und der < 2 μm - Fraktion (Tonmineralogie) in der Sedimentsequenz PG1111.

Aus diesen Gründen werden in der vorliegenden Arbeit jene Alter herangezogen, die sich aus der Korrelation mit datierten Eiskernen und Pollendiagrammen ergeben (s.o.).

3.2.3 Mineralogie

Die mineralogische Zusammensetzung des Gesamtsedimentes und der < 2 μ m-Fraktion (beide bezogen auf einen internen Standard; s. Kap. 2.11) sind in Abb. 18 dargestellt. Sowohl im Gesamtsediment als auch in der Tonfraktion besteht die Hauptmineralzusammensetzung aus Plagioklas, Augit (cpx), Quarz, Smektit, Illit und Kaolinit.

Während die mineralogische Zusammensetzung in der $< 2 \mu$ m- Fraktion kaum Schwankungen zeigt, differenziert sich auf der Basis der Gesamtmineralogie die Kernsequenz PG1111 in zwei Abschnitte B_{Min} und A_{Min}. Dies entspricht der geochemischen Gliederung basierend auf Faktor 1_{HEges}, Faktor 1_{SEges} und Faktor 2_{SEges}. der Gesamtgeochemie des Sedimentes (Kap. 3.2.4.1; Abb. 19 und 20).

In Abschnitt B_{Min}(1112 -735 cm: Älteste Dryas - mittleres Allerød) dominieren in der Gesamtmineralogie die Tonminerale Smektit, Kaolinit und Illit gegenüber Plagioklas, Augit, K-Feldspat und Quarz. Parallel ist Abschnitt B_{Min}. durch erhöhten Tonfraktionanteil (< 2 μ m- Fraktion erreicht einen Anteil von bis 90 Gew.%; Kap. 3.2.1; Abb. 14) und die Dominanz der Elemente Eisen und Magnesium (Kap. 3.2.4.1; Abb. 19) charakterisiert.

In Abschnitt A_{Min.} (735 - 0 cm: mittleres Allerød - Subatlantikum) nimmt der Anteil an Plagioklas, Augit, K-Feldspat und Quarz deutlich zu und der Anteil an Tonmineralen (Smektit, Kaolinit und Illit) deutlich ab. Parallel erhöht sich der Siltanteil auf durchschnittlich 50 Gew.% (Kap. 3.2.1; Abb. 14) und der Eintrag an Silizium, Titan, Kalium und Natrium (Kap. 3.2.4.1; Abb. 19).

3.2.4 Chemostratigraphie

3.2.4.1 Geochemische Zusammensetzung des Gesamtsedimentes

Das Verteilungsmuster der **Hauptelementkonzentrationen** des Gesamtsedimentes (HEges.) im Kern PG1111 ist in Abb. 19 dargestellt und im Anhang in Tab. A-14 aufgeführt. Mittelwert, Minimum und Maximum sowie Standardabweichung der Hauptelementkonzentrationen sind in Tab. 7 zusammengestellt.

Um den Wirkungszusammenhang zwischen geochemischen Variablen aufzudecken und die geochemische Variation auf eine kleine Zahl von Variablen zu reduzieren, erfolgte eine statistische Bearbeitung der Daten mit einer Hauptkomponentenanalyse (Anhang: Kap. 7.4.2). Ziel ist u. a. auch die durch die multivariate Statistik ermittelten Faktoren natürlichen Prozessen, wie z.B. Transport, Diagenese und Verwitterung zuzuordnen.

Die statistische Bearbeitung der Hauptelementkonzentrationen mit einer Hauptkomponentenanalyse_{HEges.} führt zu drei voneinander unabhängigen Faktoren (Abb. 19, Tab. 8). Auf Faktor 1_{HEges.} entfallen 47.3 %, auf Faktor 2_{HEges.} 21.9 % und auf Faktor 3_{HEges.} 12.8 % der Datenvarianz.

Tab. 7: Statistische Parameter der Hauptelementkonzentrationen im Gesamtsediment (HEges.)des Kerns PG1111 (n= 125), alle Angaben in Gew.%. (Std.Abw.=Standardabweichung derMeßergebnisse PG1111, Std.Abw.RFA=angegebene Standardabweichung für dasRöntgenfluoreszenzmeßgerät)

Variabel	Minimum	Maximum	Mittelwert	Std.Abw.	Std.Abw. _{RFA}
SiO ₂	41.9	50.6	48.5	1.98	0.50
Al ₂ O ₃	13.7	15.9	14.8	0.46	0.20
TiO ₂	0.65	1.34	1.05	0.14	0.01
FeO TOT	10.3	14.2	11.3	0.91	0.10
MgO	4.90	8.05	5.44	0.97	0.10
CaO	5.95	10.6	6.92	0.68	0.10
Na ₂ O	1.17	2.68	1.56	0.25	0.10
K ₂ O	0.52	1.13	0.81	0.09	0.10
P_2O_5	0.12	0.26	0.18	0.03	0.05
MnO	0.15	0.24	0.18	0.02	0.01

Tab. 8: Faktormatrix_{HEges.} der Hauptelementkonzentrationen des Gesamtsedimentes in Kern PG1111 (n=125) nach Anwendung der Hauptkomponentenanalyse und Varimax-Rotation. Positive bzw. negative Faktorladungen < 0.4 werden mit + bzw. - gekennzeichnet.

Variabel	Faktor 1 _{HEges.}	Faktor 2 _{HEges.}	Faktor 3 _{HEges.}
Si	0.939	+	
Al	+	0.572	+
Ti	0.905	+	+
Fe	-0.861	-	-
Mg	-0.877	-	
Ca		0.901	•
Na	0.425	0.720	-
к	0.658	-0.501	-
P		-	0.932
Mn	+	*	0.843
Eigenwert	4.73	2.19	1.28
Varianz	47.3	21.9	12.8

Zusätzlich zu den Faktorladungen (Tab. 8) sind die Faktorwerte der drei Faktoren, die die Ausprägung der Faktoren in den einzelnen Tiefen repräsentieren, bestimmt worden (Abb. 19 und im Anhang Tab. A-23). Negative Faktorwerte bedeuten bei einer positiven Faktorladung (z.B. Faktor 1_{HEges} : Silizium, Titan, Natrium und Kalium) eine unterdurchschnittliche, ein Faktorwert von 0 eine durchschnittliche und ein positiver Faktorwert eine überdurchschnittliche Ausprägung in Bezug zum Faktor und allen anderen Tiefen. Bei negativen Faktorladungen (z.B. Faktor 1_{HEges} : Eisen und Magnesium) repräsentieren negative Faktorwerte eine unterdurchschnittliche, ein Faktorwert von 0 eine durchschnittliche und ein positiver Faktorwert eine überdurchschnittliche Ausprägung in Bezug zum Faktor und allen anderen Tiefen.

Faktor $l_{\text{HEges.}}$ zeigt eine positive Korrelation zu den Elementen Silizium, Titan, Kalium und Natrium sowie eine negative Korrelation zu den Elementen Magnesium und Eisen. Die Faktorwerte teilen die Sedimentsequenz PG1111 in einen unteren mit überdurchschnittlicher Ausprägung an Eisen und Magnesium (11112 - 735 cm) und einen oberen Abschnitt (735 - 0 cm) mit überdurchschnittlicher Ausprägung an Silizium, Titan, Kalium und Natrium (Abb. 19).

Faktor $2_{\text{HEges.}}$ belegt eine positive Korrelation zwischen Kalzium, Natrium und Aluminium mit negativer Korrelation zu Kalium. Die Faktorwerte gliedern die Sedimentsequenz PG1111 ebenfalls in zwei, von Faktor $1_{\text{HEges.}}$ unabhängige Abschnitte (1112 - 940 cm und 940 - 0 cm; Abb. 19).

Faktor $3_{HEges.}$ beschreibt die positive Korrelation zwischen Phosphor und Mangan. Die Faktorwerte erzielen eine Klassifizierung der Kernsequenz PG1111 von vier Abschnitten (1112 - 830 cm, 830 - 735 cm, 735 - 500 cm und 500 - 0 cm; Abb. 19).

Auf der Basis variierender Verteilungsmuster und der Ergebnisse der Hauptkomponentenanalyse_{HEges}, wurden fünf geochemische Einheiten E_{HEges} , D_{HEges} , C_{HEges} , B_{HEges} und A_{HEges} festgelegt (Abb. 19): Einheit E_{HEges} (1112 - 940 cm: untere Ältere Dryas) ist durch eine hohe Variabilität sämtlicher Hauptelemente charakterisiert, die in Einheit D_{HEges} (940 - 835 cm: obere Ältere Dryas) deutlich nachläßt und in Einheit C_{HEges} (835 - 735 cm: Bølling, Ältere Dryas und unteres Allerød) fast vollständig aussetzt.

Einheit B_{HEges.} (735 - 500 cm: oberes Allerød, Jüngere Dryas, Preboreal, Boreal und Anfang des Atlantikums) ist durch eine deutliche Konzentrationszunahme der Elemente Silizium, Aluminium, Titan und Kalium und eine mäßige Konzentrationserhöhung der Elemente Kalzium und Natrium geprägt. Parallel nehmen die Konzentrationen von Eisen und Magnesium deutlich, die von Phosphor und Mangan geringfügig ab. Eine maximale Anreicherung von Kalium ist im Tiefenbereich von 735 bis 650 cm zu beobachten (= oberes Allerød und Jüngere Dryas). Der Tiefenabschnitt 580 - 500 cm (= oberes Boreal und Beginn des Atlantikums) in B_{HEges.} hat niedrigste Konzentrationen an Aluminium, Eisen, Magnesium und Kalium sowie einen signifikanten Anstieg des Aluminiumanteils und geringfügige Konzentrationszunahmen der Elemente Titan und Kalium in einer Tiefe von 550 cm.

Im unteren Teil der Einheit A_{HEges.} (500 - 200 cm: Atlantikum und unteres Subboreal) nehmen die Konzentrationen von Silizium, Titan und Kalcium ab, die von Aluminium, Eisen, Magnesium, Kalium und Phosphor zu. Im oberen Teil der Einheit A_{HEges} (200 - 0 cm: oberes Subboreal und Subatlantikum) zeigen Silizium, Titan, Eisen, Magnesium, Kalzium und Kalium einen konstanten Konzentrationsverlauf, Phosphor und Mangan nehmen kontinuierlich bis zur Sedimentoberfläche zu. Eine Ausnahme bildet der Tiefenbereich um 300 cm (Subboreal), der eine kurzzeitige Abnahme der Elemente Silizium und Titan, bzw. Zunahme der Elemente Eisen und Magnesium aufweist.

der

Chemostratigraphie

Da die oben beschriebenen Konzentrationsangaben auf 100 Gew.% bezogen sind, bewirkt die Änderung eines Elementes eine relative Anreicherung bzw. Verarmung anderer Elemente. Zur Kontrolle wurden deshalb alle Elementkonzentrationen auf Aluminium bezogen. Aluminium bleibt z.B. bei Verwitterungsprozessen in der mineralischen Phase fixiert und ist deshalb geeignet, um Anreicherungen und Verarmungen der Elemente aus Silikaten zu diskutieren. Außerdem können Verdünnungen durch Quarz oder organischen Kohlenstoff korrigiert werden. Durch die Al-Normierung ändert sich außer für Silizium das Verteilungsmuster der Elementkonzentrationen (HEges./Al) nicht grundlegend (Abb. 20). Eine Verzerrung der Verteilungsmuster durch organische und anorganische selektive Lösungs- und Ausfällungsprozesse und Adsorptivbindungen (z.B. an organische Substanz; vgl. S. 60 Abb. 34) erscheint daher unwahrscheinlich.

Silizium bildet eine Ausnahme und wechselt durch die Al-Normierung von einer sprunghaften Zunahme im mittleren Allerød (um 735 cm) zu einem kontinuierlichen Anstieg, der im Boreal (600 - 500 cm) sein Maximum erreicht (Abb. 20). Im Atlantikum wird der Si/Al-Quotient deutlich kleiner, bleibt dann konstant und nimmt vom späteren Subboreal (ca. 200 cm) bis zur Sedimentoberfläche kontinuierlich ab (Abb. 20). Dies ist wahrscheinlich auf höchste Diatomeenkonzentrationen während des Klimaoptimums im Boreal zurückzuführen (Kienel 1999).

Die Hauptkomponentenanalyse der Al-normierten Verhältnisse (HEges./Al) führt zu drei nahezu identischen Faktoren wie bei HEges. und zur gleichen Tiefengliederung F_{HEges./AL}, E_{HEges./AL}, D_{HEges./AL}, C_{HEges./AL}, B_{HEges./AL} und A_{HEges./AL} (Abb. 20 und im Anhang Tabellen A-23 und A-25). Geringfügige Änderungen sind zu beobachten: im Vergleich zu Faktor 1_{HEges} fällt Kalium nach der Al-Normierung aus der Korrelation zu Faktor 1_{HEges./AL}, heraus. Der Phosphor-Mangan-Faktor zeigt nach der Al-Normierung eine negative Korrelation zu Kalzium und Natrium und wird zum zweitwichtigsten Faktor 2_{HEges./AL}, der 26 % der gesamten Datenvarianz umfaßt. Faktor 3_{HEges./AL} entspricht Faktor 2_{HEges.}, er nimmt nach der Al-Normierung au Wichtigkeit ab. Er zeigt eine positive Korrelation zu Kalium und Silizium sowie eine negative Korrelation zu Kalzium. Natrium fällt nach der Al-Normierung aus der Korrelation heraus (vgl. Faktor 2_{HEges.}).

Die Konzentrationsverteilung und die statistischen Parameter der **Spurenelemente** (SEges.) Barium, Cobalt, Chrom, Kupfer, Niob, Nickel, Strontium, Vanadium, Yttrium, Zink und Zirkon sind in Abb. 21, Tab. 9 und in Tab. A-15 im Anhang dargestellt.

Die Hauptkomponentenanalyse führt zu drei voneinander unabhängigen Faktoren. Auf Faktor $1_{SEges.}$ entfallen 50.3 %, auf Faktor $2_{SEges.}$ 16.8 % und auf Faktor $3_{SEges.}$ 10.6 % der Datenvarianz (Abb. 21; Tab. 10). Die Faktorwerte von Faktor $1_{SEges.}$ und Faktor $2_{SEges.}$ führen analog zu Faktor $1_{HEges.}$ zur Zweiteilung der Kernsequenz PG1111 (1112 - 735 cm und 735 - 0 cm; Anhang Tab. A-24).

Faktor 1_{SEges.} korreliert positiv mit den Elementen Barium, Chrom, Strontium, Vanadium, Yttrium, Zink und Zirkon.

Faktor $2_{SEges.}$ deckt eine positive Korrelation zwischen Cobalt und Kupfer sowie zwischen den Elementen Barium, Niob und Vanadium auf. Während im unteren Kernabschnitt (1112 - 735 cm) Cobalt und Kupfer dominieren, nehmen Barium, Niob und Vanadium in der oberen Sequenz an Relevanz zu.

Faktor $3_{SEges.}$ zeigt eine positive Korrelation zu den Elementen Chrom, Nickel und Vanadium, die zwischen 600 und 100 cm (Boreal - Beginn Subatlantikum) gegenüber den anderen Kernbereichen leicht angereichert sind. Chrom und Nickel sind in einer Tiefe um 550 cm (Boreal) stark angereichert.

Tab. 9: Statistische Parameter der Spurenelementkonzentrationen im Gesamtsediment des Kerns PG1111 (n=125), alle Angaben in mg/kg (Std.Abw.=Standardabweichung der Meßergebnisse PG1111, Std.Abw_{RFA}=angegebene Standardabweichung für das Röntgenfluoreszenzmeßgerät).

Variabel	Minimum	Maximum	Mittelwert	Std.Abw.	Std.Abw. _{RFA}
Ba	149	265	209	27	17
Со	41	76	55	8	4
Cr	67	415	132	46	20
Cu	103	266	154	29	18
Nb	5	12	8	1	3
Ni	84	796	147	76	12
Sr	177	285	225	32	8
v	119	322	212	47	7
Y	19	33	27	3	4
Zn	67	130	91	12	7
Zr	85	130	112	12	11

Tab. 10: Faktormatrix_{SEgex} der Spurentelementkonzentrationen des Gesamtsedimentes in Kern PG1111 (n=125) nach Anwendung der Hauptkomponentenanalyse und Varimax-Rotation. Positive bzw. negative Faktorladungen < 0.4 werden mit + bzw. - gekennzeichnet.

Variabel	Faktor 1 _{SEges.}	Faktor 2 _{SEges}	Faktor 3 _{SEges}
Ba	0.611	0.625	+
Co	-	-0.889	••••
Cr	0.450	+	0.831
Cu	-	-0.901	-
Nb	+	0.526	-
Ni	+		0.928
Sr	0.656	+	+
v	0.584	0.555	0.417
Y	0.901	+	+
Zn	0.836	+	+
Zr	0.922	+	+
Eigenwert	5.54	1.85	1.17
Varianz	50.3	16.8	10.6

Chemostratigraphie

41

Chemostratigraphie

Auf der Basis von Elementverteilung und Hauptkomponentenanalyse der Spurenelemente kann die Sedimentationsabfolge PG1111 in zwei Abschnitte $A_{SEges.}$ (735 - 0 cm: Ältere Dryas - mittleres Allerød) und $B_{SEges.}$ (1112 - 735 cm: mittleres Allerød - heute) geteilt werden (Abb. 21).

 $B_{SEges.}$ ist gegenüber $A_{SEges.}$ klar mit Cobalt und Kupfer angereichert, während alle anderen Spurenelemente mehr oder weniger deutlich in Abschnitt $A_{SEges.}$ konzentriert sind.

Das Verteilungsmuster der Spurenelemente wird durch eine Aluminiumnormierung nur sehr geringfügig verändert und wird hier deshalb nicht weiter beschrieben (Abb. 22). Die statistischen Ergebnisse der Al-normierten Elementverteilungen können im Anhang nachgelesen werden (Tabellen A-24 und A-26).

3.2.4.2 Geochemische Zusammensetzung der Tonfraktion

Die geochemische Zusammensetzung der Tonfraktion (< 2 µm) wurde analysiert, um geochemische, korngrößenunabhängige Schwankungen zu rekonstruieren. Vertiefende Untersuchungen wurden an der Pleistozän-Holozän-Grenze durchgeführt, um den Einfluß des angenommenen Gletscherrückzuges (Harwart et al. 1999) und der Vegetationsentwicklung (Hahne & Melles 1997) auf die Geochemie der Tonfraktion und die chemische Verwitterung im Einzugsgebiet zu erfassen: im Bereich von 620 bis 745 cm erfolgten die Analysen alle 5 cm, in der verbleibenden Sedimentsequenz in Abständen von 50 bis 150 cm.

Auf der Basis der **Hauptelementverteilung** in der Tonfraktion (< 2 µm) wurde die Kernsequenz PG1111 in drei Abschnitte C_{HEton} (= E_{HEges.}, D_{HEges.}, C_{HEges.}), B_{HEton} (=B_{HEges.}) und A_{HEton} (=A_{HEges.}) gegliedert (Abb. 23). Die Hauptelementkonzentrationen der < 2 µm - Fraktion ist im Anhang (Tab. A-16) aufgelistet. Die statistischen Parameter zur Elementverteilung sind in Tab. 11 aufgeführt.

Tab. 11: Statistische Parameter der Hauptelementkonzentrationen in der Tonfraktion des Kerns PG1111 (n=29), alle Angaben in Gew.%. (Std.Abw.=Standardabweichung der Meßergebnisse PG1111, rel.Fehler_{ICP} [%] = relativer Fehler der ICP).

Variabel	Minimum	Maximum	Mittelwert	Std.Abw.	rel.Fehler _{ICP} [%]
Al ₂ O ₃	13.9	17.6	15.4	0.9	3.6
TiO ₂	0.68	0.96	0.82	0.1	0.8
FeO _{TOT}	9.54	11.1	10.4	0.4	1.4
MgO	5.64	8.58	7.23	1.0	2.3
CaO	4.12	6.59	5.21	0.7	2.6
Na ₂ O	0.53	2.12	0.70	0.3	6.4
K ₂ O	0.79	1.64	1.06	0.2	1.4
P_2O_5	0.17	0.34	0.21	0.04	5.2
MnO	0.16	0.26	0.20	0.03	6.6

Abb. 23: Verteilungsmuster der Hauptelemente in der Tonfraktion der Kernsequenz PG1111.

Abschnitt C_{HEton} (1112 - 735 cm: Älteste Dryas - erste Hälfte Allerød) ist in Relation zu B_{HEton} durch geringe Konzentrationen an Aluminium, Titan und Kalium und hohe Konzentrationen an Kalzium und Eisen gekennzeichnet.

In Abschnitt B_{HEton} (735 - 625 cm: oberes Allerød, Jüngere Dryas und unteres Preboreal) nehmen die Konzentrationen der Elemente Magnesium und Kalzium deutlich, die von Natrium Mangan und Phosphor geringfügig ab. Die Konzentrationen von Aluminium, Titan und Kalium nehmen zu. Eisen bleibt in B_{HEton} zunächst konstant, nimmt jedoch in einer Tiefe um 690 cm (= obere Jüngere Dryas) deutlich ab.

Abschnitt A_{HEton} (625 bis 0 cm: oberes Preboreal - Subatlantikum) ist durch eine erneute Konzentrationszunahme der Elemente Magnesium, Eisen, Kalzium, Natrium, Phosphor und Mangan gekennzeichnet. Phosphor und Mangan nehmen bis zur Sedimentoberfläche kontinuierlich zu, Kalzium und Natrium bleiben konstant, Eisen und Magnesium nehmen bei einer Tiefe von ca. 500 cm (Übergang Boreal - Atlantikum) erneut ab. Die Konzentrationen von Aluminium und Kalium werden in A_{HEton} geringer, Titan bleibt konstant.

Das Verteilungsmuster der auf Aluminium normierten Elementkonzentrationen teilt die Kernsequenz PG1111 in die gleichen Abschnitte $C_{HEton/Al}$ (1112 - 735 cm: Älteste Dryas - erste Hälfte Allerød), B_{HEton/Al} (735 - 625 cm: oberes Allerød, Jüngere Dryas und unteres Preboreal) und A_{HEton/Al} (625 cm - 0 cm: oberes Preboreal - Subatlantikum). Die Variationen von Magnesium, Kalzium, Natrium, Kalium, Phosphor und Mangan werden durch eine Aluminiumnormierung nicht verändert (Abb. 24). Änderungen erfahren Titan und Eisen im Übergangsbereich von C_{Heton/Al} zu B_{Heton/Al} (= Allerød). Titan wechselt von einem markanten Sprung zu einem kontinuierlichen Anstieg, die Eisenkonzentration nimmt bereits in einer Tiefe von 735 cm (= mittleres Allerød) ab (Abb. 24).

Das Verteilungsmuster und die statistischen Parameter der **Spurenelemente** in der Tonfraktion sind in den Tabellen 12, A-17 (Anhang) und Abb. 25 dargestellt.

Tab.	12:	Statisti	sche	Paran	neter	der Spure	nele	ementkor	nzentrationen	in der	Tonfraktion	des
Kerns	r P	GIIII	(n=	29),	alle	Angaben	in	mg/kg	(Std.Abw.=St	andard	abweichung	der
Меβе	rgel	onisse P	GIII	I, rel.	Fehle	e r _{ICP} [%] =	rela	tiver Fe	hler der ICP).			

Variabel	Minimum	Maximum	Mittelwert	Std.Abw.	rel. Fehler _{ICP} [%]
Ba	148	265	182	30	9.1
Co	54	70	63	5	10.1
Cu	207	439	246	42	10.1
Ni	114	148	132	11	4.5
Sr	140	230	167	24	6.7
V	119	224	155	27	7.5
Zn	87	146	107	14	10.1

Abb. 25: Verteilungsmuster der Spurenelemente in der Tonfraktion der Kernsequenz PG1111.

Chrom, Molybdän und Niob werden aufgrund des hohen analytischen Fehlers und Blei wegen zu geringer Konzentrationen (Anhang: Tab. A-13) nicht in die Betrachtungen mit einbezogen. Wolfram wird nicht diskutiert, weil es bei der geochemischen Analyse des Gesamtsedimentes nicht bestimmt wurde (Kap. 3.2.4.1).

Analog zu SEges. wird die Sedimentsequenz PG1111 auf der Basis der Spurenelemente in der Tonfraktion in zwei Abschnitte B_{SEton} und A_{SEton} gegliedert (Abb. 25).

Abschnitt B_{SEton} (1112 - 735 cm: Älteste Dryas - unteres Allerød) ist in Relation zu A_{SEton} (735 - 0 cm: unteres Allerød - Subatlantikum) durch eine Konzentrationszunahme der Elemente Cobalt und Nickel, eine deutliche Konzentrationsabnahme von Zink und durch eine geringe Konzentrationserniedrigung von Vanadium gekennzeichnet. Barium und Kupfer zeigen nur sehr geringe Schwankungen. Die Konzentration von Strontium ist zwischen 750 cm und 600 cm (= Allerød - Preboreal) etwas niedriger.

Die Verteilungsmuster der aluminiumnormierten Konzentrationen sind analog (Abb. 25).

3.2.4.3 Korngrößenabhängige geochemische Variationen

Um den Einfluß korngrößenabhängiger Variationen im Gesamtsediment besser abschätzen zu können, ist die geochemische Zusammensetzung der > 63 µm -, 63 - 2 µm - und < 2 µm - Fraktionen von vier 10 cm-Mischhorizonten aus unterschiedlichen Tiefen der Kernsequenz PG1111 (488 - 498 cm, 653 - 663 cm, 728 - 738 cm und 864 - 874 cm) bestimmt worden.

Die Meßergebnisse der Fraktionen sind in den Tabellen A-21 und A-22 im Anhang, Mittelwerte und Standardabweichung in Tab. 13 und Abb. 26 aufgeführt.

Deutliche korngrößenabhängige Variationen zeigen die Hauptelemente Magnesium, Eisen, Kalzium, Natrium, Titan und Aluminium. Aluminium, Magnesium und Eisen konzentrieren sich in der <2 µm-Fraktion (Tonminerale), Kalzium, Natrium und Titan in der >2 µm-Fraktion (Plagioklas, Augit, Magnetit). Kalium, Phosphor und Mangan (beeinflußt durch sekundäre Prozesse wie Diagenese, Kationenadsorption an Tonmineralen und organischer Substanz und Oxid/Hydoxid-Bildungen) zeigen nur geringe korngrößenabhängige Schwankungen.

Analog zu Eisen und Magnesium sind Cobalt, Kupfer und Nickel in der Tonfraktion angereichert. Barium, Strontium, Vanadium und Zink dagegen konzentrieren sich in der $> 2 \mu$ m-Fraktionen.

	> 63 µm		63 - 2	2 μm	< 2 µm	
Variable	Mittelwert	Std.Abw.	Mittelwert	Std.Abw.	Mittelwert	Std.Abw.
Al_2O_3	14.52	0.94	16.11	0.17	15.67	0.24
TiO ₂	1.05	0.10	1.24	0.04	0.83	0.05
MgO	5.29	0.54	5.23	0.19	6.83	0.69
FeO _{tot}	6.28	0.73	6.55	0.24	10.10	0.38
CaO	9.68	0.90	8.37	0.19	4.79	0.55
Na ₂ O	1.53	0.17	1.46	0.05	1.02	0.63
K ₂ O	1.01	0.07	1.11	0.06	1.20	0.16
P ₂ O ₅	0.13	0.03	0.12	0.01	0.20	0.01
MnO	0.16	0.01	0.16	0.01	0.20	0.04
Ba	255	33	242	10	211	20
Co	40	7	37	3	54	11
Cu	151	47	78	13	213	85
Ni	69	7	73	3	112	24
Sr	188	42	209	10	168	28
v	181	39	241	8	181	27
Zn	114	20	84	3	106	16

Tab. 13: Mittelwerte und Standardabweichung der geochemischen Zusammensetzung der >63 μ m-, 63 - 2 μ m- und < 2 μ m-Fraktionen in PGIIII (n=4).

3.2.4.4 Strontiumisotope

In vier verschiedenen Tiefen der Kernsequenz PG1111 sind die ⁸⁷Sr/⁸⁶Sr-Isotopenverhältnisse bestimmt und ε_{Sr} -Werte berechnet worden (Tab. 14). Ein Vergleich der ε_{Sr} -Werte mit denen einzelner Vulkanitschichten der kontinentalen Flutbasalte (aus Lightfoot et al. 1993) im Einzugsgebiet des Lama Sees soll die Zuordnung des Sedimentes zu Basaltschichten des Einzugsgebietes ermöglichen und mögliche Liefergebietswechel seit dem Spätpleistozän erkennbar machen. Die Sedimente des Lama Sees zeigen für ein basaltisches Einzugsgebiet außergewöhnlich hohe ⁸⁷Sr/⁸⁶Sr-Verhältnisse (Tab. 14). Dies ist auf die Kontamination der Flutbasalte mit Krustenmaterial zurückzuführen (Kap. 1.1.3.1), die durchschnittlich ⁸⁷Sr/⁸⁶Sr-Verhältnisse von bis zu 0.707031 erreichen können (Anhang: Tab. A-3).

Da die Basalte als mafische Gesteine sehr niedrige Rb/Sr-Verhältnisse haben, ist mit einer deutlichen Verschiebung des ⁸⁷Sr/⁸⁶Sr-Verhältnisses aufgrund der chemischen Verwitterung nicht zu rechnen.

Abb. 26: Mittlere geochemische Zusammensetzung der >63 μ m-, 63 - 2 μ m- und < 2 μ m-Fraktionen in PG1111 (n=4); Hauptelemente in Gew.%, Spurenelemente in mg/kg.

Die ε_{Sr} -Werte berechnen sich aus:

$$\varepsilon_{Sr} = \left[\frac{87}{0.7045} - 1\right] * 1000$$
$$\varepsilon_{UR}^{0} = 0.7045$$
$$UR = uniform \ reservoir$$
$$t = 0 = heute$$

Diskussion und Interpretation

Tab. 14: 87 Sr- 86 Sr-Isotopenverältnisse und ε_{Sr} -Werte aus vier verschieden Tiefen von PG1111.

Tiefe [cm]	⁸⁷ Sr/ ⁸⁶ Sr	ε _{Sr}
23.5	$0.707904 \pm 20 * 10^{-6}$	48.3
143.5	$0.708079 \pm 20*10^{-6}$	50.8
909.5	$0.707724 \pm 20*10^{-6}$	45.8
1049.5	$0.706737 \pm 20*10^{-6}$	31.8

Die ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ -Isotopenverältnisse und ϵ_{Sr} -Werte spiegeln den Einfluß der Basalte im Einzugsgebiet wieder, die ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ -Werte zwischen 0.70459 - 0.70872 haben (Wooden et al. 1993; Anhang: Tab. A-3).

4 Diskussion und Interpretation

Wie in Kapitel 1 dargestellt, werden in der vorliegenden Arbeit drei Fragestellungen verfolgt:

1. Welche Prozesse und Faktoren (z.B. Ausgangsgestein, Erosion, Transport und Diagenese) haben neben der chemischen Verwitterung im Einzugsgebiet Einfluß auf die geochemische und petrographische Zusammensetzung der Sedimente im Lama See?

2. Inwieweit hat speziell die chemische Verwitterung im Einzugsgebiet Einfluß auf die geochemische Zusammensetzung der Sedimente?

3. Wie reagiert die chemische Verwitterung im Einzugsgebiet auf Änderungen der Umweltbedingungen seit dem Spätpleistozän in Mittelsibirien und welchen Einfluß haben diese Veränderung auf die geochemische Zusammensetzung der Seesedimente?

Die Gesamtgeochemie eines Sedimentes wird neben der chemischen Verwitterung (Bodenbildung an Land) im wesentlichen von der Ausgangszusammensetzung des anstehenden Gesteins (geochemische Zusammensetzung und hydrothermale Überprägung der unverwitterten Basalte), von Sortierungsprozessen während des Transportes und von diagenetischen Mineralneubildungen im Sediment bestimmt (Nesbitt 1997; Abb. 27).

Diese Faktoren müssen erkannt werden, um den Einfluß der geochemischen Verwitterung auf die Gesamtgeochemie im Seesediment erfassen zu können.

Die Ergebnisse in Kap. 3.2. zeigen, daß der geochemische, mineralogische und lithologische Eintrag in den Lama See seit dem Spätpleistozän variiert:

Die frühe Älteste Dryas ist in der Kernsequenz PG1111 durch Lagen mit Grobsandund Kiesanteilen in einer Tonmatrix charakterisiert. Parallel zeigen Wassergehalt, magnetische Suszeptibilitäten sowie Haupt- und Spurenelementkonzentrationen eine hohe Variabilität, die ab der späteren Ältesten Dryas zurückgeht (Abb. 14, 19 und 21).

Ein markanter geochemischer Wechsel vollzieht sich während des späten Allerøds, der durch die Konzentrationszunahme der Elemente Silizium, Aluminium, Titan, Kalium, Kalzium und Natrium und die Konzentrationsabnahme der Elemente Eisen und Magnesium des Gesamtsedimentes gekennzeichnet ist (Abb. 19). Parallel steigt der Siltanteil von ca. 20 auf 50 Gew.% sowie der Eintrag von organischer Substanz (TOC)

von < 0.2 auf 0.7 Gew.% (Harwart et al. 1999). In der Gesamtmineralogie verringert sich der Anteil der Tonminerale Smektit, Illit und Kaolinit zugunsten der Silikate Plagioklas, K-Feldspat, Quarz und Augit (Abb. 18).

Die Geochemie der Tonfraktion (< 2 μ m) zeigt zur gleichen Zeit (spätes Allerød) eine Konzentrationsabnahme der Elemente Magnesium, Kalzium und Natrium und eine Konzentrationszunahme der Elemente Aluminium, Titan und Kalium (Abb. 23). Eisen bleibt während des Allerøds konstant und zeigt eine Konzentrationsabnahme erst während der späteren Jüngeren Dryas.

Eine Hauptkomponentenanalyse der geochemischen Variablen des Gesamtsedimentes führt sowohl für die Haupt- als auch für die Neben- und Spurenelemente zu drei Faktoren (Kap.3.2.4.1), die die geochemische Sedimentzusammensetzung beeinflussenden Hauptprozesse (Transportart, Diagenese, Verwitterung) widerspiegeln.

In den folgenden Kapiteln wird der Einfluß der Ausgangszusammensetzung (Liefergebiet), des Transportes, von diagenetischen Mineralneubildungen sowie der chemischen Verwitterung (Bodenbildung an Land) auf die geochemische Zusammensetzung des Lamaseesedimentes diskutiert. In diesem Zusammenhang werden die Faktoren der Hauptkomponentenanalyse_{HEges/Al} undsEges/Al den diskutierten Prozessen zugeordnet.

4.1 Einflußfaktoren auf die Gesamtgeochemie des Lamaseesedimentes

4.1.1 Liefergebiet

Das Einzugsgebiet des Lama Sees wird im wesentlichen durch kilometermächtige kontinentale Flutbasalte geprägt, die aus elf petrographisch verschiedenen

Hauptlavatypen (Ivakinsky (iv), Syverminsky (sv), Gudchinsky (gd), Khakanchansky (hk), Tuklonsky (tk), Nadezhdinsky (nd), Morongovsky (mr), Mokulaevsky (mk), Kharaylakhsky (hr), Kumginsky (km) und Samoedsky (sm)) bestehen (Abb. 2 und 3; Anhang: Tab. A-2 und Abb. A-1). Um den Einfluß der Vulkanite auf die Geochemie des Sedimentes abzuschätzen sowie den Anteil einzelner Vulkanittypen zu quantifizieren, sind sowohl Sedimente als auch alle elf Vulkanitsequenzen in ein geochemisches Diskriminierungsdiagramm für Vulkanite und in ein ε_{Sr} -Ti/Y-Diagramm geplottet worden.

Eine Klassifizierung der Vulkanite auf der Grundlage des 2Nb-Zr/4-Y Diskriminierungsdiagramms nach Meschede (1986) zeigt, daß alle Vulkanittypen in den Feldern des tholeiitischen Intraplattenvulkanismus liegen (Abb. 28). Die Sedimente des Lama Sees plotten in dasselbe Feld, zeigen aber eine größere Streuung als die einzelnen Lavadecken. Im wesentlichen decken sie die Felder der Tuklonsky- (tk), Nadezhdinsky-(nd), Morongovsky- (mr), Mokulaevsky- (mk), Kharaylakhsky- (hr), Kumginsky- (km) und Samoedsky-Suite (sm) ab. Dies entspricht den oberen Vulkaniten und nach der Klassifikation von Naldrett et al. (1995) den Assoziationen IIa und IIb (vgl. Abb. 3 und Kap. 1.1.3.1; Anhang: Tab. A-3). Die mittlere Sedimentzusammensetzung liegt dem Nadezhdinsky- (nd), Morongovsky- (mr) und Kumginsky-(km) Typ am nächsten.

Abb. 28: 2Nb-Zr/4-Y Diskriminierungsdiagramm nach Meschede (1986). Sowohl alle Schichten der kontinentalen Flutbasalte, als auch die Sedimente des Lama Sees plotten in das Feld des Intraplattenvulkanismus. Vulkanitgruppen nach Naldrett et al. (1995): Ia: Ivakinsky (iv), Syverminsky (sv), Gudchinsky (gd); Khakanchansky (hk); IIa: Tuklonsky (tk), Nadezhdinsky (nd); IIb: Morongovsky (mr), Mokulaevsky (mk), Kharaylakhsky (hr), Kumginsky (km) und Samoedsky (sm).

Im ε_{Sr} -Ti/Y-Diagramm fallen alle vier Sedimentproben aus verschiedenen Tiefen der Kernsequenz PG1111 in das Feld der Nadezhdinsky (nd) - Suite (Abb. 29).

Abb. 29: Im \mathcal{E}_{Sr} -Ti/Y-Diagramm liegt das Lamaseesediment im Feld der Nadezhdinsky (nd) -Suite.Vulkanitgruppen nach Naldrett et al. (1995): Ia: Ivakinsky (iv), Syverminsky (sv), Gudchinsky (gd); Khakanchansky (hk); IIa: Tuklonsky (tk), Nadezhdinsky (nd); IIb: Morongovsky (mr), Mokulaevsky (mk), Kharaylakhsky (hr), Kumginsky (km) und Samoedsky (sm).

Aus beiden Diagrammen und der geologischen Rahmensituation (Kap. 1.1.3) läßt sich folgendes ableiten:

1. Der Sedimenteintrag in den Lama See wird im wesentlichen durch die kontinentalen Flutbasalte bestimmt.

2. Der mittlere Teil der basaltischen Abfolge (nach Naldrett et al. (1995) Formation IIa) besitzt den größten Einfluß auf die geochemische Zusammsetzung des Lamaseesedimentes, die im Einzugsgebiet des Lama Sees eine Mächtigkeit von 200 bis 700 m (Naldrett et al. 1992) hat.

3. Sr-Isotopenverhältnisse aus vier verschiedenen Tiefen der Sedimentsequenz PG1111 signalisieren, daß seit dem Spätspleistozän keine grundlegenden Liefergebietswechsel stattfanden, die Einfluß auf die geochemische Variabilität des Gesamtsedimentes gehabt haben könnten.

4.1.2 Transport

Im Einzugsgebiet des Lama Sees werden von Harwart et al. (1999) im Zeitraum von der Ältesten Dryas bis heute drei verschiedene Sedimenttransportarten beschrieben:

Während der frühen Ältesten Dryas dominiert die glaziale Erosion und bewirkt den Eintrag von Ton mit Einschaltungen aus Grobsand, Kies und Karbonaten (Kap. 1.1.5). Die grobkörnigen Einschaltungen werden vermutlich durch den Eisrandkontakt des

Lama Sees und den Transport von Gesteinsbruchstücken mit Eisblöcken verursacht (Harwart et al. 1999). Gleichzeitig werden die an der Küstenlinie des Lama Sees anstehenden kambrischen Karbonate erodiert und im See abgelagert (vgl. Abb. 3 und 7).

Der Zeitraum von der späteren Ältesten Dryas bis zum Allerød ist durch den Rückzug der Gletscher und durch glazio-fluviatilen Sedimenttransport bestimmt (Harwart et al. 1999; vgl. Abb. 7). Das Sediment ist weiterhin durch hohen minerogenen Eintrag und durch Laminierung mit Mächtigkeiten der Laminae zwischen < 1mm und 10 mm charakterisiert. Sand- und Kiesanteile sowie Karbonate werden jedoch nicht mehr abgelagert. Die Laminierung wird aus gradierten Silt-Ton-Sequenzen gebildet, die möglichereise Jahreslagen darstellen. Die gröberen Anteile repräsentieren Schmelzwasserereignisse, die feinen Anteile Stagnationsphasen während des Sommers und Winters (Brodzikowski & Van Loon 1987; Johnson 1997; Simola & Uimonen-Simola 1983). Ab dem Bølling verringert sich die Mächtigkeit der Laminae auf < 1mm (vgl. Abb. 15). Dies spiegelt geringere Sedimentationsraten und eine zunehmende Entfernung des Gletschers wider (Brodzikowski & Van Loon 1987; Leonard 1986).

Abb. 30: Durchschnittliche relative Anteile der Haupt- (A) und Spurenelemente (B) in der > 63 μ m-, 63 - 2 μ m- und < 2 μ m - Fraktion nach der Normierung auf 100 % (n = 4).

Während des Allerøds verschwinden die Gletscher aus dem Einzugsgebiet des Lama Sees und fluviatiler Sedimenttransport wird zur dominanten Transportart (Harwart et al. 1999). Das Lamaseesediment zeigt keine Laminierung mehr, der Eintrag an organischer Substanz nimmt zu (TOC steigt von ca. 0.2 auf 0.7 Gew.%) und der Siltanteil steigt von durchschnittlich 20 auf 50 Gew.% (Abb. 14). Parallel geht in der Gesamtmineralogie der Anteil an Tonmineralen (Smektit, Kaolinit und Illit) zurück und der Anteil der Silikate (Plagioklas, K-Feldspat, Augit und Quarz) steigt (Abb. 18).

Korngrößenabhängige Variationen von Haupt- und Spurenelementen sind durch die Bestimmung der geochemischen Zusammensetzung der $< 2 \ \mu m$ -, 2 - 63 μm - und $> 63 \ \mu m$ - Fraktion gezeigt worden (Kap. 3.2.4.3) und in Abb. 30 quantifiziert.

Entsprechend der Quantifizierung in Abb. 30 nimmt die Bindung der Haupt- und Spurenelemente an die verschiedenen Fraktionen in folgender Reihenfolge ab:

Sand (> 63 μm): Ca > Na > Ti > Al $\approx Mn > Mg \approx K > P > Fe$ Zn > Ba > Cu > Sr > Co $\approx V > Ni$

Silt (63 - 2 μm): Ti > Ca > Na > Al > K > Mn > Mg > Fe > P V > Sr > Ba > Ni > Co $\approx Zn > Cu$

Ton (< 2 μ m): Fe $\approx P > Mg > Mn > K > Al > Ti \approx Na > Ca$ Cu > Ni > Co > Zn > Ba \approx Sr $\approx V$

Betrachtet man die Entwicklung des Gesamtchemismus in PG1111, indem die Faktorwerte von Faktor $1_{\text{HEges/Al}}$ und Faktor $3_{\text{HEges/Al}}$ (Kap. 3.2.4.1) in einem XY-Diagramm dargestellt werden, so läßt sich eine Dreiteilung der Sedimentabfolge PG1111, die im wesentlichen die oben beschriebenen Korngrößen widerspiegelt (Abb. 31), vornehmen:

Gruppe 1 umfaßt den Zeitraum der frühen Ältesten Dryas und spiegelt den Eintrag der an die > 63 μ m - Fraktion gebundenen Elemente Kalzium und Natrium (Plagioklas) wider und wird als `Sandfaktor' bezeichnet.

Gruppe 2 zeigt eine Dominanz der an die <2 μ m - Fraktion gebundenen Elemente Eisen und Magnesium (Smektite) und wird als 'Tonfaktor' bezeichnet. Gruppe 2 umfaßt den Zeitraum der Ältesten Dryas bis zum Allerød.

Gruppe 3 ist charakterisiert durch die Elemente Titan, Natrium, Silizium, Kalzium, Kalium und Mangan (Plagioklas, Klinopyroxen, Titanit, (K-Feldspat)) die im wesentlichen an die 2 - 63 μ m - Fraktion gebunden sind. Die Gruppe 3 wird als 'Siltfaktor' bezeichnet. Sie repräsentiert den Zeitraum vom Allerød bis heute.

In Abb. 32 sind analog zur Hauptelementverteilung die Faktorwerte von Faktor $1_{SEges,/Al}$ und Faktor $2_{SEges,/Al}$ der Spurenelemente in einem XY-Diagramm dargestellt.

Einflußfuktoren auf die Geochemie des Lamaseesedimentes

Abb. 31: XY-Diagramm der Faktorwerte von Faktor $1_{HEges./Al}$ und Faktor $3_{HEges./Al}$ (Hauptelemente). Die drei Gruppen spiegeln die Korngrößenwechsel in der Kernsequenz PG1111 wider.

Abb. 32: XY-Diagramm der Faktorwerte von Faktor $1_{SEges:Al}$ und Faktor $2_{SEges:Al}$ (Spurenelemente).

Eine Gruppeneinteilung, die auf korngrößenabhängige geochemische Variationen zurückzuführen ist, kann auf der Basis der Spurenelementverteilung nicht eindeutig klassifiziert werden. Im linken unteren Quadranten (Älteste Dryas bis Allerød) dominieren die Elemente Cobalt und Kupfer, die im wesentlichen an die < 2 μ m - Fraktion gebunden sind. Die drei restlichen Quadranten (Allerød bis heute) zeigen

Elemente, die vorwiegend an die 2 - 63 µm- - Fraktion gebunden sind, sich jedoch durch unterschiedliche Anteile verschiedener Spurenelemente auszeichnen. Die Dominanz von Barium, Strontium und Vanadium (beide obere Quandranten) deuten einen verstärkten Eintrag von Plagioklas und K-Feldspat an, die Elemente Zirkon, Yttrium und Zink (beide rechte Quadranten) weisen dagegen auf einen verstärkten Eintrag von Pyroxenen (Tab. 15).

Tab.15:Durch unterschiedliche Umweltsituationen und Sedimentransportarten imEinzugsgebiet des Lama Sees bedingte Sedimentstruktur, Geochemie und Mineralogie in derKernsequenz PG1111.

Umweltsituation	Transportart	Sedimentstruktur	Hauptgeochemie	Hauptmineralogie
Eisrandkontakt (frühe Älteste Dryas)	glazial	(Silt-)Tonmatrix, mm-Laminierung,	Fe, Mg, Co, Cu	Smektit
		Grobsand, Kiesel Gesteinsbruchstücke	Ca, (Na), V, Ba, Sr	Plagioklas
Rückzugsphase der Gletscher (Älteste Dryas - Allerød)	glazio-fluviatil	(Silt-) Ton matrix, mm-Laminierung	Fe, Mg, Cu, Co	Smektit
Gletscher befinden sich außerhalb des Einzugsgebietes (Allerød - heute)	fluviatil	(Ton-) Silt matrix	Ti, Na, Si (Ca, K, Mn), Zr, Y, Zn, Sr, V, Ba, Cr, (Nb)	Plagioklas, Klinopyroxen, Titanit, K-Feldspat

Neben dem Einfluß der Korngröße scheinen die Konzentrationen von Kalzium, Kalium, Mangan, Phosphor und Nickel durch zusätzliche Prozesse beeinflußt zu sein: Nickel ist trotz nachgewiesener bevorzugter Bindung an die $< 2 \mu m$ - Fraktion in der 2 -63 μm - Fraktion leicht angereichert, Kalzium ist trotz bevorzugter Bindung an die 2 -63 μm - Fraktion nur mäßig in der Siltfraktion konzentriert (Abb. 31). Kalium, Mangan und Phosphor zeigen keine oder nur untergeordnete korngößenabhängige Schwankungen (vgl. Kap. 4.1.3 und 4.1.4).

Aus den oben diskutierten korngrößenabhängigen geochemischen Variationen läßt sich ableiten:

1. Der Wechsel von glazialem zu glazio-fluviatilem sowie von glazio-fluviatilem zu fluviatilem Transport und die damit verbunden Änderungen im Korngrößenspektrum des Seesedimentes beeinflussen die geochemische und mineralogische Zusammensetzung des Lamaseesedimentes entscheidend.

2. Insgesamt 40.0 % der gesamten Datenvarianz der Hauptelemente (Faktor1_{HEges/AI}) und 66.3 % der gesamten Datenvarianz der Spurenelemente (Faktor1_{SEges/AI}) und Faktor2_{SEges/AI}) beschreiben den Wechsel von glazio-fluviatilem zu fluviatilem Transport im Allerød.

3. 25.9 % der gesamten Datenvarianz der Hauptelemente (Faktor3_{HEges./AI}) erfassen den Wechsel von glazialem zu glazio-fluviatilem Transport.

4. Kalium, Kalzium, Nickel, Phosphor und Mangan unterliegen geochemischen Schwankungen, die nicht ausschließlich durch korngrößenabhängige Variationen erklärt

werden können. Sie werden in den folgenden Kapiteln diagenetischen Prozessen und adsorptiven Bindungen an Kationenaustauscher (z.B. Tonminerale und Huminstoffe) zugeordnet.

4.1.3 Diagenese

Gehalte an Eisen, Mangan und Phosphor im Seesediment werden von diagenetischen Prozessen beeinflußt, die von Redox- und pH-Bedingungen im Sediment und in der Wassersäule gesteuert werden (Aller 1994; Balistrieri et al. 1992; Mortimer 1971; Young & Harvey 1992). Reduzierende und saure Bedingungen bewirken im allgemeinen eine verstärkte Lösung dieser Elemente.

Der Eintrag von Eisen und Mangan in Gewässer erfolgt in der Regel in partikulärer Form (Oxide, Hydroxide, Minerale). Lösliche Formen des Eisens und Mangans sind auf Bereiche mit einer Sauerstoffsättigung unter 50 %, mit zersetzbarem organischen Material, mit hohem Gehalt an freiem CO₂ und mit pH-Werten unter 7.5 beschränkt (z.B. Grundwasser, Hypolimnion des Sees) (Schwoerbel 1993). Der Eintrag natürlichen Phosphors in Gewässer ist meist limitiert und liegt als anorganisch (Orthophosphat) und organisch gelöstes Phosphat sowie als organisches (z.B. Organismen und Detritus) und anorganisches (z.B. Apatit) partikuläres Phosphat vor.

Nach der Ablagerung bestimmen im wesentlichen die Redox-Bedingungen und pH-Werte des Sedimentes die Mobilität der Eisen-, Mangan- und Phosphorverbindungen. Existiert z.B. in Oberflächensedimenten gelöster Sauerstoff, diffundieren reduzierte mobile Phasen des Eisens und Mangans aus tieferen Sedimentbereichen nach oben und fallen im Oxidationshorizont als Oxide aus (Kephkay 1985; McKee et al. 1989). Liegen reduzierende Bedingungen im Oberflächensediment und in der überlagernden Wassersäule vor, diffundieren reduzierte, mobile Phasen in das Wasser; das Sediment erfährt einen Verlust des entsprechenden Elementes. Phophor ist häufig durch die Adsorption an Sedimentpartikel im Sediment fixiert (vorwiegend an Mangan- und Eisen-Oxide/Hydroxide), die ebenfalls von Redoxbedingungen gesteuert wird (Mortimer 1971; Schwoerbel 1993).

Der Sauerstoffgehalt im Sediment und im Wasser ist abhängig von der Temperatur des Wassers und vom Gehalt an organischer Substanz, da für deren Abbau Sauerstoff benötigt wird. Eisen- und Mangan-Oxide/Hydroxide dienen dabei häufig als Sauerstofflieferanten. Unter diesen Bedingungen wechselt das Milieu häufig zwischen oxisch, suboxisch und anoxisch. Mangan und Phosphor reagieren schnell auf Milieuänderungen und können bereits unter suboxischen Bedingungen gelöst und teilweise explosionsartig freigesetzt werden (Aller 1994; Balistrieri et al. 1992; Schwoerbel 1993).

Der Lama See ist heute ein leicht alkalischer, oligotropher, polar-monomiktischer bis subpolar-dimiktischer See mit geringer Sauerstoffzehrung (Kienel 1999; Abb. 13). Die hellen Sedimentfarben und geochemische Untersuchungen belegen oxische Bedingungen in den obersten Zentimetern der Sedimentsequenz PG1111 (12 - 13 mg/l O_2 bis zum Seeboden; Abb. 13 und 33). Die Anreicherung an MnO in einer Tiefe von 6.0 bis 7.5 cm wird als Manganausfällung im Oxidationshorizont interpretiert (Hagedorn et al. 1999; Abb. 33). Die Konzentrationsentwicklungen von Phosphor und Eisen sind wesentlich konstanter als die von Mangan. Die geringen Anreicherungen in ca. 3 cm Tiefe für Phosphor und in ca. 9 cm Tiefe für Eisen können zum Manganoxid analoge Ausfällungshorizonte darstellen und die unterschiedlichen Löslichkeiten in Bezug auf Redoxbedingungen widerspiegeln.

Abb. 33: Phosphor-, Mangan-, Eisen- und TOC-Verteilung in den obersten 17 cm der Sedimentsequent PG1111.

Vom Spätpleistozän bis heute unterliegen Mangan und Phosphor in der Sedimentsequenz PG1111 Schwankungen, die, wie die Ergebnisse der Hauptkomponentenanalyse_{HEges.+HEGes./Al} (Faktor $3_{HEges.}$ und Fakor $2_{HEges./Al}$; Abb. 19 und 20) belegen, parallel und unabhängig von der Konzentrationsentwicklung der anderen Hauptelemente verlaufen (Kap. 3.2.4.1). Wie in Kap. 4.1.2. dargestellt, wird der Eintrag an Phosphor und Mangan nicht durch die Korngrößenzusammensetzung des Sedimentes bestimmt.

Während der Ältesten Dryas sowie vom mittleren Allerød bis zum Ende des Boreals (P_2O_5 : = 0.2 Gew.%; MnO: = 1.5 Gew.%) verringern sich die Konzentrationen von Mangan und Phosphor im Gesamtsediment in Relation zu den dazwischen liegenden Zeiten (P_2O_5 : = 0.2 Gew.%; MnO: = 1.5 Gew.%; Bølling bis mittleres Allerød sowie Atlantikum bis heute; Abb. 19 und 20).

Parallel zur Konzentrationsverringerung bei Mangan und Phosphor im Zeitintervall Allerød - Boreal steigt der Gehalt an organischem Kohlenstoff (TOC) im Sediment deutlich an (0.5 - 0,9 Gew.%; Harwart 1999; Abb. 34). Dies führte möglicherweise zu einem erhöhten Sauerstoffverzehr und reduzierenden Bedingungen im Sediment und in der Wassersäule, sodaß sich die Redoxgrenze aus dem Sediment in die Wassersäule verschob und Mangan und Phosphor aus dem Sediment in die Wassersäule diffundierten. Eine Mobilisierung des Eisens wurde jedoch nicht erreicht (Abb. 34). Eine Mangan- und Phosphormobilisierung aufgrund von sauren Milieubedingungen kann ausgeschlossen werden, da Diatomeenvergesellschaftungen den pH-Bereich auf 7 bis 8.5 festlegen (Kienel 1999).

Abb. 34: A: Phosphor-Mangan-TOC-Entwicklung von der Ältesten Dryas bis heute in der Kernsequenz PG1111. Die Mangan-Phosphor-Variationen werden im wesentlichen durch diagenetische Prozesse im Sediment und an Land gesteuert (s. Text).

B: Stabilitätsdiagramm für Eisen- und Manganverbindungen in Abhängigkeit von Redoxpontential, pH-Wert und Ionenaktivitäten von 10-5 mol/I unter Standardbedingungen (105Pa, 25°C). Der Pfeil zeigt die mögliche Entwicklung von oxischen (Bølling bis Allerød) zu reduzierenden Bedingungen (Allerød - Atlantikum), die zur Freisetzung des Mangans und des Phosphors aus dem Sediment führten. Der Bereich des pH-Wertes ist aufgrund von Diatomeenvergesellschaften auf einen Bereich von von ≥ 7 und ≤ 8.5 beschränkt (Kienel, U. 1999).

Einflußfaktoren auf die Geochemie des Lamaseesedimentes

Die Verarmung an Mangan und Phosphor während der Ältesten Dryas könnte durch verminderte Sauerstoffzufuhr, die durch eine ganzjährge Eisbedeckungen, wie sie bereits in Harwart et al. (1999) diskutiert wird, und den entsprechend reduzierenden Bedingungen im Sediment verursacht worden sein (Mortimer 1971). Dagegen spricht jedoch die mit Schmelzereignissen verbundene Frischwasserzufuhr und der geringe Sauerstoffverzehr durch verringerte biologische Produktion. Wahrscheinlicher ist, daß die Verarmung von Mangan und Phosphor auf die verminderte Zufuhr sowohl in gelöster als auch in partikulärer Form beider Elemente aufgrund geringer Bodenbildungs- und Lösungsprozesse an Land zurückzuführen ist (Schachtschabel et al. 1989).

Nickel und Chrom bilden bei der Hauptkomponentenanalyse einen eigenständigen Faktor (Faktor 3 _{SEges. + SEges./Al}), der möglicherweise auf eine diagenetische Überprägung hinweist (Abb. 21 und 22). Beide Elemente sind vom Allerød bis heute im Lamaseesediment leicht angereichert.

Der Einfluß der Diagenese auf Schwermetalle in Seesedimenten ist nur in Ansätzen untersucht. Untersuchungen an Oberflächensedimenten in Seen und im marinen Bereich zeigen eine Abhängigkeit der Mobilität von Nickel, Kupfer, Cadmium und Zink von Eh-Bedingungen und pH-Werten (Carignan & Nriagu 1985; Westerlund et al. 1986). Niedrige pH-Werte sowie oxische Bedingungen erhöhen hier die Mobilität der Schwermetalle. Durch die Bildung von Sulfiden wird im anoxischen Milieu die Mobilität von Schwermetallen (z.B. Cu, Ni) herabgesetzt (Carignan & Nriagu 1985). Der Eintrag organischer Substanz hat dabei wesentlichen Einfluß auf die Sauerstoffverhältnisse im Sediment (s.o.).

Erhöhte Schwermetallkonzentrationen können ebenfalls bei entsprechender Landvegetation durch den erhöhten Eintrag metall-organischer Komplexe verursacht werden (Wolfe & Härtling 1997).

Entsprechend diesen Beobachtungen ist die Anreicherung von Chrom und Nickel unter Umständen auf reduzierende Bedingungen und auf die Bildung von Sulfiden zurückzuführen. In diesem Fall würde der Nickel- und Chrompeak im Boreal (Abb. 21 und 22) eine maximale Sulfatreduzierung und eine maximale Eutrophierung des Lama Sees widerspiegeln. Weiterhin kann der Eintrag metall-organischer Komplexe seit dem Allerød die Konzentration dieser Elemente erhöht haben.

Um jedoch genaue Aussagen über die Ursachen der Anreicherung bzw. Verarmung der hier diskutierten Elemente machen zu können, müßten zusätzliche Untersuchungen wie z.B. Bindungsformen, Konzentrationen in den Porenwässern und Eh-pH-Bestimmungen durchgeführt werden.

Basierend auf der Diskussion werden folgende Aussagen festgehalten:

1. Die Variationen von Phosphor und Mangan im Lamaseesediment werden von diagentischen Prozessen gesteuert und sind im wesentlichen von den Eh-Bedingungen im Sediment und im Wasserkörper sowie vom Eintrag gelösten und partikulären Phosphors und Mangans abhängig.

2. 25.9 % der gesamten Datenvarianz der Hauptelemente (Faktor $2_{\text{HEges}/\text{Al}}$) repräsentieren möglicherweise diagentische Prozesse im Lamaseesediment.

3. Abgelagerte organische Substanz hat vermutlich großen Einfluß auf die Eh-Bedingungen im Lamaseesediment. Höchste Konzentrationen verursachen eine verstärkte Mobilisierung von Mangan und Phosphor vom Allerød bis zum Boreal.

4. Der Eintrag von gelöstem und partikulärem Phosphor und Mangan ist an chemische Verwitterungsprozesse an Land gebunden (Schachtschabel et al. 1989). Diese Bedingungen sind im Einzugsgebiet des Lama Sees seit dem Bølling gegeben.

5. Die Anreicherung von Chrom und Nickel vom Allerød bis heute spiegelt möglicherweise diagentische Prozesse wider und ist auf reduzierende Bedingungen und auf die Bildung von Sulfiden zurückzuführen. In diesem Fall reflektieren 10.9 % der gesamten Datenvarianz der Spurenelemente (Faktor $3_{SEges./Al}$) diagenetische Prozesse im Seesediment.

4.1.4 Verwitterung

Hauptlieferant des Lamaseesedimentes ist die Basaltassoziation IIa der Flutbasaltabfolge im Einzugsgebiet des Lama Sees (Kap. 4.1.1).

Eine Normierung der geochemischen Zusammensetzung des Sedimentes auf die Ausgangszusammensetzung (Liefergebiet) führt zu einer deutlichen Anreicherung der Elemente Eisen, Kalium, Phosphor, Kupfer, Niob, Nickel und Yttrium, und zu einer geringen Anreicherung von Cobalt, Zink und Zirkon sowie zu einer Verarmung der Elemente Magnesium, Kalzium, Natrium, Barium und Chrom (Abb. 35); Titan, Strontium und Vanadium sind im oberen Teilbereich der Sedimentsequenz (735 - 0 cm) leicht angereichert und im unteren Abschnitt (1112 - 735cm) geringfügig verarmt. Silizium sowie Titan und Mangan haben für den unteren Kernabschnitt (1112 - 735 cm) im Sediment und Ausgangsgestein gleiche Anteile. Allgemein kann festgehalten werden, daß sich die Verarmungs- bzw. Anreicherungstrends im oberen Kernabschnitt (735 - 0 cm) für alle Elemente verstärken.

Abb. 35: Anreicherung bzw. Verarmung von Haupt-, Neben- und Spurenelementen in verschiedenen Tiefen der Sedimentsequenz PG1111 (1112 - 950 cm, 1112 - 735 cm und 735 - 0 cm) bezogen auf das Liefergebiet (Vulkanitformation IIa).

Einflußfaktoren auf die Geochemie des Lamaseesedimentes

Abb. 36: Variationen in der geochemischen und mineralogischen Zusammensetzung eines Gneises (Morton-Redwood Falls, Minnesota) mit zunehmender Verwitterung; modifiziert nach Goldich (1938). Stellvertretend für das unverwitterte Ausgangsgestein im Einzugsgebiet des Lama Sees sind die mittlere Hauptelementzusammensetzung [Gew.%] der Vulkanitformation IIa (CFB_{frisch}) sowie für das verwitterte Edukt die mittlere Hauptelementzusammensetzung [Gew.%] des Lamaseesedimentes eingetragen. Analog zur Verwitterungsstudie sind Kalzium, Magnesium und Natrium gegenüber dem Ausgangsgestein im Sediment deutlich verarmt, Eisen, Kalium und Titan dagegen angereichert.

Verwitterungsstudien an magmatischen Gesteinen belegen, daß mit zunehmender chemischer Verwitterung die Konzentrationen von Natrium, Kalzium, Magnesium und Silizium im Gestein kontinuierlich abnehmen, während Kalium, Eisen, Aluminium und

Einflußfaktoren auf die Geochemie des Lamaseesedimentes

Wasser in ihren Konzentrationen ansteigen (Faure 1991; Goldich 1938; Nesbitt et al. 1997; Abb. 36). Plagioklas verwittert vor K-Feldspat und verursacht eine relative Anreicherung von Kalium. Magnetit und Ilmenit sind gegenüber Verwitterungseinflüssen resistent, sodaß sich Titan im Gestein kontinuierlich anreichert.

Analog zu den oben genannten Verwitterungsstudien sind Kalzium, Magnesium und Natrium gegenüber dem Ausgangsgestein (Flutbasalte im Einzugsgebiet) im Sediment deutlich verarmt, Eisen, Kalium und Titan dagegen angereichert; Aluminum bleibt nahezu konstant. Für die mineralogische Zusammensetzung des Lamaseesedimentes bedeutet dies vermutlich eine relative Anreicherung von Kalifeldspat und Magnetit (Abb. 36). Die Anreicherung von Kalium im Seesediment kann neben der Resistenz von K-Feldspat gegenüber der chemischen Verwitterung auch auf die gegenüber anderen gelösten Kationen bevorzugte Adsorption des Kaliums an Tonminerale oder Huminstoffe zurückgeführt werden. Beim Prozeß des Kationenaustauschs mit H⁺-Ionen reichert sich Kalium in der Feinsubstanz an, da es an Smektiten, Vermikuliten und Illiten besonders stark fixiert wird (Schachtschabel et al. 1989).

Tab. 16: a: Mineralphasen und deren Mineralchemie im Basalt (linke Spalte) und im Lamaseesediment (rechte Spalte). Die Minerale in den Vulkaniten sind in ihrer Häufigkeit, die des Lamaseesediments in ihrer relativen Anreicherung gegenüber dem Ausgangsgestein, von oben nach unten abnehmend, dargestellt. Eine ansteigende Linie bedeutet, daß sich die Mineralphase im Sediment anreichert, eine fallende Linie eine entsprechende Verarmung. b: sekundäre Mineralneubildungen der Basalte und im Sediment, die möglicherweise ein

D: sekunaare Mineraineubilaungen der Basaite und im Sediment, die moglicherweise ein Anreichern der angegebenen Elemente im Sediment bewirken.

	a: pr	imärer M	ineralbest	and	
Mineralzusammens	etzung Basalt,	nverwittert	rel. Min	eralanreichun dem Ba	ng im Sediment gegenüber asalt _{unverwittert}
Mineralchemie	Minerale			Minerale	Mineralchemie
(Na,Ca)[Al(Si,Al)Si ₂ O ₈]	Plagioklas	_	×	K-Feldspat,	K[AlSi ₃ O ₈]
Ca(<u>Mg,Fe</u> ,Al,Ti)(Si,Al) ₂ O ₆	Augit		A	Ti-Magnetit	Fe(Fe,Ti) ₂ O ₄
Fe(Fe,Ti)₂O₄	Ti-Magnetit	\rightarrow		Apatit ??	Ca ₅ (F,Cl,OH)/(PO ₄) ₃]
K[AlSi ₃ O ₈]	K-Feldspat	/ /	$\times \checkmark$	Plagioklas	(Na,Ca)[Al(Si,Al)Si ₂ O ₈]
Ca ₅ (F,Cl,OH)/(PO ₄) ₃]	Apatit			Augit	Ca(<u>Mg,Fe</u> ,Al,Ti)(Si,Al) ₂ O ₆

	b: sekundäre M	lineralneubildungen	
Verwitterungs- un Umwandlungspro	d hydrothermale dukte des Basalts	diagenetische Neubilo	lungen im Seesediment
Mineralchemie	Minerale	Minerale	Mineralchemie
Al ₂ [(OH) ₈ /SI ₄ O ₁₀]	Kaolinit	Fe-Sulfide, Fe-,Mn- Oxid/Hydroxide, Phosphate	Fe(III)-,Mn(IV)- Oxide/Hydoxide, z.B.FePO₄, FeS
z.B. (Ca,Na)(Al,Mg,Fe) ₂ Si ₄ O ₁₀ (OH) ₂ xH ₂ O	Smekit		
K(Al,Fe,Mg) ₂ (Si,Al) ₄ O ₁₀ (OH) ₂	Illit		

Einflußfaktoren auf die Geochemie des Lamaseesedimentes

Basierend auf der mineralogischen Zusammensetzung des Lamaseesedimentes (Nowaczyk et .al. subm.) und Kap. 3.2.3) und auf Literaturangaben (Lightfoot et al. 1993; Lightfoot et al. 1990; Wooden et al. 1993; Zolotukhin & Mukhamedov 1988) sind in Tab. 16 Hauptelemente verschiedenen Mineralphasen zugeordnet und in ihrer Häufigkeit von oben nach unten angeordnet worden.

Die Anordnung stützt sich für die Basalte auf Literaturangaben, für das Lamaseesediment auf die relative geochemische Anreicherung von Hauptelementen gegenüber den Basalten. Hiernach reichern sich im Lamaseesediment gegenüber dem Ausgangsgestein K-Feldspat und Magnetit relativ an, Plagioklas und Pyroxen dagegen sind im Sediment relativ verarmt. Sekundäre Mineralneubildungen (Verwitterungsprodukte der Basalte) sind Smektit, Kaolinit und Illit sowie diagenetische postsedimentäre Umwandlungsprodukte wie Sulfide und Oxide/Hydroxide. Smektit ist außerdem ein typisches hydrothermales Umwandlungprodukt von Vulkaniten (Jasmund 1993).

Die bevorzugte Lösung von Magnesium, Kalzium und Natrium und die Immobilität von Kalium wird durch die geochemische Zusammensetzung des heutigen Seeswassers bestätigt, in dem Magnesium, Kalzium und Natrium in gelöster Form vorkommen. Kalium dagegen ist im Seewasser nicht meßbar (Abb. 13). Im CaO-Na₂O-K₂O-Dreiecksdiagramm liegen daher die unverwitterten Basalte (CFB_{frisch}) in etwa zwischen dem Lamaseesediment, das gegenüber Basalt und Seewasser an Kalium angereichert ist, und dem Seewasser (Abb. 37).

Abb. 37: Vergleich der geochemischen Zusammensetzung des unverwitterterten Ausgangsgesteins (CFB_{unverwittert} = durchschnittliche Zusammensetzung von Assoziation IIa), des Lamaseesedimentes und des Seewassers im CaO-Na₂O-K₂O-Dreicksdiagramm. Aufgrund der chemischen Verwitterung gehen Kalzium und Natrium aus CFB_{unverwittert} in Lösung, sodaß sich Kalium im Lamaseesediment gegenüber Basalt und Seewasser anreichert. Es repräsentiert das Verwitterungsprodukt von CFB_{unverwittert}.

Aus den in diesem Kapitel aufgeführten Beobachtungen werden folgende Schlußfolgerungen gezogen:

1. Der Einfluß einer chemischen Verwitterung im Einzugsgebiet des Lama Sees vor der Vergletscherung im Spätweichsel ist in der gesamten Sedimentsequenz PG1111 zu erkennen. Sie führt gegenüber dem Ausgangsgestein (CFB) zu einer relativen Verarmung an Kalzium, Magnesium und Natrium sowie zu einer relativen Anreicherung von Kalium, Titan und Eisen im Lamaseesediment.

2. Kaolinit, Smektit und Illit sind Verwitterungsprodukte der Basalte und sind möglicherweise u.a. Verwitterungsrelikte früherer Warmzeiten.

3. Die Anreicherungs- bzw. Verarmungstrends im Lamaseesediment sind seit dem Allerød verstärkt ausgeprägt und deuten eine Intensivierung der Verwitterung nach dem Rückzug der Gletscher an der Pleistozän/Holozän-Grenze an.

4.1.4 Verwitterung nach dem Rückzug der Spätweichselgletscher

In diesem Kapitel soll anhand der geochemischen Variationen in der Kernsequenz PG1111 gezeigt werden, welchen Einfluß unterschiedliche Umweltbedingungen seit der Ältesten Dryas auf die Entwicklung der chemischen Verwitterung im Einzugsgebiet des Lama Sees hatten. Ausgangsgestein sind Basalte, die bereits durch eine tiefgreifende, vorweichseleiszeitliche chemische Verwitterung und durch hydrothermale Überprägung charakterisiert sind (Kap. 4.1.4). Geochemische Variationen des Sedimentes werden bezüglich einer neu einsetzenden Verwitterung der Basalte im Einzugsgebiet nach dem Rückzug der Spätweichselgletscher diskutiert.

Rasterelektronische Aufnahmen des Gesamtsedimentes aus der Kernsequenz PG1111 zeigen, daß Partikel, die während der Ältesten Dryas durch glaziale Erosion in den Lama See transportiert wurden, eine glatte Oberfläche und scharfe Kanten haben (Abb. 38). Partikel, die durch fluviatile Wässer während des Allerøds und der Jüngeren Dryas in den See eingebracht wurden, zeigen dagegen abgeschliffene Kanten und eine blättrige Oberflächenstruktur, die möglicherweise auf das Anlösen von Mineralen als Folge der chemischen Verwitterung von Basalten im Einzugsgebiet zurückzuführen sind.

Um Variationen in der Abfuhr bzw. Fixierung von Elementen in unterschiedlichen Korngrößen verschiedenen Zeiten abzuschätzen, wurden die zu Hauptelementkonzentrationen der 2 - 63 μ m - und < 2 μ m - Fraktionen aus den Horizonten 728 - 738 cm, 653 - 663 cm und 488 - 499 cm auf die geochemische Zusammensetzung der Probe 864 - 874 cm (Probe(864-874)) normiert (Abb. 39). Dabei wird davon ausgegangen, daß Probe(864-874) ausschließlich die bereits vor der Spätweichsel entwickelte chemische Verwitterung des Einzugsgebietes reflektiert (Kap. 4.1.4). Relative Änderungen der Proben(728-738, 653-663, 488-499) werden durch die Abfuhr von Elementen erzeugt, die auf eine neu einsetzende chemische Verwitterung nach dem Rückzug der Spätweichselgletscher zurückgeführt wird. Grundlage dieser Modellvorstellung ist, daß sich chemische Verwitterung und physikalische Erosion im Gleichgewicht befinden, d.h. Verwitterungsprodukte der postglazialen Verwitterung werden durch Erosion abgetragen und ohne Zeitverzögerung in den See transportiert und abgelagert.

Da der Anteil der > 63 μ m - Fraktion bei < 1 Gew.% liegt und zufällige, prozeßunabhängige Änderungen einen großen Einfluß auf die geochemische Zusammensetzung haben, wurde auf eine Normierung der Grobfraktion verzichtet.

In den Horizonten 728 - 738 cm, 653 - 663 cm und 488 - 499 cm verarmt die $< 2\mu$ m - Fraktion relativ an Magnesium, Kalzium und Natrium und reichert sich relativ an Kalium, Phosphor und Mangan an (Abb. 39).

Verwitterung nach dem Rückzug der Spätweichselgletscher

Abb. 38: Rasterelektronische Aufnahmen des Gesamtsedimentes der Kernsequenz PG1111. Von unten nach oben sind folgende Tiefen abgebildet: ca. 1108 cm (Älteste Dryas), 731 cm (Allerød), 658 cm (Jüngere Dryas).

Die Verarmung bzw. Anreicherung ist in Horizont 653 - 663 cm (=Preboreal) am stärksten und in Horizont 488 - 498 cm (=Atlantikum) am schwächsten ausgeprägt und verdeutlicht unterschiedliche Verwitterungsintensitäten zu verschiedenen Zeiten.

Die Normierung der 2 - 63 μ m - Fraktion zeigt keine signifikanten Anreicherungen bzw. Verarmungen; die Siltfraktion scheint durch chemische Verwitterung nicht oder nur in sehr geringem Maß betroffen zu sein.

Abb. 39: Normierung der Hauptelementkonzentrationen in der $< 2 \mu m$ - Fraktion (A) und 2 -63 μm - Fraktion (B) aus verschiedenen Horizonten der Sedimentsequenz PG1111 auf Probe₈₆₄. 874, die ausschließlich die Verwitterung vor der Spätweichsel reflektiert. Die relativen Änderungen in der $< 2 \mu m$ - Fraktion werden auf erneutes Einsetzen einer chemischen Verwitterung nach dem Rückzug der Spätweichselgletscher zurückgeführt.

Um die Anreicherungen bzw. Verarmungen in der $< 2 \ \mu m$ – Fraktion (Korngößeneffekt wird ausgeschlossen!) für die gesamte Kernsequenz PG1111 quantifizieren zu können (vgl. Kap. 3.2.4.2), erfolgt eine Normierung der Hauptelemente sämtlicher $< 2 \ \mu m$ - Fraktionen auf den untersten Teil der Kernsequenz PG1111 (1112 - 950 cm), der durch glazialen Transport und Eisrandkontakt des Lama Sees charakterisiert ist (vgl. Kap. 1.1.5 und 4.1.2; Abb. 40).

Als Berechnungsgrundlage zur prozentualen Anreicherung bzw. Verarmung gegenüber Abschnitt₁₁₁₂. $_{950}$ dient folgende Verwitterungsformel nach Nesbitt et al. (1980):

$$\pm \text{chang}[b] = \frac{(R_s - R_p)}{R_p} \bullet 100 \ s = verwittertp = frisc.$$

Für die Tonfraktion der Kernsequenz PG1111 bedeutet dies entsprechend:

$$\pm \text{change}[\%] = \frac{\left(\frac{C_{is}}{Al_s} - \frac{C_{ip}}{Al_p}\right)}{\frac{C_{ip}}{Al_p}} \bullet 100 \quad c_i = Element$$

Wie in Kapitel 1.2 dargestellt, beinflussen Wassergehalt des Bodens und pH-Wert des Bodenwassers das Anlösen von Silikaten und die Mobilität von adsorptiv gebundenen Kationen in Böden entscheidend. Die Vegetation hat durch die Abgabe von CO₂, durch das beim Abbau organischer Substanz produzierte CO₂, durch die Auflockerung des Bodens durch Wurzeln und durch das Zurückhaltevermögen von Wasser dabei indirekt Einfluß auf beide Parameter. Die Vegetation im Einzugsgebiet des Lama Sees ist von der Ältesten Dryas bis zum Allerød durch eine arktische Tundra mit sehr kalten und trockenen Klimabedingungen gekennzeichnet (Kap. 1.1.4). Durch den Anstieg von Baumpollen (im wesentlichen durch Strauchbirken verursacht) kann eine Erwärmung während des Bøllings und Allerøds postuliert werden. Parallel zum Anstieg der Baumpollen im Sediment auf 50 % und zum Rückzug der Gletscher aus dem Einzugsgebiet des Lama Sees (Kap. 4.1.2) ist folgendes Mobilitätsverhalten der Hauptelemente zu beobachten (Abb. 40):

Während des Allerøds setzt in Relation zu Kernabschnitt 1112 - 950 cm und zum Aluminium eine deutliche Abfuhr von Magnesium und Kalzium (bis -60 %) sowie eine geringe Verarmung von Eisen, Phosphor und Mangan (bis -20 %) ein, die bis zum Beginn des Preboreals andauert. Natrium erfährt im Allerød zunächst eine Anreicherung (+50 %) und folgt dann dem Konzentrationsrückgang (-30 %) von Magnesium und Kalzium, unterbrochen durch eine Anreicherung an der Allerød/Jüngere Dryas Grenze (±0 %). Im Preboreal verringert sich die Abfuhr der oben genannten Elemente, erreicht jedoch nicht das Niveau der Ältesten Dryas. An der Subboreal/Subatlantik Grenze setzt erneut eine Abfuhr der Elemente Magnesium, Kalzium, Natrium und Eisen ein und erreicht den Zustand des Allerøds und der Jüngeren Dryas. Mangan und Phosphor bleiben vom Preboreal bis heute in der $< 2 \mu m$ - Fraktion angereichert (20 - 70 %; Abb. 40). Titan ist in Relation zu Aluminium seit dem Allerød geringfügig in der $< 2 \ \mu m$ -Fraktion angereichert (5 - 20 %). Kalium erhöht sich ebenfalls und erreicht seine maximale Anreicherung im Zeitraum Allerød - Preboreal (ca. 60 %; Abb. 40). Ab der Preboreal/Boreal Grenze bis zum Subatlantikum geht die Anreicherung von Kalium kontinuierlich zurück (von 60 auf ca. 5 %; Abb. 40).

Die Entwicklung von höheren Pflanzen ab dem Allerød und die damit verbundene Auflockerung des Bodens durch Wurzelaktivität und die Erhöhung der CO₂-Konzentration und des pH-Wertes der Bodenlösung haben vermutlich den größten Einfluß auf die Mobilität der Kationen und die chemische Lösung basaltischer Minerale.

Verwitterung nach dem Rückzug der Spätweichselgletscher

Der vollständige Rückzug der Gletscher, die freiliegende Geländeoberfläche sowie Temperaturerhöhungen unterstützen offenbar die Intensität der chemischen Verwitterung der sibirischen Flutbasalte. Die höchsten Aluminiumgehalte zeigen die größte Akkumulation von Tonmineralen innerhalb des Zeitraumes Allerød - Jüngere Dryas (Abb. 23). Smektit, Illit und Kaolinit (Al-haltige Verwitterungsprodukte der Basalte; Kap. 1.2 und 4.1.4 ; Abb. 18) besitzen eine hohe Kationenaustauschkapazität (KAK: 0.03 - 0.7 mval/g), die bei Erhöhung des pH-Wertes der umgebenden Bodenlösung insbesondere zur Lösung der mobilen Elemente Magnesium, Kalzium und Natrium führt, während Kalium in Kalium-spezifischen Positionen der Tonminerale fixiert ist und erst im späteren Stadium der chemischen Verwitterung (ab dem Boreal) gelöst wird. Die Anreicherung von Titan während des Allerøds und der Jüngeren Dryas kann auf die Verwitterung titanhaltiger Pyroxene zurückgeführt werden, die zur Anreicherung von verwitterungsresistenten Titanhydroxiden/Oxiden führt.

Die Weiterentwicklung zu einer dichten Pflanzendecke aus höheren Pflanzen während des Boreals bewirkt eine erneute Fixierung der Elemente Magnesium, Kalzium, Natrium und Eisen im Sediment (ca. um 10 %; Abb. 40). Möglicherweise führt eine dichte Pflanzendecke zu einem erhöhten Rückhaltevermögen und damit zur Übersättigung des Bodenwassers, die das Lösen von Elementen vermindert (Velbel 1993). Parallel kann die Abnahme der Drainage durch den Rückgang von Schneefeldern und den Schutz der Pflanzendecke die Kationenkonzentration der Bodenlösung erhöhen. Desweiteren kann eine dichte Pflanzendecke den Abtrag stark verwitterten Materials vermindern und die Erosion auf Bereiche geringer Verwitterungsintensität beschränken. Die kontinuierliche Lösung des Kaliumgehaltes spricht dagegen für ein Fortschreiten der chemischen Verwitterung, da Kalium mit zunehmendem pH-Wert verstärkt in Lösung geht.

Die Erhöhung der Niederschlagsintensität in der zweiten Hälfte des Boreals (Kap.1.1.4) verursacht keine erneute Mobilisierung der mobilen Kationen (Magnesium, Kalzium, Natrium) und scheint damit kaum Einfluß auf die Löslichkeit von Mineralen und adsorptiv gebundenen Kationen zu haben. Erst die Öffnung des Waldes und die Entwicklung zur Tundrenvegetation an der Subboreal - Subatlantikgrenze erhöht im basaltischen Ausgangsgestein erneut die Abfuhr der Elemente Magnesium, Kalzium und Natrium (Abb. 40) und bestätigt den Einfluß der Vegetation auf die Mobilität von Elementen.

Bei der Betrachtung der Konzentrationsentwicklung der Spurenelementen in der < 2 µm - Fraktion fällt auf, daß sich Barium parallel zu Kalium verhält und während der Zeitperiode Allerød - Jüngere Dryas durch molekulare Bindung an K-Feldspäte oder durch Adsorption an Kationenaustauscher in der Tonfraktion fixiert bleibt (Abb. 41). Kobalt und Nickel gehen möglicherweise parallel zu Magnesium und Kalzium in Lösung und werden vermutlich durch den Rückgang des pH-Wertes der Bodenlösung vom Allerød bis zur Jüngeren Dryas bis ca. -30 % abgeführt (Abb. 41). Strontium geht vom Allerød bis zur Jüngeren Dryas ebenfalls in Lösung (- 30 %), wird dann jedoch kontinuierlich zunehmend in der Tonfraktion akkumuliert (20 - 40 %). Dies ist möglicherweise auf eine zunehmende Strontiumkonzentration in der Bodenlösung und auf die Adsorption an Kationenaustauscher zurückzuführen. Vanadium und Zink reichern sich in Relation zu Aluminium ab dem Allerød in der $< 2 \ \mu m$ - Fraktion kontinuierlich an (10 - 50 %) und werden vermutlich bevorzugt an organische und anorganische Kationenaustauscher (Huminstoffe, Tonminerale und Hydroxide) fixiert. Die Konzentrationen des Kupfers unterliegen starken Schwankungen und können keinem Verwitterungstrend zugeordnet werden.

Eine Intensivierung der chemischen Verwitterung durch die Erhöhung der CO_2 -Konzentration in der Atmospäre, wie sie häufig für die Pleistozän/Holozän Grenze beschrieben wird (z.B. Krishnamurthy & Epstein 1990; Neftel et al. 1982; Siegenthaler et al. 1984) ist unwahrscheinlich. Eine lineare Beziehung zwischen CO_2 - Konzentration der Atmosphäre, Durchfluß- und Verwitterungsrate existiert nur ohne die Entwicklung von Vegetation (Berner 1992). Bereits geringe Vegetationsentwicklung führt zu erhöhten pH-Werten und zur verstärkten Löslichkeit von Magnesium und Kalzium in Basalten (z.B. Gislason & Arnórsson 1993).

Ein Verwitterungsindex der $< 2 \ \mu m$ - Fraktion für die CFB im Einzugsgebiet des Lama Sees ergibt sich aus dem Verhältnis von immobilen (Aluminium, Kalium und Titan) und mobilen Elementen (Magnesium, Kalzium, Natrium und Eisen) und legt die maximale Abfuhr von mobilen Elementen in den Zeitraum Allerød bis Jüngere Dryas (Abb. 40):

$Verwitterungsindex_{CFB} = Al_2O_3 + K_2O + TiO_2/MgO + CaO + Na_2O + FeO_{tot}$

Phosphor und Mangan gehen in den Verwitterungsindex nicht ein, da deren Konzentrationen durch diagenetische Vorgänge beeinflußt werden (vgl. Kap. 4.1.3) und deshalb für die Betrachtung von Verwitterungsprozessen nicht geeignet sind.

5 Zusammenfassung und Ausblick

An der Seesedimentsequenz PG1111 sind Studien zur chemischen Verwitterung von Basalten im Einzugsgebiet des Lama Sees über einen Zeitraum von mehreren 1000 Jahren möglich. Das einheitliche Liefergebiet des Lama Sees, bestehend aus einer ca. 4 Abfolge kontinentaler Flutbasalte, bietet den Vorteil. km. mächtigen Liefergebietswechsel auszuschließen. Der Vergleich von Sr-Isotopenverhältnissen der basaltischen Abfolge und der Sedimentabfolge PG1111 zeigten, daß der mittlere Teil der basaltischen Abfolge, im Einzugsgebiet eine Mächtigkeit von 200 bis 700 m einnehmend, Liefergestein des Lamaseesedimentes von der Ältesten Dryas bis heute ist. Prozesse, die den Gesamtchemismus des Sedimentes beeinflussen, sind folgende:

Geochemische Untersuchungen an der $< 2 \mu m$ -, 2 - 63 μm - und $> 63 \mu m$ - Fraktion des Lamaseesedimentes zeigen, daß der Gesamtchemismus des Lamaseesedimentes wesentlich durch Variationen des Korngößenspektrums beeinflußt wird, da Elemente an verschiedene Korngrößen sind. unterschiedlich stark gebunden Die Korngrößenänderungen gehen auf Transportartwechsel während der Ältesten Dryas (von glazial zu glazio-fluviatil) und des Allerøds (glazio-fluviatil zu fluviatil) zurück. Der Eintrag glazial erodierten Materials wird von Sand/Kiesschüttungen begleitet, die eine Erhöhung der Kalzium- und Natriumkonzentrationen (Plagioklas) im Sediment bewirken. Die glazio-fluviatilen Ablagerungen sind durch toniges Material charakterisiert, das zu einem erhöhten Eintrag von Eisen, Magnesium, Kobalt und Kupfer (Smektit) führt. Die fluviatile Erosion verursacht einen erhöhten Eintrag des Siltanteiles, der einen vermehrten Eintrag der Elemente Titan, Natrium, Kalzium, Kalium, Strontium, Vanadium, Barium, Chrom, Zirkon, Yttrium und Zink (Plagioklas, Pyroxen, Titanit, K-Feldspat) bewirkt.

Diagenetische Prozesse überprägen den Gesamtchemismus nur im geringen Maß und betreffen die Elemente Mangan, Phosphor und vermutlich Nickel und Chrom. Die Ausprägung diagenetischer Prozesse ist mit Lösungs- und Verwitterungsprozessen an Land verbunden. Entsprechende Verwitterungsprozesse existieren im Einzugsgebiet des Lama Sees wahrscheinlich ab dem Bølling, sodaß der Eintrag gelösten und partikulären

Zusammenfassung und Ausblick

Phosphors und Mangans und die vorherrschenden oxischen Bedingungen im Seesediment den Eintrag von Oxiden und Hydroxiden dieser beiden Elemente ermöglicht. Reduzierende Bedingungen im Sediment sind stark mit dem Eintrag organischer Substanz verbunden und führen vom Allerød bis zum Boreal zur Lösung von Phosphor und Mangan und zur Verarmung beider Elemente im Sediment. Die Anreicherung von Chrom und Nickel vom Allerød bis heute ist offenbar auf reduzierende Bedingungen und auf die diagenetische Bildung von Sulfiden zurückzuführen.

Die statistische Bearbeitung (Hauptkomponentenanalyse) der geochemischen Gesamtzusammensetzung des Seesedimentes zeigt, daß beide Prozesse, Transportart und Diagenese, bereits ca. 80 % der gesamten Datenvarianz für Haupt- (Silizium, Titan, Eisen, Magnesium, Kalzium, Natrium, Kalium, Phosphor und Mangan) und Spurenelemente (Barium, Kobalt, Chrom, Kupfer, Niob, Nickel, Strontium, Vanadium, Yttrium, Zink, Zirkon) einnehmen.

Der Vergleich von Ausgangsgestein (Kontinentale Flutbasalte) und Lamaseesediment belegt, daß die Basalte im Einzugsgebiet durch tiefgreifende, vorweichseleiszeitliche Verwitterungsprozesse beeinflußt sind. In der gesamten Seesedimentsequenz PG1111 (Älteste Dryas bis heute) sind immobile Elemente wie z.B. Kalium und Titan gegenüber dem unverwitterten basaltischen Ausgangsgestein angereichert. Dies wird auf eine erhöhte Akkumulation verwitterungsresistenter Minerale wie z.B. K-Feldpat und Titanit und erhöhte Adsorptionsfähigkeit des Kaliums an Austauschersubstanzen (z.B. Tonminerale und Huminstoffe) sowie auf die hydrothermale Überprägung der Basalte zurückgeführt.

Geochemische Untersuchungen der $\leq 2 \ \mu m$ - Fraktion zur Mobilität und Immobilität von Elementen zeigen, daß das Sediment seit dem Allerød von einer an Land neu einsetzenden chemischen Verwitterung beeinflußt ist, die zu Anreicherungen und Verarmungen spezifischer Elemente führt. Die Ergebnisse heben hervor, daß die Vegetationsentwicklung zu höheren Pflanzen vom Allerød bis zur Jüngeren Dryas wesentlichen Einfluß auf die Mobilisierung der Elemente Magnesium, Kalzium, Natrium, (Eisen), Kobalt, Nickel und Strontium hat. In Relation zum glazialen Ablagerungsprodukt wird eine maximale Abfuhr von -50 % erreicht. Dem gegenüber entwickelt sich parallel eine verstärkte Akkumulation der Elemente Kalium, Titan und Barium (bis 60 %). Die Mobilisierung wird auf die Versauerung des Bodenmilieus durch die Entwicklung der Vegetation im Einzugsgebiet und die damit verbundene Anlösung von Mineralen und den Kationenaustausch mobiler Elemente gegen gelöste H⁺-Ionen an der Oberfläche von Tonmineralen und Huminstoffen zurückgeführt. Kalium, Titan und Barium reagieren auf die einsetzende Versauerung zunächst mit Immobilität, die auf die Verwitterungsresistenz von K-Feldspat und Titanit, die Bildung von Illit und Titanoxiden/Hydroxiden sowie mit starker adsorptiver Bindung von Kalium und Barium an Kationenaustauscher erklärt wird. Ab dem Boreal (Klimaoptimum) setzt eine zunehmende K-Feldspatverwitterung und eine abnehmende Bindung von Kalium und Barium an Kationenaustauscher ein, sodaß die Konzentrationen beider Elemente kontinuierlich zurückgehen.

Parallel reagieren die mobilen Elemente (Magnesium, Kalzium, Natrium, (Eisen), Kobalt, Nickel und Strontium) auf die Ausbildung eines dichten Waldes im Einzugsgebiet mit einer erneuten Fixierung an die Bodensubstanz. Dies ist möglicherweise eine Folge der Übersättigung der Bodenlösung an den mobilen Elementen durch die verstärkte Lösung von Mineralen und die reduzierte Drainage des Bodens (Wasserrückhaltevermögen der Pflanzen und Rückgang von Schmelzwässern von Schneefeldern). Erst die Entwicklung einer Tundrenvegetation an der Subboreal/Subatlantikum Grenze führt zur erneuten Drainage des Bodens und zur Mobilisierung der mobilen Elemente. Eine Ausnahme zeigt Strontium, das sich -trotz seiner Mobilität während der Zeitspanne Allerød - Jüngere Dryas- ab dem Boreal kontinuierlich in der Tonfraktion anreichert und verstärkt an die Kationenaustauscher des Bodens fixiert wird.

Die Einführung eines Verwitterungsindexes des basaltischen Ausgangsmateriales, der aus dem Verhältnis von immobilen (Aluminium, Kalium und Titan) und mobilen Hauptelementen (Magnesium, Kalzium, Natrium und Eisen) der $< 2 \mu m$ - Fraktion des Seesedimentes gebildet wird, weist auf eine maximale Mobilität während des Allerøds bis zum Preboreal (Anstieg um 20 % gegenüber der Glazialzeit Älteste Dryas). Vom Boreal bis zum Subboreal ist ein Rückgang des Verwitterungsindexes um 10 %, im Subatlantikum erneut ein Anstieg von 10 % zu beobachten.

Die oben beschriebenen Ergebnisse belegen, daß Verwitterungsprozesse im Einzugsgebiet eines Sees aus einer seesedimentären Abfolge desselbigen Sees qualifiziert und quantifiziert werden können, nachdem Prozesse wie Erosion, Transport und Diagenese sowie der Einfluß des Liefergebietes erkannt, benannt und quantifiziert sind. Die < 2 μ m - Fraktion reagiert im Vergleich zu gröberen Fraktionen (> 2 μ m) schnell auf Verwitterungseinflüsse und bietet nach der Erosion und Ablagerung im See die Möglichkeit, ohne Korngrößeneffekte chemische Verwitterungsprozesse des Einzugsgebietes durch wechselnde Umweltbedingungen zu erfassen. Da jedoch die chemische Verwitterung und der Transport des Verwitterungsproduktes eine Vielzahl von Prozessen umfaßt, wie z.B. die Lösung von Silikaten, Mineralneubildungen (Tonminerale und Oxide/Hydroxide) und die Kationenadsorption, die vom Bodenmilieu (pH- und Eh-Wert, Drainage des Bodens) abhängig sind, sollten weiterführende Rezent-und Paläostudien durchgeführt werden:

Rezentuntersuchungen geochemischen Gesamtzusammensetzung zur zur Kationaustauschkapazität und zu den adsorptiv gebundenen Kationen (sequentielles Aufschlußverfahren) der Tonfraktion der oberflächennahen Bodenschicht im (kontinentale Flutbasalte), des Seesedimentes sowie der Einzugsgebiet Suspensionsfracht des Oberflächenabflusses und die Bestimmung von Kationenkonzentration und pH-Wert von Bodenlösung, Oberflächenabfluß und Seewasser könnten den Einfluß von Mineralanlösung, Kationenaustausch und Transport auf die $< 2 \mu m$ - Fraktion des Seesedimentes näher qualifizeren und quantifizieren. Da Huminstoffe ebenso wie Tonminerale Austauscher für Kationen sind, ist die Bestimmung der organischen Substanz der < 2 µm - Fraktion des Bodens im Einzugsgebietes und des Seesedimentes notwendig.

Um den Einfluß der Vegetation und der Drainage des Boden durch z.B. lokale Schneelfelder zu erfassen, sollten sämtliche Rezentuntersuchungen in Gebieten mit wechselnder Vegetationsdichte und mit unterschiedlich starken Oberflächenabflüssen und Erosionsverhältnissen durchgeführt werden. Jahreszeitliche Schwankungen von Niederschlagsverhältnissen, Abschmelzprozessen und Temperaturen sollten durch Untersuchungen zu verschiedenen Jahreszeiten (z.B. Tau- und Gefrierperiode) erfaßt werden.

Detaillierte röntgenographische qualitative und quantitative Bestimmungen der mineralogischen Zusammensetzung der $< 2 \ \mu m$ - Fraktion des Seesedimentes, wie z.B. die Bestimmung von Wechsellagerungsmineralen, könnten die Benennung und Quantifizieurng von geochemischen Verwitterungstrends unterstützen.

Da Silikate aufgrund ihrer Anlösung durch Verwitterungprozesse u.a. Kationenlieferanten sind, ist es sinnvoll den Verwitterungsgrad des grobkörnigen Materials (> 2 μ m) im Seesediment zu erfassen. Eine mikroskopische Betrachtung von durch die Siebanalyse getrennten Silt- und Sandkomponenten (> 32 μ m) und die rasterelektronische Betrachtung

Partikel feiner könnten Beschreibungen von Anlösungserscheinungen und Tonmineralneubildungen an der Mineraloberfläche über das gesamte Korngrößenspektrum liefern. Erste Ergebnisse der Reflektions-Infrarot-Spektroskopie (IR-Spektroskopie) haben gezeigt, daß sich an der Oberfläche von Sandpartikeln des Lamaseesedimentes (> 63 µm), je nach Verwitterungsgrad des Ausgangsgesteins, unterschiedlich intensiv Tonminerale gebildet haben.

6 Literatur

Abbott, M. B. & Stafford, T. W. 1995. Radiocarbon reservoir ages and carbon cycling in arctic and high-elevation lake systems. *Second Annual PALE Research Meeting*, Washington, 1995.

Abbott, M. B. & Stafford, T. W. 1996: Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. *Quaternary Research 45*, 300-311.

Aller, R. C. 1994: The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O_2 , and C_{org} flux on diagenetic reaction balances. *Journal of Marine Research 52*, 259-295.

Arkhipov, S. A., Astakhov, V. I., Volkov, I. A., Volkova, V. S. & Panychev, V. A. 1980: *Paleogeography of the West Siberian Plain at the Late Zyryanka Glaciation Maximum [in Russian]*. Vol. 470, 109 pp. Trudy Institute of Geology and Geophysics, Siberian Branch Academy of Science, Nauka, Novosibirsk.

Astakhov, V. I. 1989a: The fluvial history of West Siberia. In Starkel, L., Gregory, K. J. &Thornes, J. B. (eds.): Temperate Paleohydrology, 381-392. Wiley, London.

Astakhov, V. I. 1992: The last glaciation in West Siberia. Sveriges Geologiska Undersokning Series Ca 81, 21-30.

Astakhov, V. 1997: Late glacial events in the Central Russian Arctic. In Rutter, N., van Husen, D. &Catto, N. R. (eds.): Quaternary International 41/42, 17-25.

Astakhov, V. I. & Isaeva, L. L. 1988: The Ice Hill - an example of the retarded deglaciation in Siberia. *Quaternary Science Review* 6, 152-174.

Backhaus, K., Erichson, B., Plinke, W. & Weiber, R. 1990: Multivariate Analysenmethoden. Eine anwendungsorientierte Einführung. 416 pp. Springer-Verlag, Berlin.

Balistrieri, L. S., Murray, J. W. & Paul, B. 1992: The cycling of iron and manganese in the water column of Lake Sammamish, Washington. *Limnology and Oceanography 37*, 510-528.

Belorusova, Z. M., Lovelius, N. V. & Ikraintseva, V. V. 1987: The regional peculiarities of natural changes in the Taimyr Peninsula in the Holocene [in Russian]. *Botanichesky Zhurnal* 72, 610-618.

Berner, R. A. 1992: Weathering, plants, and the long-term carbon cycle. Geochimica et Cosmochimica Acta 56, 3225-3231.

Björck, S., Kromer, B., Johnson, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T. L., Wohlfarth, B., Hammer, C. U. & Spurk, M. 1996: Synchronized terrestrial-atmospheric deglacial records around the North Atlantic. *Science* 274, 1155-1160.

Bradbury, J. P. 1997: A diatom record of climate and hydrology for the past 200 ka from Owens Öake, California with comparison to other Great Basin records. *Quaternary Science Review 16*, 203-219.

Braitseva, O. A., Ponomareva, V. V., Sulerzhitsky, L. D., Melekestsev, I. V. & Bailey, J. 1997: Holocene key-marker tephra layers in Kamchatka, Russia. *Quaternary Research* 47, 125-139.

Brindley, G. W. & Brown, G. 1980: X-Ray diffraction procedures for clay mineral identification. *In* Brindley, G. W. &Brown, G. (eds.): *Crystal structures of clay minerals and their X-Ray identification*, 305-360. Mineralogical Society, London.

Brodzikowski, K. & Van Loon, A. J. 1987: A systemaric classification of glacial and periglacial environments, facies and deposits. *Earth-Science Reviews 24*, 297-381.

Carignan, R. & Nriagu, J. O. 1985: Trace metal deposition and mobility in the sediments of two lakes near Sudbury, Ontario. *Geochimica et Cosmochimica Acta 49*, 1753-1764.

Chain, V. E. & Koronovskij, N. 1995: Nordasien. 181 pp. Enke-Verlag, Stuttgart.

Cline, J. t. & Upchurch, S. B. 1973: Mode of heavy metal migration in the upper strata of lake sediment. *Proc. 16th Conf. Great Lakes Res.* 349-356.

Clow, D. W. & Drever, J. I. 1996: Weathering as a function of flow through an alpine soil. *Chemical Geology 132*, 131-141.

Danilov, I. D., Nedesheva, G. N. & Polyakova, E. I. 1985: The cryolothiozone of Western Siberia during the late Pleistocene and Holocene [in Russian]. *The evolution of the Eurasian cryolithzone during the upper Cenozoicum*, 82-90. Nauka, Moskow.

Dauvalter, V. 1994: Haevy metals in lake sediments of the Kola Peninsula, Russia. The Science of the Total Environment 158, 51-61.

Davis, J. C. 1986: Statistics and data analysis in Geology. 646 pp. John Wiley & Sons, Inc., New York.

Demidyuk, L. M. & Kondratéra, K. A. 1989: Geocryological conditions of the Yenisey-Putoran region. In Ershov, E. D. (eds.): Geocryology of the UdSSR: Central Siberia, 164-183. Nedra, Moscow.

Ebel, T., Melles, M. & Niessen, F. 1999: Laminated sediments from Levinson Lessing Lake, Northern Central Siberia - A 30,000 year record of environmental history. *In* Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J. & Timokhov, L. (eds.): *Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Lecture Notes in Earth Science*, Springer, Berlin, 425-435.

Edmond, J. M., Palmer, M. R., Measures, C. I., Brown, E. T. & Huh, Y. 1995: Fluvial geochemistry of the eastern slope of the northern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. *Geochimica et Cosmochimica Acta 60*, 2949-2976.

Faure, G. 1991: *Principles and applications of inorganic geochemistry*. 626 pp. MacMillan Publishing Company, New York.

Franz, H.-J. 1973: *Physische Geographie der Sowjetunion*. 530 pp. VEB Hermann Haack, Leipzig.

Gajewski, K. 1995: Modern and Holocene pollen assemblages from some small arctic lakes on Somerset Island, NWT, Canada. *Quaternary Research 44*, 228-236.

Galizii, G. J. & Parmuzin, Y. P. 1981: History of large lakes of the central Sub-Arctic [in Russian]. 137 pp. Nauka, Novosibirsk.

Geyh, M. A. 1971: Die Anwendung der ${}^{14}C$ -methode und anderer radiometrischer Datierungsverfahren für das Quartär. 118 pp. Clausthaler Tektonische Hefte 11, 118.

Geyh, M. A. 1983: Physikalische und chemische Datierungsmethoden in der Quartärforschung. 163 pp. Clausthaler Tektonische Hefte 19, 163.

Gill, R. C. O. 1993: Chemische Grundlagen der Geowissenschaften. 294 pp. Ferdinand Enke Verlag, Stuttgart.

Gíslason, S. R. & Arnórsson, S. 1993: Dissolution of primary basaltic minerals in natural waters: saturation state and kinetics. *Chemical Geology 105*, 117-135.

Goldich, S. S. 1938: A study of rock weathering. Journal of Geology 46, 17-58.

Grosswald, M. G. 1980: Late Weichselian Ice Sheet of Northern Eurasia. *Quaternary Research 13*, 1-32.

Grosswald, M. G. 1983: The ice caps of the continental shelves [in Russian]. 216 pp. Nauka, Moskow.

Grosswald, M. G. 1988: An antarctic-style ice sheet in the Northern Hemisphere: toward a new global glacial theory. *Polar Geography and Geology 12*,

Grosswald, M. g. & Hughes, T. H. 1995: Paleoglaciology's grand unsolved problem. *Journal of Glaciology 41*, 313-332.

Hagedorn, B., Harwart, S., Rutgers van der Loeff, M. & Melles, M. 1999: Lead-210 dating and heavy metal concentration in recent sediments of the Lake Lama (Noril'sk area, Siberia). *In* Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J. &Timokhov, L. (eds.): *Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Lecture Notes in Earth Science*, Springer, Berlin, 361-376.

Hahne, J. & Melles, M. 1997: Late- and post-glacial vegetation and climate history of the south-western Taymyr Peninsula, central Siberia, as revealed by pollen analyses of a core from Lake Lama. *Vegetation History and Archaeobotany 6*, 1-8.

Hahne, J. & Melles, M. 1999: Climate and vegetation history of the Taymyr Peninsula since Middle Weichselian time - palynological evidence from Iake sediments. *In* Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J. & Timokhov, L. (eds.): *Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Lecture Notes in Earth Science*, Springer, Berlin, 407-423.

Hajdas, I., Zolitschka, B., Ivy-Ochs, S. D., Beer, J., Bonani, G., Leroy, S. A. G., Negendank, J. F., Ramrath, M. & Suter, M. 1995: AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany. *Quaternary Science Review 14*, 137-143.

Håkanson, S. 1986: A marked change in the stable carbon isotope ratio at the Pleistocene-Holocene boundary in southern Sweden. *Geologiska Föreningens i Stockholm Förhandlingar* 108, 155-158.

Hammarlund, D. & Buchardt, B. 1996: Composite stable isotope records from a Late Weichselian lacustrine sequence at Grænge, Lolland, Denmark: evidence of Allerod and Younger Dryas environments. *Boreas 25*, 8-22.

Hartung, J. & Elpelt, B. 1995: *Multivariate Statistik. Lehr- und Handbuch der angewandten Statistik.* 815 pp. R. Oldenbourg Verlag, München.

Harwart, S., Hagedorn, B., Melles, M. & Wand, U. 1999: Lithological and biochemical properties in sediments of Lama Lake as indicators for the Late Pleistocene and Holocene ecosystem development of the southern Taymyr Peninsula, Central Siberia. *Boreas* 28, 167 - 180.

Heusser, C. J. 1994: Three late Quaternary pollen diagrams from southern Patagonia and their palaeoecological implications. *Palaeogeography, Palaeoclimatology, Palaeoecology 118*, 1-24.

Hoelzmann, P. 1993. Palaeoecology of Holocene lacustrine sediments in Western Nubia, SE Sahara. *Geoscientific Research in Northeast Africa*, 569-573. Berlin, 1993.

Hyvärinen, H. 1970: Flandrian pollen diagrams from Svalbard. Geografiska Annaler 52, 213-222.

Jasmund, K. 1993: Bildung und Umbildung von Tonmineralen. In Jasmund, K. &Lagaly, G. (eds.): Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt, 168-192. Steinkopff Verlag, Darmstadt.

Johnson, P. G. 1997: Spatial and temporal variability of ice-dammed lake sediments in alpine environments. *Quaternary Science Reviews 16*, 635-647.

Kelts, K. & Hsü, K. J. 1978: Freshwater carbonate sedimentation. In Lerman, A. (eds.): Lakes-Chemistry, Geology, Physics, 295-321. Springer, New York.

Kephkay, P. E. 1985: Kinetics of microbial manganese oxidation and trace metal binding in sediments: results from in situ dialysis technique. *Limnology and Oceanography 30*, 713-726.

Khotinsky, N. A. 1984: Holocene climatic change. In Velichko, A. A. (ed.): Late Quaternary Environments of the Soviet Union, 305-309. Minnesota Press, Minneapolis.

Kienel, U. 1999: Late Weichselian to Holocene diatom succession in a sediment core from Lama Lake, Siberia, and presumed ecological implications. In Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J. & Timokhov, L. (eds.): Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Lecture Notes in Earth Science, Springer, Berlin, 377-405.

Kind, N. V. 1974: Late Quaternary Geochronology According to Isotopes Data [in Russian]. 225 pp. Trudy Institute of Geology, Academy of Science, Nauka, Moscow.

Klementyev, O. L., Nikolaev, V. I., Potapenko, V. Y. & Savatyugin, L. M. 1991: Structures and thermodynamic conditions of the glaciers on the Severnaya Zemlya Archipelago [in Russian]. *Data Glaciol. Stud.* 73, 103-109.

Konishchev, V. N. 1982: Characteristic of cryogenic weathering in the permafrost zone of the European USSR. *Arctic and Alpine Research 14*, 261-265.

Korotkevich, Y. S. & Makeyev, V. M. 1991: The peculiarities of development of the environment in the Eurasian Arctic in the Late Pleistocene and Holocene [in Russian]. *Problemy Arktiki i Antarktiki Gidrometeoizdat 66*, 264-288.

Kramar, U., Barbarin-Castillo, J., Puchelt, H., Hubberten, H.-W. & Viera, F. 1992: Variations of heavy metals in sediments of the Rio Catarina passing the city of Monterry/Nuevo León, Mexico. *Zbl. Geol. Paläont. Teil I*, 1917-1925.

Krishnamurthy, R. V. & Epstein, S. 1990: Glacial-interglacial excursion in the concentration of atmospheric CO₂: effect in the ${}^{13}C/{}^{2}C$ ratio in wood cellulose. *Tellus 42B*, 423-434.

Krivonogov, S. K. 1988: The Stratigraphy and Paleogeography of the Lower Irtysh Area at the Time of Last Glaciation [in Russian]. 232 pp. Trudy Institute of Geology and Geophysics, Siberian Branch Academy of Science, Nauka, Novosibirsk.

Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E. & Nagy, K. L. 1994: Chemical weathering rate laws and global geochemical cycles. *Geochimica et Cosmochimica Acta 56*, 2361-2386.

Le Maitre, R. W. 1984: A proposal by the IUGS subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silika (TAS) diagram. *Australian Journal of Earth Science 31*, 243-255.

Leonard, E. M. 1986: Use of lacustrine sedimentary sequences as indicators of Holocene glacial history, Banff National Park, Alberta, Canada. *Quaternary Research 26*, 218-231.

Lewis, W. M. & Weibezahn, F. H. 1981: Chemistry of a 7.5-m sediment core from Lake Valencia, Venezuela. *Limnology and Oceanography 26*, 907-924.

Liddicoat, J. C. & Coe, R. S. 1997: Paleomagnetic investigations of Lake Lahontan sediments and its applications for dating fluvial events in the northwestern Great Britain. *Quaternary Research* 47, 45-53.

Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., Naldrett, A. J., Gorbachev, N. S., Fedorenko, V. A. & Doherty, W. 1993: Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia. *Contrib Mineral Petrol 114*, 171-188.

Lightfoot, P. C., Naldrett, A. J., Gorbachev, N. S., Doherty, W. & Fedorenko, V. A. 1990: Geochemistry of the Siberian Trap of the Noril'sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. *Contrib Mineral Petrol* 104, 631-644.

Lotter, A. F., Birks, H. J. B. & Zolitschka, B. 1995: Late-glacial pollen and diatom changes in response to two different environmental pertubations: volcanic eruptions and Younger Dryas cooling. *Journal of Paleolimnology 14*, 23-47.

Louvat, P. & Allègre, C. J. 1997: Present denudation rates on the island of Réunion determined by river geochemistry: Basalt weathering and mass budget between chemical and mechanical erosions. *Geochimica et Cosmochimica 61*, 3645-3669.

Mackereth, F. J. H. 1966: Some chemical observation on post-glacial lake sediments. *Philosophical Transactions of the Royal Society of London 250*, 165-213.

Mangerud, J., Andersen, S. T., Berglund, B. E. & Donner, J. J. 1974: Quaternary stratigraphy of Norden, a proposal for terminology and classification. *Boreas 3*, 109-128.

McKee, J. D., Wilson, D. T., Long & Owen, R. M. 1989: Geochemical partitioning of Pb, Zn, Cu, Fe and Mn across the sediment-water interface in large lakes. *Journal of Great Lakes Research 15*, 46-58.

Melles, M., Kulbe, T., Overduin, P. P. & Verkulich, S. 1994b: The Expedition Bunger Oasis 1993/94 of the AWI Research Unit Potsdam. In Melles, M. (ed.): The Expeditions Norilsk/Taymyr 1993 and Bunger Oasis 1993/1994 of the AWI Research Unit Potsdam, 3-25. Berichte zur Polarforschung, AWI, Bremerhaven.

Meschede, M. 1986: A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with a Nb-Zr-Y diagram. *Chemical Geology* 56, 207-218.

Meyers, P. A. & Horie, S. 1993: An organic carbon isotopic record of glacial-postglacial change in atmospheric p CO₂ in the sediments of Lake Biwa, Japan. *Palaegeography. Paleoclimatology, Palaeoecology 105*, 171-178.

Michel, F. A., Fritz, P. & Drimmie, R. J. 1989: Evidence of climatic changes from oxygen and carbon isotope variations in sediments of a small arctic lake, Canada. *Journal of Quaternary Science 4*, 201-209.

Möller, P. & Bolshiyanov, B. Y. 1998. Late Quaternary geology and palaeoenvironmental history of the Central Taymyr Peninsula, Siberia. *Quaternary Environment of the Eurasian North (QUEEN), second QUEEN Workshop*, 33.

Mortimer, C. H. 1971: Chemical exchanges between sediments and water in the Great Lakes -Speculations on probable regulatory Mechanisms. *Limnology and Oceanography 16*, 387-404.

Munsell soil color charts 1992. Macbeth, Devision of Kollmorgen Instrument Corporation, Munsell Color, New York.

Naldrett, A. J., Lightfoot, P. C., Fedorenko, V. A., Doherty, W. & Gorbachev, N. S. 1992: Geology and Geochemistry of Intrusions and Flood Basalts of the Noril'sk Region, USSR, with Implications for the Origin of the Ni-Cu Ores. *Economic Geology* 87, 975-1004.

Naldrett, A. J., Fedorenko, V. A., Lightfoot, P. C., Kunilov, V. I., Gorbachev, N. S., Doherty, W. & Johan, Z. 1995: Ni-Cu-PGE deposits of Noril'sk region, Siberia: their information in conduit for flood basalt volcanism. *Applied Earth Science 104*, 18-36.

Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Sumbrunn, R. 1982: Ice core sample measurements give atmospheric CO₂ content during the past 40,000 yr. *Nature 295*, 220-223.

Nesbitt, H. W., Markovics, G. & Price, R. C. 1980: Chemical processes affecting alkalis and alkaline earths during continental weathering. *Geochimica et Cosmochimica 44*, 1659-1666.

Nesbitt, H. W., Fedo, C., M. & Young, G. M. 1997: Quartz and feldspar stability, Steady and non-steady weathering, and petrogenesis of siliciclastic sands and muds. *Journal of Geology 107*, 173-191.

Nowaczyk, N. R. 1991: Hochauflösende Magnetostratigraphie spätquartärer Sedimente arktischer Meeresgebiete. 187 pp. Berichte zur Polarforschung, Bremerhaven.

Nowaczyk, N. R., Harwart, S. & Melles, M. submitted: A rock magnetic record from Lama Lake, Northerm Siberia. *Journal of Paleolimnology*.

Nygaard, G. 1956: Ancient and recent flora of diatoms and chrysophyceae in Lake Gribsø. *Folia Limnologica Scandinavica* 8, 32-94.

Olsson, S. 1991: Geochemistry, mineralogy and pore water composition in uplifted, Late Weichselian-Early Holocene clays from southern Sweden. 89 pp. LUNDQUA Thesis, Lund.

Pennington, W. 1981a: Records of lake's life in time: the sediments. *Hydrobiologia* 79, 197-219.

Pennington, W. 1981b: Sediment composition in relation to the interpretation of pollen data. *Proc.IV int. palynol. Conf., Luckow 3*, 188-213.

Pirrie, D., Camm, G. S., Sear, L. G. & Hughes, S. H. 1997: Mineralogical and geochemical signature of mine waste contamination, Tresillian River, Fal Estuary, Cornwall, UK. *Environmental Geology 29*, 58-65.

Righi, D. & Meunier, A. 1995: Origin of clays by rock weathering and soil formation. In Velde, B. (ed.): Origin and mineralogy of clays. Clays and the environment, 43-161. Springer, Berlin.

Romanovsky, N. N. 1993: Grundlagen der Lithosphere: Lehrbuch [in Russian]. 336 pp. MSU, Moskau.

Schachtschabel, P., Blume, H.-P., Brümmer, G., Hartge, K.-H. & Schwertmann, U. 1989: *Lehrbuch der Bodenkunde*. 491 pp. Ferdinand Enke, Stuttgart.

Schwoerbel, J. 1993: Einführung in die Limnologie. 387 pp. Gustav Fischer, Stuttgart.

Sheng Hu, F., Brubaker, L. B. & Anderson, P. M. 1996: Boreal ecosystem development in the Northwestern Alaska Range since 11,000 yr B.P. *Quaternary Research 45*, 188-201.

Siad, A. M. 1994: Geomathematical evaluation of trace element patterns in lateritic soils above Late Proterozoic basement units of Nigeria, West Africa. 103 pp. Berliner Geowissenschaftliche Abhandlungen 159, Berlin.

Siegenthaler, U. & Wenk, T. 1984: Rapid atmospheric CO₂ variations and ocean circulation. *Nature 308*, 624-626.

Siegert, C., Derevyagin, A. Y., Shilova, G. N., Hermischen, W.-D. & Hiller, A. 1999: Paleoclimatic indicators from permafrost sequences in the Eastern Taymyr Lowland. *In* Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J. & Timokhov, L. (eds.): *Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Lecture Notes in Earth Science*, Springer, Berlin 477-499.

Sifeddine, A., Bertrand, P., Lallier-Vergès, E. & Patience, A. J. 1996: Lacustrine organic fluxes and palaeoclimatic variations during the last 15 ka: Lac du Bouchet (Massif Central, France). *Quaternary Science Reviews 15*, 203-211.

Simola, H. & Uimonen-Simola, P. 1983: Recent stratigraphy and accumulation of sediment in an oligotrophic, deep lake in South Finland. *In* Meriläinen, J., Huttunen, P. & Battarbee, R. W. (eds.): *Paleolimnologie, Proceedings of 3rd International Symposium of Palaeolimnology, Joensuu, Finland.*

Sletten, R. S. & Ugolini, F. C. 1990: Pedogenic Processes in well-drained soils of Spitzbergen and Nordaustland. *Inter-Nord 19*, 465-470.

Strakhov, N. M. 1967: Principles of Lithogenesis. Vol. I. Consultants Bureau, New York.

Stucki, J. W., Golden, D. C. & Roth, C. B. 1984: Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. *Clays and Clay Minerals* 32, 350-356.

Stuiver, M. 1970: Oxygen and carbon isotope ratios of fresh water carbonates as climatic indicators. *Journal of Geophysical Research* 75, 5247-5257.

Stuiver, M. & Polach, H. A. 1977: Reporting of ¹⁴C data. Radiocarbon 19, 355-363.

Sulerzhitsky, L. D. 1995. Characteristics of radiocarbon chronology of the wolly mammoth (Mammuthus primigenius) of Siberia and north of Eastern Europe. *Studies of Pleistocene and recent Mammals. RAN, Proceedings of the Zoological Institute St. Petersburg*, 163-193. 1995.

Swan, A. R. H. & Sandilands, M. 1995: Introduction to geological data analysis. 446 pp. Blackwell Science, Oxford.

Talbot, M. R. 1990: A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. *Chemical Geology (Isotope Geocsience Section)* 80, 261-279.

Talbot, M. R. & Johannessen, T. 1992: A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. *Earth and Planetary Science Letters 110*, 23-37.

Tamrazyan, G. P. 1971: Siberian Continental Drift. Tectonophysics 11, 433-460.

Thorez, J. 1976: Practical identification of clay minerals. 90 pp. Lelotte, Dison.

Tranter, M., Brown, G.H., Hodson, A.J. & Gurnell, A.M. 1996: Hydrochemistry as an indicator of subglacial drainage system structure: a comparison of alpine and sub-polar environments. *Hydrological Processes 10*, 541 - 556.

Tröger, K.-A. 1984: Abriß der Historischen Geologie. 718 pp. Akademie-Verlag, Berlin.

Turney, C. S. M., Beerling, D. J., Harkness, D. D., Lowe, J. J. & Scott, E. M. 1997: Stable carbon isotope variations in northwest Europe during the last glacial-interglacial transition. *Journal of Quaternary Science 12*, 339-344.

Ugolini, F. C. 1986: Processes and rates of weathering in cold and polar desert environments. *In* Colman, S. M. & Dethier, D. P. (eds.): *Rates of chemical weathering of rocks and minerals*, 193-235. Academic Press, Orlando.

Vasilchuk, Y. K., Serova, A.K. & Trofomov, V. T. 1984: New data on sedimentary environments of the Karginsky deposits in the West Siberian North [in Russian]. *Bull. Komisii po Izucheniyu Chetvertichnogo Perioda* 53, 28-35.

Veerhoff, M. 1992: Silicatverwitterung und Veränderung des Tonmineralbestandes in Waldböden als Folge von Versauerungsvorgängen. 249 pp. Bonner Bodenkundliche Abhandlungen, Bonn.

Velbel, M. A. 1993: Constancy of silicate-mineral weathering ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates. *Chemical Geology 105*, 89-99.

Velichko, A. A. 1993: Evolution of landscapes and climates of the northern Eurasia. Late Pleistocene-Holocene; Element of prognosis [in Russian]. 102 pp. Nauka, Moscow.

Velichko, A. A., Kononov, Y. M. & Faustova, M. A. 1997: The last glaciation of earth: size and volume of ice-sheets. *Quaternary International* 41/42, 43-51.

Westerlund, S. F. G., Anderson, L. G., Hall, P. O. J., Iverfeldt, Ä., Rutgers van der Loeff, M. M. & Sundby, B. 1986: Benthic fluxes of Cadmium, copper, nickel, zinc and lead in coastal environment. *Geochimica et Cosmochimica Acta 50*, 1289-1296.

Williams, T., Thouveny, N. & Creer, K. M. 1996: Palaeoclimatic significance of the 300 ka mineral magnetic record from the sediments of Lac du Bochet, France. *Quaternary Science Reviews 15*, 223-235.

Wilson, M. J. & Jones, D. 1983: Lichen weathering of minerals: Implications for pedogenesis. In Wilson, R. C. L. (ed.): Residual Deposits: Surface related weathering processes and Materials, Papers, 5-12. Blackwell, Oxford.

Wohlfarth, B., Lemdahl, G., Olsson, S., Persson, T., Snowball, I., Ising, J. & Jones, V. 1995: Early Holocene environment on BjØrnØya (Svalbard) inferred from multidisciplinary lake sediment studies. *Polar Research 14*, 253-275.

Wolfe, A. P. & Härtling, J. W. 1997: Early Holocene trace metal enrichment in organic lake sediments, Baffin Island, Arctic Canada. Arctic and Alpine Research 29, 24-31.

Wooden, J. L., Czamanske, G. K., Fedorenko, V. A., Arndt, N. T., Chauvel, C., Bouse, R. M., Bi-Shia, W. K., Knight, R. J. & Siems, D. F. 1993: Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. *Geochimica et Cosmochimica Acta 57*, 3677-3704.

Young, L. B. & Harvey, H. H. 1992: Geochemistry of Mn and Fe in lake sediments in relation to lake acidity. *Limnology and Oceanography* 37, 603-613.

Zolotukhin, V. V. & Mukhamedov, A. I. 1988: Traps of the Siberian Platform. In Macdougall, J. D. (ed.): Continental Flood basalts, 273-310. Kluwer Academic Publisher, Dordrecht.

7	Anhang	
	7.1 Einzugsgebiet	87
	7.1.1 Geochemische und petrologische Beschreibung der kontinentalen Flutbasalte	87
	Abb. A-1: Sequenzabfolge der kontinentalen Flutbasalte im Einzugsgebiet des Lama Sees	87
	Tab. A-1: Lavatypen der kontinentalen Flutbasalte vom Hangenden zum Liegenden	88
	Tab. A-2: Mittlere geochemische Zusammensetzung der Vulkanitschichten	89
	Tab. A-3:Geochemische Klassifikation der kontinentalen Flutbasalte	90
	Abb. A-2: Lage der kontinentalen Flutbasalte im binären Diagramm (Na2O+K2O):SiO2	90
	7.2 Lamaseesediment	91
	7.2.1 Lithologie	91
	Tab. A-4: Lithologische Beschreibung der Oberflächenkerne	91
	Tab. A-5: Lithologische Beschreibung der Kernsequenz PG1111	92
	Tab. A-6: Wassergehalte der Oberflächenkerne	95
	Tab. A-7: Wassergehalte und Magnetische Suszeptibilitäten der Kernsequenz PG1111	96
	Tab. A-6a+7a: Korngrößenzusammensetzung derKernsequenz PG1111 und der	
	Oberflächenkerne	. 103
	7.2.2 Mineralogie	104
	Tab. A-8: Intensität von Flächen- und Peakintensitäten in Röntgendiagrammen der Gesamtmineralogie, Kernsequenz PG1111	. 104
	Tab. A-9: Intensität von Flächen- und Peakintensitäten in Röntgendiagrammen der Tonmineralog Kernsequenz PG1111	ie, . 105
	Tab. A-10: Intensitäten der auf den internen Standard Korund bezogenen Flächenreflexe in Röntgendiagrammen der Gesamtmineralogie, Kernsequenz PG1111	. 106
	Tab. A-11: Intensitäten der auf den internen Standard Molybdänsulfat bezogenen Flächenreflexe Röntgendiagrammen der Tonmineralogie, Kernsequenz PG1111	in 106
	7.2.3 Geochemie	. 107
	Tab. A-12: Kalibrierungsbereich und Standardabweichung der genutzten Röntgenfluoreszenzanla	ge 10
	Tab. A-13: Relative Fehler der ICP-OES	107
	7.2.3.1 Gesamtsediment	. 108
	Tab. A-14: Hauptelementverteilung im Gesamtsediment der Kernsequenz PG1111	108
	Tab. A-15: Spurenelementverteilung im Gesamtsediment der Kernsequenz PG1111	114
	7.2.3.2 Tonfraktion (< 2 μm)	. 114
	Tab. A-16: Hauptelementverteilung in der Tonfraktion der Kernsequenz PG1111	114
	Tab. A-17: Spurenelementverteilung in der Tonfraktion der Kernsequenz PG1111	114
	Tab. A-18: Prozentuale Ab- und Zufuhr von Hauptelementen der < 2 μm- Fraktion in der Kernsec PG1111	quenz 115
	Tab. A-19 Prozentuale Ab- und Zufuhr von Spurenelementen der < 2 μm- Fraktion in der Kernseg PG1111	quenz 115
	Tab. A-20: Elementintensitäten des Zentrifugenwassers	116
	7.2.3.3 Sand (> 63 μm) -, Silt (2 - 63 μm) - und Tonfraktion (< 2 μm)	. 116
	Tab. A-21: Hauptelementkonzentrationen der Sand-, Silt- und Tonfraktion, Kernsequenz PG1111	110
	Tab. A-22: Spurenelementkonzentrationen der Sand-, Silt- und Tonfraktion, Kernsequenz PG1111 7.2.4 Statistik	116 117
	7.2.4.1 Hauptkomponentenanalyse	. 117

Tab. A-23: Faktorwerte zur Hauptelementverteilung in der Kernsequenz PG1111
Tab. A-24: Faktorwerte zur Spurenelementverteilung in der Kernsequenz PG1111
Tab. A-25: Faktormatrix der auf Aluminium normierten Hauptelementkonzentrationen
Tab. A-26: Faktormatrix der auf Aluminium normierten Spurenelementkonzentrationen
7.3 ¹⁴ C-Alter
Tab. A-27: ¹¹ C-Alter innerhalb der Kernsequenz PG1111
7.4 Lamaseewasser
Tab. A-28: Temperatur, pH-Wert, gelöster Sauerstoff und Leitfähigkeit des Lamaseewassers
Tab. A-29: Kationenkonzentration des Lamaseewassers

7.1 Einzugsgebiet

7.1.1 Geochemische und petrologische Beschreibung der kontinentalen Flutbasalte

Abb. A-1: Sequenzabfolge der kontinentalen Flutbasalte im Einzugsgebiet des Lama Sees (aus: Wooden et al. 1993) und deren Klassifikation in Assoziation I, IIa und IIb nach Naldrett et al. (1995).

Formation	Gruppe	Lithologie	Mächtigkeit [m]
Samoedsky	sm3	poikilophyrischer, aphyrisher und glomerophyrischer Basalt	> 200
	sm2	aphyrischer, poikilophytischer und porphyrischer, glomeroporphyrischer Basalt und Tuff	230-280
	sm l	aphyrischer und porphyrischer Basalt mit Tufflinsen	140-180
Kumginsky	km	glomeroporphyrischer Basalt mit Tuffhorizont	160-210
Kharayelakhsky	hr4	poikiloblastischer, porphyrischer und aphyrischer Basalt und Andesinbasalt mit Tuff	95-215
	hr3	Poikilophytischer, porphyrischer und aphyrischer Basalt mit wenig Tuff	205-365
	hr2	glomeroporphyrischer Basalt	15-210
	hrl	porphyrischer, aphyrischer und poikilophyrischer Basalt mit dickmächtigem Tuff an der Basis	60-105
Mokulaevsky	mk4	aphyrischer, poikilophyrischer und porphyrischer Basalt und Tuff	40-165
	mk3	poikilophyrischer, aphyrischer und porphyrischer Basalt	140-265
	mk2	glomeroporphyrischer Basalt und porphyrischer, aphyrischer und poikilophyrischer Basalt	40-290
	mk l	porphyrischer und aphyrischer Basalt	35-275
Moronkovsky	mr2	aphyrischer und poikilophyrischer Basalt, selten porphyrischer und glomerophyrischer Basalt, dickmächtige Tuffe.	175-640
	mr l	aphyrischer, poikilophyrischer und porphyrischer Basalt, Tuffe	45-150
Nadezhdinsky	nd3	glomerophyrischer Basalt, Tuffe	
	nd2	porphyrischer, glomeroporphyrischer Basalt, Tuffhorizont an der Basis	75-260
	nd l	porphyrischer und tholeiitischer Basalt	50-260
Tuklonsky	tk2 (TPBU)	poikilophyrischer und pikritischer Basalt, Tuffe	0-220
	tk l	poikilophyrischer, tholeiitischer Basalt	?
Khakanchansky	hk	Tuffe	10-260
Gudchinsky	gd2 (GPBU)	pikritischer Basalt, pikritähnlicher und Olivin-Tholeiit	0-190
	gdl	poikilophyrischer, porphyrischer und glomerophyrischer Basalt, Tuffe	0-160
Syverminsky	sv	tholeiitischer Basalt	0-195
Ivakinsky	iv3	subalkaline, labradorotische, zwei-Plagioklas Andesinbasalt und Tuffe	0-135
	iv2	subalkalkiner, Ti-augitischer und poikilophyrischer Basalt, Tuffe und Tuffbrekkzien	0-100
	ivl	alkaliner Trachybasalt, Tuffe und Tuffbrekkzien	0-240

Tab. A-1: Lavatypen der kontinentalen Flutbasalte vom Hangenden zum Liegenden im Einzugsgebiete des Lama Sees.

nach: Lightfood et al. (1993)

Anhang

Tab. A-2: (1993); k	$MittleA.= k_{i}$	eine A	ngabe).	che Zusa	иәшт	isetzui	ıg der	elf Vu	lkanit	schichu	en im	Einzugi	sgebie	t des L	ama	see (al	le Anչ	gaben at	ıs Ligh	tfoot e	t al. (1:	993) u	nd Wo	oden i	ıt al.
Formation	Sank	oedsky		Kumginsky	Kharae	lakhsky			Моќи	laevsky			Morongo	vsky	Nadezhdi	nsky		Tuklonsky	Khak chans	an-Guc iky	lchichinsky	Syvenu nsky	=	Ivakin	iky
Gruppe	sm3	şm2	sml	kn	hr4	hr3	hr2	hrl	mk4	mk3	mk2	mkl	mr2	mrl	nd3	nd2	ud 1	2 (TPBU) (RI DE	gd1 (GPB	I på (D	5	Ξ	iv2	ivi
SiO2	49.67	k.A.	49.25	49.64	50.60	49.24	k.A.	49.45	47.76	49.74	49.41	19.85 1	8.90 4	19.40 5	0.40 5	2.20 5	2.20	47.40 49	60 52.7	12 47.9	0 50.86	52.80	53.7	52.0	47.50
TiO2	1.42		1.38	1.53	1.71	1.33		1,41	1.36	1.45	1.25	1.21	1.12	1.10	10.1	1.06 ().94	0.67 0.	88 0.9	0 1.65	1 1.84	1.62	2.42	2.48	3.79
AI203	15.20	ı	15.35	15.53	15.05	15.86		15.43	16.41	15.58	15.70	15.43	6.75 1	16.29	6.50 1.	5.95 1	6.38	12.33 15	.70 15.0	9.8.	5 16.07	15.61	14.4	15.1	15.47
FeOT	12.14	÷	11.95	12.28	12.30	11.93		12.40	12.48	12.42	11.67	11.50	2.30	12.40	1.45 1	1.18	0.24	12.28 10	.97 9.3	4 14.8	5 11.25	11.00	5 12.7	3 13.1	14.72
MgO	7.33	,	7.67	6.64	6.30	7.59		7.40	7.36	6.83	6.83	6.95	. 61.7	6.90	6.57 (5.07 (5.32	16.41 8.	99 7.0	8 16.4	4 6.57	6.01	4.03	4.12	4.67
MnO	0.21	×	0.21	0.21	0.20	0.20	,	0.20	0.21	0.20	0.19	0.19 (0.19	0.18 (0.18 (0.16 ().16	0 18 0.	17 0.2	1 0.2(0.16	0.15	0.26	0.27	0.19
CaO	11.38	*	11.64	11.44	10.49	11.09		10.93	1207.0	10.11	12.67	12.42	1.21	11.29	0.99 1-	0.08 1	0.33	9 44 11	.11 10.5	35 7.45	9.48	7.83	5.36	6.59	7.03
N#20	2.19	•	2.16	2.36	2.40	2.14	·	2.24	2.09	2.30	2.03	2.14	£6.1	1.95	: 66-1		1.35	0 99 2.	10 2.2	6 0.9	7 2.97	3.24	3.25	3.98	3.77
K20	0.37	- ·	0.22	0.25	0.71	0.48		0.39	0.11	0.30	01.0	0.17	0.33	0.38 (0.84 C) 86.(10.0	0.31 0.	34 1.9.	2 0.5:	2 0.67	07.1	3.10	1.84	1.68
P205	0.17		0.18	0.21	0.27	0.16	F	0.15	0.16	0,17	0.16	0.16 (3.11	0.11 (9.15 C	0.12 (0.10	0.06 0.	08 0.1.	3 0.12	2 0.19	0.25	0.83	0.83	1.33
Ba	134.50		124.00	135.00	234.50	112.00		123.00	68.00	145.00	90.00	05.00 3.0	04.00 3.	38.00 31	73.00 41	6.00 44	00.00	126.00 19	9.0 326.0	00 306.(0 331.00	0 643 0	0 900.0	0 933.0	0 865.00
Rb	9.00		4.00	8.50	17.75	8.00	Ŧ	14.00	2.00	5.00	4.00	5.00 (5.00	4.00 2	1.00 2	2.00 2	9.00	7.00 4.	00 57.6	0 § 9.0(11.00	36.00	36.00	33.5	36.00
Sr	197.50	5	181.00	200.00	233.50	178.00	t	180.00	178.00	204.00	215.00 2	25.00 20	07.00 2	07.00 22	51.00 28	12.00 25	33.00	147.00 24	9.0 215.4	00 207.0	0 300.00	0 440.00	0 458.0	0 482.5	0 338.00
7	31.00	x	29.00	35.00	35.30	27.00		36.00	31.00	27.00	23.00	26.00 2	2.30 2	23.10 2	3.20 2.	3.00 2	0.70	10.70 15	.30 29.6	14.7	0 21.60	25.30	1 43.5(48.50	57.00
Zr	109.50	•	117.00	130.00	168.50	00.101		104.00	105.00	114.00	93.00	95.00 8	5 00'6.	98.00 I II	00.00	0.00	00.61	48.00 63	.411 00.	00 \$ 86.0	0 144.0	0 191.01	0 315.0	0 327.0	0 394.00
H	2.67		2.53	3.04	3.81	2.32	;	2.43	2.52	2.71	2.25	2.29	2.43	2.63	2.79 3	.48	1.22	1 25 1.	76 2.4	1 2.4	1 3.60	5.00	7.78	6.98	7.61
۹ Z	0.00	,	8.00	10.00	14.75	10.00	÷	2.00	13.00	14.00	1.00	7.00	5.10	5.70	7.00 5	3 00'	3.30	1.90 2.	70 14.0	0 1 6.6(0.11.00	15.40	27.2(28.51	1 42.33
Ta	0.28	*	0.28	0.37	0.61	0.23		0.26	0.28	0.30	0.27	0.28	0.32	0.32 (0.42 (.52 (0.50	0.11 0.	18 0.4.	2 0.4(0.60	0.85	1.37	1.50	2.39
4L	1.03		1.07	1.48	2.04	0.85		0.88	1.01	1.11	0.99	1.07	1.07	1.48	1.87 2	. 98	3.04	0.45 0.	64 2.8.	2 1.00	1.40	2.86	5.43	4.26	6.11
5	0.40	r	0.53	0.77	0.74	0,44	z	0.30	0.36	0.40	0,41	0.46	0.45	0.54 (0.96 C	1.85 (.81	0.11 0.	16 0.9	9 0.31	3 0.36	0.70	1.30	1.21	2.61
Ő	51.00	• •	51.00	47.00	45.25	53.00	,	50.00	53.00	50.00	47.00	49.00	2.00 4	42.00 4	2.00 4.	0.00	6.00	73.00 47	00 10.0	0 66.0	0 37.00	34.00	26.0(29.5	41.67
°.	142.50	:	159.00	120.50	133.50	135.00	*	166.00	148.00	147.00	151.00 1	30.00	22.00_1	13.00 9	7.00 8	7.00 3	2.00	62.00 10	1.0 126.0	00 96.0	0 71.00	34.00) 23.0(25.5(40.00
z	135.50	Ŧ	146.00	107.00	108.00	176.00	2	137.00	155.00	137.00	113.00 1	27.00 16	37.00 8	36.00 \$ 8	1.00 4.	5.00 2	3.00	284.00 11	0.0 135.(00 696.(00 83.00	55.00) 18.00	46.00	46.00
ъ Č	182.00	•	216.00	107.00	94.00	160.00	2	123.00	131.00	71.00	1 00.011	08.50	71.00 1.	56.00 14	45.00 8.	4.00 13	14.00	810.00 39	3.0 366.1	90 789.C	0 269.00	214.00	0 41.00	11.00	16.50
Zn	88.00		81.00	81.00	87.25	98.00		75.00	00'16	73.00	93.00	30.00 9	7.00 5	32.00 \$ 8	8.00 9.	4.00 8.	4.00	67.00 68	.00 114.0	00 111 J	10 92.00	100.00	0 152.0	0 135.0	0 111.67
Sc	38.00	± .	38.00	37.00	34.25	36.00	ŧ	37.00	40.00	37.00	37.00	38.00 33	5.00 3	38.00 3	2.00 3.	0.00 3-	0.00	6.00 30	.00 25.6	10 1 24.0	0 27.00	23.00	22.00	0 22.0	0 23.00
>	k.A.	•	k.A.	k.A.	k.A.	k.A.	*	k.A.	k.A.	k.A.	k.A.	k.A. 👌	19.00 2	70.00 2	19.00 21	6.00 21	2.00	170.00 22	4.0 k.A	. 229.0	0 227.00	169.08	0 140.0	0 k.A.	k.A.
La	8.14	,	7.94	9.80	15.02	6.62	* ,	7.02	7.77	8.46	7.23	7.68	7.33	9.07	2.91 I	7.33 1.	6.40	4.03 5.	53 18.5	10 6.42	2 14.10	22.81	44.9	44.6	51.90
ۍ ت	20.30	£	18.50	24.20	35.13	15.70		17.40	19.60	21.20	18.10	1 00.61	7.13 2	20.75 2	8.04 3	7.65 3.	5.40	9.27 12	.68 36.0	10 16.6	6 32.65	50.79	100.6	1 : 101.5	5 116.33
PZ	13.14		10.61	15.15	21.41	10.68	2	11.54	12.81	13.19	12.46	12.21	0.62 1	12.39 1	4.14 1.	8.18	6.70	5 55 7.	59 17.5	i 11.5	7 19.39	25.72	51.3	52.1	55.63
Sm	3.73	1	3.69	4.23	5.54	3.37	2	3.53	3.59	3.87	3.42	3.41	3.02	3.27	3.54 4	.13	1.75	1.59 2.	15 1.8.	1 3.21	4.84	5.74	10.88	11.01	11.19
ę.	2.80	·	2.77	3.21	3.21	2.79	•	2.76	2.75	2.73	2.46	2.48	2.32	2.33	2.56 2	.34 2	10	I.10 I.	57 2.00	0 1.24	1 1.85	2.42	3.92	4.22	4.70
Pb	1.80		1.74	2.40	3.42	1.54	,	1,61	1.49	1.82	1.65	2.03 k	(A. 7.	k.A. 1	k.A. k	.A. k	. V.	k.A. k.	A. 6.9.	4 k.A.	k.A.	k.^	k.A.	7.19	6.48

	Assoziation I Ivakinsky, Syverminsky, Gudchinsky		Assoziation IIa Tukionsky, Nadezhinsky		Assoziation ilb Moromgovsky, Mokulaevsky, Kharaeylakhsky, Kuminsky, Samovedsky	
Variabel	Mitteiwert(n=6)	Std.abw.	Mittelwert (n=5)	Std.abw.	Mittelwert (n=12)	Std.abw.
SiO2	50.78	2.35	50.36	1.80	49.41	0.64
TiO2	2.29	0.75	0.91	0.14	1.36	0.16
AI2O3	14.42	2.11	15.37	1.55	15.72	0.50
FeOT	12.98	1.48	11.22	0.66	12.15	0.30
Fe	10.09	1.15	6.72	0.52	9.44	0.24
MgO	6.97	4.34	8.87	3.91	7.08	0.39
MhO	0.20	0.04	0.17	0.01	0.20	0.01
Min	0.16	0.03	0.13	0.01	0.15	0.01
CaO	7.30	1.25	10.39	0.61	111.05	0.61
Na2O	3.03	0.98	1.90	0.48	2.16	0.14
K2O	1.54	0.85	0.50	0.36	0.32	0.16
P2O5	0.59	0.44	0.10	0.03	0.17	0.04
Ba	663.00	260.75	314.80	129.43	159.42	82.07
Rb	26.92	12.01	16.60	9.52	7.27	4.40
Sr	370.92	98.14	242.40	49.87	200.50	17.84
Y	35.10	15.41	18.58	4.86	28.81	4.70
Zr	242.83	109.69	93.20	32,06	110.33	20.67
Hf	5.57	2.04	2.50	0.86	2,64	0.41
Nb	21.84	12,14	5.78	2.92	8.96	3.37
Та	1.19	0.67	0.35	0.17	0.32	0.09
Th	3.51	1.92	1.80	1.10	1.17	0.32
ប	1.09	0.77	0.58	0.37	0.48	0.14
Co	39.03	13.07	47.60	13.18	48.35	3.62
Cu	46.25	26.53	75.80	25.76	138.96	15.45
Ni	157.33	241.65	108.60	92.63	127.88	23.89
Cr	223.42	271.80	313.20	270.60	136.54	39.56
Zn	116.94	20.52	80.20	10.85	86.77	8.34
Sc	23.50	1.71	25.60	9.83	37.10	1.46
v	191.25	38.16	208.20	19.50	259.50	10.50
La	30.81	17.20	11.24	5.50	8.51	2.14
Ce	69.77	38.05	24.61	11.63	20.58	4.87
Nd	35.97	17.61	12.43	5.00	13.02	2.82
Sm	7.82	3.31	3.03	0.98	3.72	0.62
Yb	3.06	1.29	1.93	0.53	2.72	0.28
Pb	6.83	0.35			2.17	0.55
⁸⁷ Sr ^{/86} Sr	0.706340	0.000568	0.707031	0.000124	0.704996	0.000455

Tab. A-3: Geochemische Klassifikation der kontinentalen Flutbasalte nach Nadrett et al. (1995).

Abb. A-2: Lage der kontinentalen Flutbasalte im binären Diagramm (Na₂O + K_2O):SiO₂ nach Le Maitre (1984).

7.2 Lamaseesediment

7.2.1 Lithologie

Tab. A-4: Lithologische Beschreibung der Oberflächenkerne

Station PG1114;	69°35.6' N 90°10.5' E; Wassertiefe: 3.9 m							
Tiefe [cm]	Beschreibung							
0 - 132.0	kiesiger Mittel- bis Grobsand, homogen, sehr dunkel grau (10YR3/1)							
Station PG1107;	69°35.0′ N 90°13.9′ E; Wassertiefe 7.2 m							
Tiefe [cm]	Beschreibung							
0.0 -2.5	siltiger Schluff, homogen, olivbraun (2.5Y4/3)							
2.5 - 6.0	siltiger Schluff, homogen, dunkelolivbraun (2.5Y3/3)							
6.0 -10.0	siltiger Schluff, homogen, sehr dunkelgrau (5YR3/1)							
Station PG1108;	69°34.5' N 90°13.9' E; Wassertiefe 12.6m							
Tiefe [cm]	Beschreibung							
0.0 -5.0	siltiger Ton, homogen, dunkelolivbraun (2.5Y3/3)							
5.0 - 6.5	siltiger Ton, homogen, olivbraun (2.5Y4/3)							
6.5 - 13.0	siltiger Ton, homogen, olivgrau (5Y4/2)							
13.0	siltige Lage, dunkelolivbraun (2.5Y3/3)							
13.0 - 14.0	siltiger Ton, homogen, olivgrau (5Y4/2)							
14.0	siltige Lage, dunkelolivbraun (2.5Y3/3)							
14.0 - 19.0	siltiger Ton, homogen, olivgrau (5Y4/2)							
19.0	siltige Lage, homogen, dunkelolivbraun (2.5Y3/3)							
19.0 - 26.0	siltiger Ton, homogen, dunkelolivgrau (5Y3/2)							
Station PG1109;	69°33.9′ N 90°13.7′ E; Wassertiefe 31.6 m							
Tiefe [cm]	Beschreibung							
0.0 - 3.0	siltiger Ton, homogen, dunkelolivbraun (2.5Y3/3)							
3.0 - 20.0	siltiger Ton, sehr gut ausgeprägte mm-Schichtung von dunkelgrauen (2.5YR4/2), dunkelolivbraunen (2.5Y3/3) und dunkelgraubraunen (10YR2/2) Lagen							
20.0 - 39.0	siltiger Ton, mäßig ausgeprägte mm-Schichtung von dunkelgrauen (2.5Y4/2), dunkelolivbraunen (2.5Y3/3) und sehr dunkelbraunen (10YR2/2) Lagen							
39.0 - 61.0	siltiger Ton, homogen, olivegrau (5Y4/2)							
Station PG1110; 69°33.4' N 90°13.3' E; Wassertiefe: 48.7 m								
Tiefe [cm]	Beschreibung							
0.0 - 6.0	siltiger Ton, homogen, dunkelolivbraun (2.5Y3/3)							
6.0	siltige Lage, sehr dunkelbraun (10YR2/2)							
6.0 - 18.0	siltiger Ton, gut ausgeprägte mm-Schichtung von dunkelgraubraunen (2.5Y4/3) und sehr dunkelbraunen (10YR2/2) Lagen							
18.0 - 34.0	siltiger Ton, gut ausgeprägte mm-Schichtung von olivgrauen (5Y4/2) und sehr dunkelbraunen (10YR2/2) Lagen							
34.0 - 59.0	siltiger Ton, homogen, teilweise schwach ausgeprägte mm- bis cm- Schichtung von dunkelgrauen (5Y4/1) und sehr dunkelgrauen (5Y3/1) Lagen							

Tab. A-5: Lithologische Beschreibung der Kernsequenz PG1111

Station PG1111; 0	69°32.9' N 90°12.7' E; Wassertiefe: 52.2 m
PG1111-1	
Bohrtiefe [cm]	Beschreibung
0.0 - 5.0	siltiger Ton, homogen, dunkelgelbbraun (10YR3/4)
5.0 - 7.5	siltige Lagen, dunkelolivbraun (2.5Y3/3)
7.5 - 22.0	siltiger Ton, leicht ausgeprägte mm- bis cm- Schichtung von olivbraunen (2.5Y4/3), dunkelolivbraunen (2.5Y3/3) und sehr dunkelbraunen Lagen (10YR2/2) Lagen
22.0 - 35.0	siltiger Ton, homogen, schwarz (5Y2.5/2)
35.0 - 54.0	siltiger Ton; schwarz (5Y2.5/2) mit sehr dunkelgrauen (5Y3/1) Schlieren
PG1111-5	
Bohrtiefe [cm]	Beschreibung
15.0 - 22.0	siltiger Ton, homogen, olivbraun (2.5Y4/3)
22.0 - 29.0	siltiger Ton, leicht ausgeprägte mm- bis cm- Schichtung von dunkelolivgraunen (5Y3/2), dunkelolivbraunen (2.5YR3/3) und sehr dunkelbraunen Lagen (10YR2/2) Lagen
29.0 - 148.0	siltiger Ton; schwarz (5Y2.5/2) bis sehr dunkelgrau (5Y3/1) mit sehr dunkelgrauen (2.5Y3/1) Schlieren, deutliche schwarze (5Y2.5/1) Lagen bei 44.0 cm, 77.0 cm, 10.0 cm und 145.0 cm
148.0 - 151.0	siltiger Ton, gut ausgeprägte mm- Schichtung von sehr dunkelgrauen (2.5Y3/1) und schwarzen Lagen (2.5Y2.5/1)
151.0 - 154.0	siltiger Ton, schwarz (7.5YR2/0)
154.0 - 157.0	siltiger Ton, gut ausgeprägte mm- Schichtung von sehr dunkelgrauen (2.5Y3/1) und schwarzen Lagen (2.5Y2.5/1)
157.0 - 312.0	siltiger Ton, homogen, sehr dunkelgrau (5Y3/1) mit schwarzen Schlieren (2.5Y2.5/1), schwarze (2.5Y2.5/1) Lagen bei 175.0 cm, 175.0 cm, 181.0 cm, 182.5 cm, 191.0 cm, 197.5 cm, 215.5 cm, 216.0 cm, 216.5 cm, 236.0 und 238.5 cm
PG1111-6	
Bohrtiefe [cm]	Beschreibung
259.0 - 289.0	siltiger Ton, homogen, teilweise schwarze (2.5Y2.5/1) Laminae im mm-Bereich, Grundfarbe: sehr dunkelgrau (5Y3/1)
289.0 - 297.0	siltiger Ton, homogen, schwarz (2.5Y2/0)
297.0 - 298.5	siltiger Ton, homogen, teilweise schwarze (2.5Y/0) Laminae im mm-Bereich, Grundfarbe: sehr dunkelgrau (5Y3/1)
198.5 - 302.0	siltiger Ton, homogen, schwarz (2.5Y2.5/1)
302.0 - 313.5	siltiger Ton, homogen, sehr dunkelgrau (5Y3/1)
313.5 - 318.5	siltiger Ton, homogen, teilweise schwarze (2.5Y2.5/1) Flecken im cm-Bereich, Grundfärbe: sehr dunkelgrau (5Y3/1)
318.5 - 412.0	siltiger Ton, homogen, teilweise schwarze (2.5Y2.5/1) Laminae im mm-Bereich und schwarzen (2.5Y2.5/1) Flecken im cm- Bereich, Grundfarbe: sehr dunkelgrau (5Y3/1)
412.0 - 490.0	siltiger Ton, schwarze (2.5Y2.5/1) Flecken im cm-Bereich, Grundfarbe: sehr dunkelgrau (5Y3/1)
490.0 - 460.0	siltiger Ton, homogen, teilweise schwarze (2.5Y2.5/1) Laminae im mm-Bereich und schwarzen (2.5Y2.5/1) Flecken im cm- Bereich, Grundfarbe: sehr dunkelgrau (5Y3/1)

Fortsetzung PG11	11-6
Bohrtiefe [cm]	Beschreihung
	siltiger Ton schwarze (5V2 5/1) Laminae im mm-Bereich Grundfarbe; sehr
400.0 - 500.0	dunkelgrau (5Y3/1) bis dunkelgrau (5Y4/1)
PG1111-7	
Bohrtiefe [cm]	Beschreibung
511.0 - 545.0	siltiger Ton, gut ausgeprägte cm- Schichtung von sehr dunkelgrauen (5Y3/1) und schwarzen (5Y2.5/1) Lagen
545.0 - 551.0	siltiger Ton, homogen, sehr dunkel grau (5Y3/1)
551.0 - 553.0	siltiger Ton, schwarz (5Y2.5/1)
553.0 - 559.0	siltiger Ton, homogen, sehr dunkel grau (5Y3/1)
559.0 - 560.0	siltiger Ton, schwarz (5Y2.5/1)
560.0 - 630.0	siltiger Ton, homogen, sehr dunkel grau (5Y3/1)
630.0 - 636.0	siltiger Ton, schwarz (5Y2.5/1)
636.0 - 682.0	siltiger Ton, homogen, vereinzelt schwarze (5Y2.5/1) mm- Laminae, Grundfarbe: dunkelgrau (2.5Y4/1) bis sehr dunkel grau (2.5Y3/1)
682.0 - 687.0	schwach siltiger Ton, Laminierung im mm- Bereich, sehr dunkelgrau (5Y3/1) bis dunkelgrau (5Y4/1)
687.0 - 700.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, sehr dunkelgrau (5Y3/1) bis dunkelgrau (5Y4/1)
700.0 - 704.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1)
704.0 - 804.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, olivbraun (2.5Y4/3), dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1), schwarze (2.5Y2.5/1) Lagen bei 770.0 cm, 776.0 cm, 778.0 cm und 780.0 cm
PG1111-8	↓
Bohrtiefe [cm]	Beschreibung
761.0 - 763.0	schwach siltiger Ton, homogen, dunkelgrau (5Y4/1)
763.0 - 777.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, olivbraun (2.5Y4/3), dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1)
777.0 - 782.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, hell olivbraun (2.5Y5/3 und 2.5Y5/4)
782.0 - 791.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, olivbraun (2.5Y4/3), dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1)
791.0 - 795.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- bis cm Bereich, hell olivbraun (2.5Y5/3 und 2.5Y5/4)
795.0 - 799.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, olivbraun (2.5Y4/3), dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1)
799.0 - 804.5	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- bis cm Bereich, hell olivbraun (2.5Y5/3 und 2.5Y5/4)
804.5 - 810.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, olivbraun (2.5Y4/3), dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1)
810.0 - 821.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- bis cm Bereich, hell olivbraun (2.5Y5/3 und 2.5Y5/4)
821.0 - 828.5	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, olivbraun (2.5Y4/3), dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1)
828.5 - 842.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- bis cm Bereich,
	[101101101111(2.515)50110(2.515)4]

.

Bohrtiefe [cm]	Beschreibung
842.0 - 848.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- Bereich, olivbraun (2.5Y4/3), dunkel graubraun (2.5Y4/2) bis dunkelgrau (5Y4/1)
848.0 - 861.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- bis cm Bereich, hell olivbraun (2.5Y5/3 und 2.5Y5/4)
861.0	1 bis 2 cm größer Kiesel
861.0 - 884.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- bis cm Bereich, hell olivbraun (2.5Y5/3 und 2.5Y5/4), dunkel graubraune (2.5Y4/2), siltige bis feinsandige Lagen bei 871.0 cm, 876.5 cm und 877.5 cm
884.0 - 901.0	schwach siltiger Ton, homogen, sehr dunkelgraubraun (2.5Y3/2), zwei schräg geschichtete, dunkel graubraune (2.5Y4/2) Lagen
901.0 - 921.0	schwach siltiger Ton, homogen, dunkelgraubraun (2.5Y3/2), bei 908.5 cm dunkelgraue bis dunkel günliche graue (5Y4/1 bis 5GY4/1) Lage
921.0 - 951.0	schwach siltiger Ton, sehr gut ausgeprägte Laminierung im mm- bis cm Bereich, olivebraun (2.5Y4/3) bis helles olivbraun (2.5Y5/3), dunkel graubraune (2.5Y4/2), siltige bis feinsandige Lagen bei 931.0 cm, 935.0 cm, 936.0 cm, 941.0 cm, 943.5 cm, 944.5 cm und 946.0 cm
951.0 - 955.0	schwach siltiger Ton, homogen, braun (10YR5/3)
955.0 - 956.0	schwach siltiger Ton, homogen, olivgrau (5Y5/2)
956.0 - 991.0	schwach siltiger Ton, homogen bis leichte Laminierung im mm-Bereich, graubraun (2.5Y5/2) bis dunkel graubraun (2.5Y4/2), dunkle graubraune (2.5Y4/2), siltige bis feinsandige Bänder bei 974.0 cm, 985.0 cm und 989.5 cm
991.0 - 995.0	schwach siltiger Ton, homogen, braun (10YR5/3), dunkle graubraune (2.5Y4/2), siltige bis feinsandige Bänder bei 992.0 cm und 993.5
995.0 - 1005.0	schwach siltiger Ton, homogen bis leichte Laminierung im mm-Bereich, hell olivbraun (2.5Y5/3)
1005.0 - 1009.0	Silt bis Feinsand, homogen, olivbraun (2.5Y4/3)
1000.9 - 1021.0	schwach siltiger Ton, homogen bis leichte Laminierung im mm-Bereich, hell olivbraun (2.5Y 5/3)
1021.0 - 1023.0	toniger Silt, homogen, dunkelgrau (5Y4/2)
1023.0 - 1051.0	schwach siltiger Ton, homogen bis leichte Laminierung im mm-Bereich, braun (10YR5/3), helle olivbraune (2.5Y5/3), dunkelgraue (10YR4/1) und sehr dunkle graubraune (10YR3/2) Lagen bei 10.27.5 cm, 1033.5 cm und zwischen 1036.0 - 1040.0 cm

Tab. A-6: Wassergehalte der Oberflächenkerne

Titles [Em] Town Come.*30 Come.*30 <thcome.*30< th=""> <thcome.*30< th=""> <thc< th=""><th></th><th>PG1114</th><th></th><th>PG1107</th><th></th><th>PG1108</th><th></th><th>PG1109</th><th></th><th>PG1110</th><th></th></thc<></thcome.*30<></thcome.*30<>		PG1114		PG1107		PG1108		PG1109		PG1110	
0.5 20.36 0.204 36.56 0.366 45.46 0.467 52.60 0.526 53.34 0.534 2.5 19.99 0.200 32.58 0.326 0.326 0.426 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.441 40.80 0.443 40.81 0.423 0.483 0.401 40.41 40.80 0.443 40.81 0.423 0.481 40.16 0.482 0.481	Tiefe [cm]	[Gew.%]	[ww]	[Gew.%]	[ww]	[Gew.%]	[ww]	[Gew.%]	[ww]	[Gew.%]	[ww]
1.5 20.20 0.202 34.34 0.343 43.86 0.437 51.82 0.518 53.5 0.050 32.58 0.328 0.428 0.428 0.428 0.441 45.58 0.465 3.5 10.010 32.86 0.329 31.23 0.412 40.88 0.441 42.56 0.445 5.5 18.61 0.196 32.76 0.328 37.14 0.314 45.14 0.451 42.86 0.463 5.5 18.62 0.171 27.59 0.276 39.82 0.398 47.81 0.474 46.16 0.449 9.5 18.57 0.180 22.88 0.276 39.83 0.396 47.61 0.476 46.18 0.429 9.5 18.97 0.190 37.47 0.375 46.80 0.449 0.439 0.449 15.5 18.87 0.194 37.47 0.372 46.80 0.469 4.817 0.466 15.5 18.37 0.194 37.47 0.374 46.80 0.467 0.467 15.5 18.57 <td>0.5</td> <td>20.35</td> <td>0.204</td> <td>36.55</td> <td>0.366</td> <td>45.46</td> <td>0.455</td> <td>52.60</td> <td>0.526</td> <td>53.38</td> <td>0.534</td>	0.5	20.35	0.204	36.55	0.366	45.46	0.455	52.60	0.526	53.38	0.534
2.5 19.99 0.200 32.58 0.326 0.326 0.326 0.426 40.49 0.405 44.68 0.440 44.51 0.445 4.5 19.71 0.197 32.76 0.328 37.44 0.412 40.80 0.441 44.68 0.443 5.5 19.61 0.163 22.28 0.284 37.14 0.471 45.14 0.451 0.423 7.5 17.12 0.171 27.59 0.276 39.69 0.397 49.416 0.446 49.16 0.423 8.5 18.65 0.186 28.68 0.287 49.83 0.386 47.61 0.473 46.61 0.466 11.5 18.97 0.188 -40.15 0.390 44.88 0.449 48.51 0.466 11.5 18.80 0.188 37.17 0.372 47.24 0.472 46.55 0.466 15.5 19.37 0.191 37.47 0.372 47.34 0.471 46.63 0.462 15.5 19.57 0.193 37.47 0.374 49.20<	1.5	20.20	0.202	34.34	0.343	43.66	0.437	51.82	0.518	53.74	0.537
3.5 20.00 0.200 32.86 0.329 41.23 0.412 40.08 0.481 40.56 0.481 5.5 19.61 0.196 32.76 0.328 37.14 0.371 45.14 0.451 42.85 0.483 5.5 19.61 0.171 27.59 0.276 39.63 0.398 7.38 0.474 42.85 0.483 5.5 18.55 0.180 28.68 0.287 40.83 0.398 47.81 0.476 46.18 0.462 9.5 18.97 0.190 28.68 0.391 47.31 0.473 46.91 0.461 115 18.80 0.188 49.16 0.424 47.81 0.477 0.472 12.5 18.61 0.181 37.17 0.372 47.81 0.478 46.77 0.466 12.5 18.67 0.186 38.84 0.386 40.82 0.466 47.70 0.472 14.5 18.65 0.181 37.17 0.372 47.24 0.477 0.463 15.5 18.57	2.5	19.99	0.200	32.58	0.326	40.80	0.408	47.88	0.479	49.58	0.496
4.5 19.71 0.197 32.76 0.328 40.49 0.405 48.88 0.490 46.28 0.483 5.5 18.28 0.183 29.28 0.226 39.82 0.388 47.38 0.474 42.35 0.423 7.5 17.12 0.171 27.59 0.276 39.83 0.386 47.38 0.476 46.87 0.485 8.5 18.57 0.186 28.68 0.287 40.83 0.396 47.61 0.476 46.19 0.469 10.5 18.94 0.189 39.13 0.391 47.31 0.473 46.91 0.469 11.5 18.80 0.188 39.03 0.390 48.80 0.489 47.83 0.478 13.5 19.07 0.191 37.47 0.372 48.10 0.481 47.75 0.477 15.5 19.37 0.194 36.85 0.364 49.20 0.492 46.71 0.467 15.5 19.37 0.194 37.43 0.374 49.29 0.492 46.71 46.83 0.468 </td <td>3.5</td> <td>20.00</td> <td>0.200</td> <td>32.86</td> <td>0.329</td> <td>41.23</td> <td>0.412</td> <td>48.08</td> <td>0.481</td> <td>46.51</td> <td>0.465</td>	3.5	20.00	0.200	32.86	0.329	41.23	0.412	48.08	0.481	46.51	0.465
5.5 19.61 0.196 32.76 0.328 37.14 0.371 45.14 0.451 46.28 0.423 7.5 17.12 0.171 27.59 0.276 39.69 0.397 49.47 0.495 40.16 0.492 8.5 19.55 0.160 28.68 0.267 40.81 0.402 49.47 0.476 46.91 0.469 9.5 19.97 0.190 39.63 0.396 47.61 0.476 46.91 0.469 11.5 18.80 0.188 40.15 0.402 49.10 0.401 47.59 0.476 12.5 18.81 0.188 37.17 0.372 48.10 0.481 47.57 0.476 15.5 18.57 0.186 37.47 0.374 49.20 0.492 46.71 0.468 16.5 18.37 0.184 37.43 0.374 49.70 0.492 46.71 0.468 17.5 19.37 0.194 37.43 0.364 47.30 0.474 43.30 44.33 0.464 49.21 0.462 </td <td>4.5</td> <td>19.71</td> <td>0.197</td> <td>32.76</td> <td>0.328</td> <td>40.49</td> <td>0.405</td> <td>48.98</td> <td>0.490</td> <td>48.26</td> <td>0.483</td>	4.5	19.71	0.197	32.76	0.328	40.49	0.405	48.98	0.490	48.26	0.483
6.5 16.28 0.183 29.28 0.283 39.82 0.398 47.38 0.474 42.35 0.425 8.5 18.55 0.186 28.68 0.287 40.83 0.406 48.82 0.485 40.76 46.77 46.76 46.78 0.426 11.5 18.80 0.188 39.03 0.390 47.31 0.477 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.77 48.75 47.74 49.77 46.65 0.466 46.77 46.65 0.466 47.83 0.477 47.40 47.70 47.40 47.70 47.40 47.70 47.40 47.70 47.40 47.70 47.30 0.474 47.23 47.75 <td>5.5</td> <td>19.61</td> <td>0.196</td> <td>32.76</td> <td>0.328</td> <td>37.14</td> <td>0.371</td> <td>45.14</td> <td>0.451</td> <td>46.28</td> <td>0.463</td>	5.5	19.61	0.196	32.76	0.328	37.14	0.371	45.14	0.451	46.28	0.463
7.5 17.12 0.171 27.58 0.276 39.69 0.397 49.47 0.495 49.46 0.405 9.5 18.97 0.190 28.68 0.287 40.83 0.408 48.22 0.448 48.70 0.495 9.5 18.97 0.190 39.13 0.391 47.61 0.475 46.91 0.469 11.5 18.80 0.188 40.15 0.402 49.10 0.441 47.53 0.476 12.5 18.81 0.188 37.17 0.372 48.10 0.461 47.57 0.476 15.5 18.57 0.186 34.84 0.348 49.20 0.492 46.77 0.468 15.5 18.97 0.194 37.43 0.374 49.70 0.498 48.22 0.492 48.71 0.467 15.5 19.37 0.194 37.43 0.361 47.30 0.448 49.20 0.492 45.71 0.467 15.5 19.30 0.193 36.10 0.361 47.50 0.477 49.04 0.492 <t< td=""><td>6.5</td><td>18.28</td><td>0.183</td><td>29.28</td><td>0.293</td><td>39.82</td><td>0.398</td><td>47.38</td><td>0.474</td><td>42.35</td><td>0.423</td></t<>	6.5	18.28	0.183	29.28	0.293	39.82	0.398	47.38	0.474	42.35	0.423
8.5 10.55 0.186 28.68 0.287 40.83 0.408 48.62 0.488 40.76 4.618 0.462 10.5 18.94 0.189 39.13 0.391 47.31 0.473 46.18 0.462 12.5 18.81 0.188 40.15 0.402 48.18 0.489 47.83 0.473 13.5 19.07 0.181 37.47 0.375 48.10 0.486 47.83 0.478 14.5 18.26 0.183 37.47 0.374 49.20 0.482 46.71 0.467 15.5 19.37 0.194 38.65 0.364 49.20 0.492 46.71 0.467 15.5 19.37 0.194 38.65 0.361 49.70 0.497 47.04 0.470 15.5 19.37 0.194 38.10 0.361 47.53 0.477 49.30 0.483 15.5 19.37 0.194 36.65 0.366 47.52 0.475 51.20 51.52 0.501 25.5 19.33 0.195 33.38 </td <td>7.5</td> <td>17.12</td> <td>0.171</td> <td>27.59</td> <td>0.276</td> <td>39.69</td> <td>0.397</td> <td>49.47</td> <td>0.495</td> <td>49.16</td> <td>0.492</td>	7.5	17.12	0.171	27.59	0.276	39.69	0.397	49.47	0.495	49.16	0.492
9.5 18.97 0.190 39.63 0.396 47.61 0.476 0.476 0.478 46.18 0.469 11.5 18.80 0.188 40.15 0.402 49.10 0.491 46.85 0.486 12.5 18.81 0.186 39.03 0.390 48.86 0.494 47.83 0.472 46.65 0.486 13.5 19.07 0.191 37.47 0.375 48.10 0.481 46.71 0.468 14.5 18.57 0.186 34.84 0.344 48.62 0.486 46.77 0.468 15.5 19.37 0.194 37.43 0.374 49.79 0.492 46.82 0.482 18.5 19.36 0.193 36.05 0.366 47.52 0.477 49.30 0.492 21.5 19.34 0.191 36.65 0.366 47.52 0.477 49.30 0.493 22.5 19.33 0.191 36.65 0.364 47.52 0.475 51.20 0.512 22.5 19.34 0.192 33.38 </td <td>8.5</td> <td>18.55</td> <td>0.186</td> <td>28.68</td> <td>0.287</td> <td>40.83</td> <td>0,408</td> <td>48.82</td> <td>0.488</td> <td>48.70</td> <td>0.487</td>	8.5	18.55	0.186	28.68	0.287	40.83	0,408	48.82	0.488	48.70	0.487
10.5 18.94 0.189 39.13 0.391 47.31 0.473 46.91 0.669 11.5 18.80 0.186 40.15 0.402 49.10 0.491 48.59 0.486 12.5 19.07 0.191 37.47 0.372 47.24 0.472 46.65 0.466 15.5 18.57 0.183 37.17 0.372 47.24 0.472 46.67 0.466 15.5 18.67 0.194 36.85 0.369 49.20 0.492 46.77 0.467 17.5 19.37 0.194 36.65 0.364 47.33 0.473 46.83 0.468 18.5 19.49 0.193 36.10 0.361 47.04 0.470 49.30 0.493 22.5 19.34 0.193 36.65 0.366 47.52 0.477 49.30 0.493 22.5 19.33 0.191 36.65 0.366 47.62 0.477 49.30 0.493 22.5 19.40 0.192 36.31 0.363 49.40 0.494 48.49<	9.5	18.97	0.190			39.63	0.396	47.61	0,476	46.18	0.462
11.5. 18.80 0.186 40.15 0.402 49.10 0.4491 48.59 0.480 12.5. 18.81 0.186 39.03 0.390 48.86 0.4491 47.87 0.472 13.5. 18.67 0.191 37.47 0.375 48.10 0.4491 47.67 0.466 15.5 18.67 0.186 34.84 0.348 48.62 0.486 46.77 0.468 15.5 19.37 0.194 37.43 0.374 49.79 0.492 46.83 0.468 19.5 19.34 0.193 36.05 0.364 47.33 0.473 47.04 0.470 22.5 19.34 0.193 36.05 0.360 46.16 0.462 48.37 0.484 21.5 19.13 0.191 36.65 0.366 47.55 0.475 51.21 0.462 48.37 0.484 22.5 19.33 0.192 63.10 0.361 47.26 0.475 51.21 0.482 22.5 19.50 0.192 63.1 0.361 4	10.5	18.94	0.189			39.13	0.391	47.31	0.473	46.91	0.469
12.5 19.81 0.186 39.03 0.390 48.88 0.489 47.83 0.476 14.5 19.07 0.191 37.47 0.372 47.24 0.476 0.76 14.5 18.67 0.183 37.17 0.372 47.24 0.472 0.6461 46.65 0.466 15.5 19.37 0.194 36.85 0.369 49.20 0.492 46.71 0.468 15.5 19.37 0.194 36.65 0.364 47.33 0.473 46.82 0.482 19.5 19.49 0.195 36.10 0.361 47.65 0.477 48.12 0.482 21.5 19.05 0.190 36.10 0.361 47.65 0.477 51.21 0.591 22.5 19.44 0.191 36.55 0.364 47.10 0.475 51.21 0.592 22.5 19.53 0.191 36.42 0.384 47.64 0.449 49.21 0.492 22.5 19.53 0.192 36.31 0.363 49.20 0.492 50.30<	11.5	18.80	0.188			40.15	0.402	49.10	0.491	48.59	0.486
13.5 19.07 0.191 37.47 0.375 48.10 0.481 47.57 0.476 14.5 18.57 0.183 37.17 0.372 47.24 0.462 0.466 46.77 0.468 15.5 19.37 0.194 36.85 0.369 49.20 0.492 46.71 0.468 17.5 19.37 0.194 36.40 0.374 49.79 0.498 48.22 0.482 18.5 18.95 0.189 35.40 0.361 49.70 0.497 47.40 0.470 19.5 19.34 0.193 36.05 0.360 46.16 0.462 48.37 0.484 21.5 19.05 0.191 36.65 0.366 47.52 0.475 51.21 0.512 22.5 19.13 0.191 36.65 0.366 47.52 0.475 51.21 0.512 24.5 19.24 0.192 36.31 0.336 49.40 0.494 49.21 0.492 50.30 0.501 25.5 19.53 0.195 33.38 0.334<	12.5	18.81	0.188			39.03	0.390	48.88	0.489	47.83	0.478
14.5 16.26 0.183 3',1' 0.3'2 4',24 0.4'24 46.6b 0.46b 15.5 18.57 0.186 34.84 0.364 46.20 0.492 46,7'1 0.468 15.5 19.37 0.194 37.43 0.374 49.79 0.498 48.22 0.482 18.5 19.49 0.195 35.40 0.364 47.33 0.473 46.83 0.468 19.5 19.49 0.195 36.10 0.361 47.55 0.477 49.30 0.493 22.5 19.13 0.191 36.65 0.366 47.10 0.477 51.21 0.512 23.5 18.88 0.187 36.31 0.363 49.40 0.494 49.21 0.492 25.5 19.37 0.194 36.31 0.363 49.40 0.494 51.40 0.514 25.5 19.37 0.195 33.38 0.344 49.28 0.495 51.52 0.515 25.5 19.50 0.195 49.23 0.492 53.41 0.531	13.5	19.07	0.191			37.47	0.375	48.10	0.481	47.57	0.476
1b.5 18.57 0.186 34.84 0.348 48.62 0.488 48.77 0.468 1c5 19.37 0.194 35.85 0.356 49.79 0.492 48.71 0.467 1c5 19.37 0.194 37.43 0.354 49.79 0.492 48.71 0.462 1b.5 19.49 0.195 36.10 0.361 49.70 0.497 47.04 0.470 20.5 19.34 0.193 36.05 0.366 47.52 0.477 49.30 0.493 21.5 19.05 0.190 36.10 0.361 47.65 0.477 49.30 0.493 22.5 19.13 0.191 36.65 0.366 47.52 0.475 51.21 0.512 24.5 19.24 0.192 36.31 0.363 49.40 0.484 50.30 0.603 25.5 19.50 0.192 33.38 0.324 49.28 0.492 53.41 0.513 26.5 19.81 0.192 50.70 0.507 51.20 0.512	14.5	18.26	0.183			37.17	0.372	47.24	0.472	46.65	0.466
18.5 19.37 0.194 36.85 0.369 49.20 0.482 46.71 0.482 18.5 18.95 0.189 37.43 0.374 49.79 0.482 46.22 0.482 19.5 19.49 0.195 36.10 0.361 49.70 0.492 46.21 0.473 20.5 19.34 0.193 36.10 0.361 47.65 0.477 49.30 0.482 22.5 19.34 0.192 36.31 0.366 47.65 0.477 49.30 0.483 22.5 19.24 0.192 36.31 0.363 49.40 0.494 49.21 0.492 25.5 19.53 0.195 33.38 0.364 47.10 0.471 50.30 0.503 27.5 19.81 0.192 36.31 0.363 49.40 0.485 50.30 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.505 0.506 6.514 0.505 6.763 0.507 6.120 0.514	15.5	18.57	0.186			34.84	0.348	48,62	0.486	46.77	0.468
17.519.370.19437.430.374 49.79 0.498 48.22 0.48218.518.950.18935.400.35447.330.47348.270.48019.519.490.19336.050.36447.730.47447.040.47020.519.340.19336.050.36147.750.47747.040.47021.519.050.19036.100.36147.750.47751.210.51222.519.130.19136.650.36447.100.47150.090.69124.519.240.19236.310.36447.100.47449.210.49225.519.530.19533.380.33449.220.48350.300.50328.519.500.19548.480.48551.490.51528.519.500.19550.700.5071.200.51233.520.770.20851.520.51450.730.47535.520.630.20650.540.50547.550.47635.520.630.20647.360.44547.880.48535.520.630.20645.030.450449.950.47236.520.630.20645.830.450445.8447.180.47237.521.200.21245.800.45647.980.48235.520.630.20245.800.45647.980.472 </td <td>16.5</td> <td>19.37</td> <td>0.194</td> <td></td> <td></td> <td>36.85</td> <td>0.369</td> <td>49.20</td> <td>0.492</td> <td>46.71</td> <td>0.467</td>	16.5	19.37	0.194			36.85	0.369	49.20	0.492	46.71	0.467
18.5 18.95 0.189 35.40 0.354 47.33 0.473 46.83 0.468 20.5 19.34 0.193 36.10 0.361 47.70 0.477 43.00 0.483 21.5 19.34 0.193 36.10 0.361 47.65 0.477 43.00 0.483 22.5 19.36 0.191 36.65 0.366 47.752 0.471 50.20 0.492 22.5 19.53 0.192 36.31 0.363 49.40 0.494 49.21 0.492 25.5 19.53 0.195 33.38 0.334 49.40 0.485 50.30 0.503 27.5 19.81 0.198 48.49 0.485 50.30 0.507 51.49 0.515 28.5 19.50 0.195 51.70 0.507 51.20 0.514 50.70 51.60 0.507 51.20 0.512 0.516 49.23 0.492 3.492 0.492 3.492 0.493 3.52 20.77 0.208 51.52 0.516 46.20 0.462 3.53 0	17.5	19.37	0.194			37.43	0.374	49.79	0.498	48.22	0.482
19.519.49 0.195 36.10 0.361 49.70 0.497 4.049 0.470 0.474 21.519.050.190 36.10 0.361 47.65 0.477 49.30 0.483 22.519.130.191 36.65 0.366 47.52 0.475 51.21 0.512 22.519.24 0.192 36.31 0.364 47.10 0.471 50.99 0.501 24.519.24 0.192 36.31 0.364 47.10 0.494 49.21 0.492 25.519.53 0.195 33.38 0.334 49.28 0.494 49.21 0.492 25.519.81 0.195 33.38 0.334 49.28 0.494 49.21 0.501 27.519.81 0.195 48.439 0.485 51.49 0.512 28.519.88 0.199 50.70 0.507 51.20 0.512 30.519.92 0.199 51.40 0.505 47.55 0.476 34.520.58 0.206 50.59 0.506 47.52 0.478 35.520.73 0.207 49.82 0.490 44.22 0.492 36.520.63 0.206 45.06 0.450 49.22 0.478 36.520.63 0.206 45.06 0.450 44.92 0.478 36.520.63 0.202 44.45 0.445 44.47 47.18 0.474 36.519.19 0.192 </td <td>18.5</td> <td>18.95</td> <td>0.189</td> <td></td> <td></td> <td>35.40</td> <td>0.354</td> <td>47.33</td> <td>0.473</td> <td>46.83</td> <td>0.468</td>	18.5	18.95	0.189			35.40	0.354	47.33	0.473	46.83	0.468
21.519.340.19336.050.36046.160.46248.370.48221.519.130.19136.050.36147.650.47551.210.51222.519.130.19136.650.36647.650.47750.090.50122.519.530.19236.310.36349.400.49449.210.49225.519.530.19533.380.33449.280.48550.390.50127.519.810.19848.490.48551.490.51528.519.500.19549.230.49253.140.51528.519.880.19951.700.50751.200.51230.520.290.20350.540.50547.550.47634.520.580.20650.590.50646.200.46235.520.730.20749.820.49847.810.47237.521.200.21245.310.45348.290.48338.520.630.20647.360.44547.180.47241.519.430.19245.800.43548.970.48144.519.440.19745.830.43949.240.49445.519.190.19245.870.45549.750.49245.519.190.19245.870.45849.130.49245.519.410.19745.800.45647.180.49	19.5	19.49	0.195			36.10	0.361	49.70	0.497	47.04	0.470
21.5 19.05 0.190 36.10 0.361 47.65 0.477 49.30 0.493 22.5 19.13 0.191 36.65 0.366 47.52 0.477 51.21 0.512 23.5 18.68 0.187 36.42 0.364 47.10 0.494 49.21 0.492 22.5 19.37 0.195 33.38 0.334 49.40 0.494 49.21 0.492 22.5 19.37 0.194 33.38 0.334 49.48 0.495 50.30 0.503 22.5 19.37 0.194 33.38 0.334 49.48 0.485 50.98 0.515 22.5 19.81 0.195 49.23 0.492 30.492 50.70 0.507 51.20 0.512 23.5 19.92 0.199 50.70 0.507 51.20 0.512 0.512 23.5 20.77 0.208 51.52 0.515 49.95 0.476 34.5 20.58 0.206 50.59 0.506 47.55 0.476 34.5 20.63 0.206 45.31 0.453 49.29 0.498 34.5 20.63 0.206 45.06 0.451 49.05 0.475 37.5 21.20 0.212 45.31 0.450 47.86 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.450 47.86 0.451 49.25 0.491 38.5 20.63 <	20.5	19.34	0.193			36.05	0.360	46.16	0.462	48.37	0.484
22.519.130.19136.650.36647.520.47551.210.511 24.5 19.240.19236.310.36349.400.49350.300.501 24.5 19.230.19533.380.33449.280.49350.300.503 25.5 19.530.19533.380.33449.280.49350.300.510 27.5 19.810.19548.480.48550.980.511 27.5 19.810.19549.230.49253.140.531 28.5 19.500.19551.400.51450.730.507 32.5 20.770.20851.520.51549.950.499 33.5 20.290.20350.540.50547.520.476 34.5 20.680.20650.590.50646.200.462 35.5 20.730.20749.820.49847.810.478 36.5 20.330.20645.060.45149.050.491 39.5 20.330.20645.060.45149.050.491 39.5 20.330.20245.310.45348.290.483 38.5 20.630.20645.060.45149.050.491 39.5 20.330.20245.800.46447.820.482 41.5 19.190.19245.800.45447.180.472 41.5 19.410.19745.800.43548.90	21.5	19.05	0.190			36.10	0.361	47.65	0.477	49.30	0.493
23.518.880.18736.420.36447.100.47150.030.50124.519.240.19236.310.36349.400.49449.210.49225.519.530.19533.380.33449.280.49350.300.50328.519.370.19448.490.48551.490.51528.519.500.19549.230.49253.140.53128.519.880.19951.700.50751.200.51230.519.920.19951.400.51450.730.50732.520.770.20851.520.51549.950.49933.520.290.20350.540.50646.200.46235.520.730.20749.820.49847.810.47836.520.630.20645.060.45149.050.49137.521.200.21245.310.45348.290.48338.520.630.20645.060.45149.050.49139.520.330.20245.800.45848.070.48142.519.810.19244.630.45648.970.48142.519.810.19245.800.45848.960.49043.519.740.19743.800.43949.440.49444.519.430.19442.840.45849.130.43945.519.710.197	22.5	19.13	0.191			36.65	0.366	47.52	0.475	51.21	0.512
24.319.240.19230.310.53349.63349.280.49449.210.49225.519.530.19533.380.33449.280.49350.300.50326.519.370.19433.380.33448.480.48550.980.51027.519.810.19848.490.48551.490.5150.51528.519.500.19549.230.49253.140.53129.519.880.19950.700.50751.200.51230.520.770.20851.520.51450.590.49933.520.290.20350.540.50547.550.47634.520.680.20650.590.50646.200.46235.520.730.20749.820.49847.810.47836.520.630.20647.360.45149.050.49139.520.330.20345.030.45047.980.48340.519.190.19244.450.44547.180.47241.520.630.20245.800.45948.900.49143.519.740.19743.930.43949.440.49444.519.430.19442.840.42849.250.42945.519.190.19245.870.45950.170.50245.519.190.19245.870.4589.130.49145.5	23.5	10.04	0.187			36,42	0.364	47.10	0.471	50.09	0.501
Lab19.530.19353.580.3540.4340.48553.580.3540.48427.519.810.19848.480.48551.490.51628.519.500.19549.230.49253.140.53128.519.880.19950.700.50751.200.51230.519.920.19951.400.51450.730.50732.520.770.20851.520.51449.950.49233.520.280.20650.590.50646.200.46234.520.630.20647.360.47447.520.47635.520.730.20749.820.49847.810.47836.520.630.20645.310.45348.290.48336.520.630.20645.310.45348.290.48338.520.630.20645.030.45047.980.48139.520.330.20345.030.45047.980.48142.519.190.19244.450.44547.180.47241.520.230.20245.800.45848.970.48142.519.510.19545.930.45948.960.49244.519.430.19442.840.42849.250.49245.519.190.19245.870.43548.990.48945.519.190.19245.870.45151.21<	24.0	19.24	0.192			30.31	0.363	49,40	0.494	49.21	0.492
27.5 19.31 0.193 0.194 0.143 0.143 0.143 0.143 0.143 27.5 19.81 0.195 49.23 0.485 51.49 0.515 28.5 19.50 0.199 50.70 0.507 51.20 0.517 29.5 19.92 0.199 51.40 0.515 49.95 0.499 30.5 20.29 0.203 51.52 0.515 49.95 0.499 33.5 20.29 0.203 50.54 0.506 47.55 0.476 34.5 20.58 0.206 50.59 0.506 46.20 0.462 35.5 20.63 0.206 47.36 0.474 47.52 0.476 36.5 20.63 0.206 47.36 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.453 48.29 0.483 38.5 20.63 0.202 45.03 0.450 47.98 0.480 10.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.90 0.489 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.43 0.194 42.84 0.428 49.25 0.452 45.5 19.43 0.194 42.84 0.428 49.25 0.452 45.5 19.79 0.458 48.9 0.489 <td< td=""><td>20.0</td><td>10.27</td><td>0.195</td><td></td><td></td><td>33.30</td><td>0.334</td><td>49.20</td><td>0.495</td><td>50.30</td><td>0.503</td></td<>	20.0	10.27	0.195			33.30	0.334	49.20	0.495	50.30	0.503
10:1010:1010:1010:1010:1010:1010:1010:1010:1028.519.880.19950.700.50751.200.53128.519.920.19951.400.51450.730.50730.519.920.20350.540.50547.550.49933.520.290.20350.540.50547.550.47634.520.580.20650.590.50646.200.46235.520.730.20749.820.49847.810.47836.520.630.20647.360.45149.050.49137.521.200.21245.310.45348.290.48338.520.630.20645.060.45149.050.49139.520.330.20245.030.45047.180.47241.520.230.20245.800.45848.070.48040.519.190.19244.450.44547.180.47241.520.230.20245.800.45848.900.48043.519.740.19743.930.43949.440.49444.519.440.49442.840.4220.4220.42245.519.190.19245.610.45161.210.51247.519.190.19245.640.45161.210.51247.519.190.19245.140.45161.210.512 <td>27.5</td> <td>19.37</td> <td>0.194</td> <td></td> <td></td> <td></td> <td></td> <td>48.49</td> <td>0.485</td> <td>51 49</td> <td>0.515</td>	27.5	19.37	0.194					48.49	0.485	51 49	0.515
10.50 10.50 10.50 10.50 0.102 0.110 0.511 0.501 30.5 19.92 0.199 51.40 0.514 50.73 0.507 32.5 20.77 0.208 51.52 0.515 49.95 0.499 33.5 20.29 0.203 50.54 0.505 47.55 0.476 34.5 20.58 0.206 50.59 0.504 47.81 0.472 36.5 20.63 0.206 47.36 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.453 48.29 0.498 38.5 20.63 0.206 47.36 0.474 47.52 0.473 38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.203 45.03 0.450 47.98 0.483 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 19.51 0.195 45.93 0.459 48.96 0.490 43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.48 0.197 43.93 0.439 49.44 0.494 45.5 19.19 0.192 45.87 0.425 61.17 0.502 45.5 19.19 0.192 45.87 0.435 48.89 0.489 45.5 19.55 0.195 45.79 0.458 49.13 <	28.5	19.50	0.100					49.23	0.400	53 14	0.531
30.519.920.19951.400.51450.730.50732.520.770.20851.520.51549.950.49933.520.290.20350.540.50547.550.47634.520.580.20650.590.50646.200.46235.520.730.20749.820.49847.810.47836.520.630.20647.360.47447.520.47537.521.200.21245.310.45348.290.48838.520.630.20645.060.45149.050.49139.520.330.20345.030.46047.980.48040.519.190.19244.450.44547.180.47241.520.230.20245.800.45848.070.48142.519.510.19545.930.45949.440.49444.519.430.19442.840.42849.250.49245.519.190.19245.140.45151.210.51245.519.190.19245.140.45848.900.48945.519.710.19747.800.47848.670.48745.50.195.57.90.45849.130.49145.519.710.19747.800.47848.670.48745.519.550.195.57.90.45849.130.49145.519.650.	29.5	19.88	0 199					50 70	0.507	51.20	0.512
32.5 20.77 0.208 51.52 $0.51.5$ 49.95 0.439 33.5 20.29 0.203 50.54 0.505 47.55 0.476 34.5 20.58 0.206 50.59 0.506 46.20 0.462 35.5 20.73 0.207 49.82 0.498 47.81 0.474 36.5 20.63 0.206 47.36 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.453 48.29 0.483 38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.203 45.03 0.456 47.98 0.480 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 45.93 0.459 48.96 0.481 42.5 19.74 0.197 43.39 0.439 49.44 0.494 44.5 19.44 0.492 43.50 0.458 48.07 0.481 42.5 19.19 0.192 45.14 0.451 51.21 0.502 45.5 19.19 0.192 45.14 0.451 51.21 0.512 45.5 0.195 45.79 0.458 49.13 0.491 45.5 0.195 45.79 0.458 49.13 0.491 45.5 0.19	30.5	19.92	0.199					51 40	0.514	50.73	0.507
33.5 20.29 0.203 50.54 0.505 47.55 0.476 34.5 20.58 0.206 50.59 0.506 46.20 0.462 35.5 20.73 0.207 49.82 0.498 47.81 0.478 36.5 20.63 0.206 47.36 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.453 48.29 0.483 38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.202 45.80 0.458 48.89 0.480 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 45.93 0.459 48.96 0.490 43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.192 45.87 0.459 50.17 0.502 47.5 19.19	32.5	20.77	0.208					51.52	0.515	49.95	0.499
34.5 20.58 0.206 50.59 0.506 46.20 0.462 35.5 20.73 0.207 49.82 0.498 47.81 0.478 36.5 20.63 0.206 47.36 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.453 48.29 0.483 38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.202 45.03 0.450 47.98 0.480 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 43.93 0.439 49.44 0.494 44.5 19.43 0.197 43.83 0.428 49.25 0.492 45.5 19.19 0.192 43.50 0.435 48.89 0.489 46.5 18.85 0.189 45.87 0.455 50.17 0.502 47.5 19.19	33.5	20.29	0.203					50.54	0.505	47.55	0.476
35.5 20.73 0.207 49.82 0.498 47.81 0.478 36.5 20.63 0.206 47.36 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.453 48.29 0.483 38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.203 45.03 0.450 47.98 0.480 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 45.67 0.455 50.17 0.502 47.5 19.19 0.192 45.87 0.455 50.17 0.502 47.5 19.19 0.192 45.14 0.474 49.25 0.489 46.5 19.55 0.195 45.79 0.478 48.67 0.487 48.5 0.185 0.185 49.25 0.492 49.70 0.497 45.5 19.43 0.194 49.970 0.497 49.74 0.497 55.5 19.65 0.196 45.88 0.489 47.43 0.479 <	34.5	20.58	0.206					50.59	0.506	46.20	0.462
38.5 20.63 0.206 47.36 0.474 47.52 0.475 37.5 21.20 0.212 45.31 0.453 48.29 0.483 38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.203 45.03 0.450 47.98 0.480 40.5 19.19 0.192 44.45 0.445 47.86 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 45.67 0.435 48.89 0.489 45.5 19.19 0.192 45.67 0.459 50.17 0.502 47.5 19.19 0.192 45.67 0.451 51.21 0.512 45.5 19.71 0.197 47.80 0.478 48.67 0.487 45.5 0.195 0.195 45.79 0.458 49.13 0.491 45.5 0.195 0.195 45.93 0.494 49.70 0.497 45.5 0.198 0.191 48.89 0.489 0.489 0.489 45.5 0.198 0.191 48.89 0.489 0.492 0.492 45.5 0.198 0.191 48.89 0.489 0.492 0.492 </td <td>35.5</td> <td>20.73</td> <td>0.207</td> <td></td> <td></td> <td></td> <td></td> <td>49.82</td> <td>0.498</td> <td>47.81</td> <td>0.478</td>	35.5	20.73	0.207					49.82	0.498	47.81	0.478
37.5 21.20 0.212 45.31 0.453 48.29 0.483 38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.203 45.03 0.450 47.98 0.480 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 45.93 0.459 48.96 0.490 43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 43.50 0.435 48.89 0.489 46.5 18.85 0.189 45.87 0.459 50.17 0.502 47.5 19.19 0.192 45.14 0.478 48.67 0.487 48.5 19.71 0.197 47.80 0.478 48.67 0.487 49.5 0.955 0.195 45.79 0.458 49.13 0.491 50.5 19.25 0.193 43.99 0.440 49.23 0.492 55.5 19.65 0.196 45.23 0.452 47.88 0.489 56.5 19.43 0.194 43.99 0.440 49.23 0.492 57.5 18.86 0.189 45.23 0.452 47.88 0.489 </td <td>36.5</td> <td>20.63</td> <td>0.206</td> <td></td> <td></td> <td></td> <td></td> <td>47.36</td> <td>0.474</td> <td>47.52</td> <td>0.475</td>	36.5	20.63	0.206					47.36	0.474	47.52	0.475
38.5 20.63 0.206 45.06 0.451 49.05 0.491 39.5 20.33 0.203 45.03 0.450 47.98 0.480 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 45.93 0.459 48.96 0.490 43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 43.50 0.435 48.89 0.489 46.5 18.85 0.189 45.87 0.451 51.21 0.512 47.5 19.19 0.192 45.14 0.451 51.21 0.512 48.5 19.71 0.197 47.80 0.478 48.67 0.487 49.5 19.55 0.193 43.90 0.439 48.89 0.489 51.5 19.65	37.5	21.20	0.212					45.31	0.453	48.29	0.483
39.5 20.33 0.203 45.03 0.450 47.98 0.480 40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 45.93 0.459 48.96 0.490 43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 45.67 0.459 50.17 0.502 47.5 19.19 0.192 45.14 0.478 48.67 0.487 48.5 0.197 47.80 0.478 49.13 0.491 45.5 19.55 0.195 45.79 0.458 49.13 0.491 49.5 0.192 45.14 0.478 48.67 0.487 49.5 0.195 0.195 45.79 0.458 49.13 0.491 50.5 19.25 0.193 45.79 0.458 49.13 0.491 51.5 19.66 0.186 49.35 0.494 49.70 0.497 53.5 19.66 0.196 45.58 0.456 47.98 0.480 55.5 19.66 0.198 45.23 0.440 49.23 0.492 55.5 19.66 0.198 45.23 0.456 47.98 0.479 56.5 19.49	38.5	20.63	0.206					45.06	0.451	49.05	0.491
40.5 19.19 0.192 44.45 0.445 47.18 0.472 41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 45.93 0.459 48.96 0.490 43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 43.50 0.435 48.89 0.489 46.5 18.85 0.189 45.87 0.459 50.17 0.502 47.5 19.19 0.192 45.14 0.451 51.21 0.512 47.5 19.71 0.197 47.80 0.478 48.67 0.487 49.5 0.195 0.195 0.195 45.79 0.458 49.13 0.491 50.5 19.25 0.193 43.90 0.439 48.89 0.489 51.5 19.68 0.191 48.89 0.489 47.43 0.474 44.5 19.43 0.194 43.99 0.440 49.23 0.492 55.5 19.65 0.196 45.28 0.456 47.98 0.480 56.5 19.49 0.195 48.91 0.489 47.43 0.474 56.5 19.49 0.195 48.91 0.489 49.71 0.497 57.5 18.86 0.189 45.23 0.456 47.88 <t< td=""><td>39.5</td><td>20.33</td><td>0.203</td><td></td><td></td><td></td><td></td><td>45.03</td><td>0.450</td><td>47.98</td><td>0.480</td></t<>	39.5	20.33	0.203					45.03	0.450	47.98	0.480
41.5 20.23 0.202 45.80 0.458 48.07 0.481 42.5 19.51 0.195 45.93 0.459 48.96 0.490 43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 43.50 0.435 48.89 0.489 46.5 18.85 0.189 45.87 0.451 51.21 0.512 47.5 19.19 0.192 45.14 0.478 48.67 0.487 49.5 19.71 0.197 47.80 0.478 48.67 0.487 49.5 0.195 0.195 45.79 0.458 49.13 0.491 50.5 19.25 0.193 43.90 0.439 48.89 0.489 51.5 19.68 0.186 46.25 0.462 50.05 0.501 52.5 18.58 0.186 49.35 0.494 49.70 0.497 53.5 19.65 0.196 45.23 0.426 47.43 0.474 54.5 19.43 0.194 43.99 0.440 49.23 0.492 55.5 19.65 0.196 45.23 0.425 47.86 0.479 58.5 19.43 0.193 43.68 0.437 46.78 0.480 58.5 19.95 0.187 43.68 0.437 46.78 0.462 </td <td>40.5</td> <td>19.19</td> <td>0.192</td> <td></td> <td></td> <td></td> <td></td> <td>44.45</td> <td>0.445</td> <td>47.18</td> <td>0.472</td>	40.5	19.19	0.192					44.45	0.445	47.18	0.472
42.519.510.195 45.93 0.459 48.96 0.490 43.5 19.740.197 43.93 0.439 49.44 0.494 44.5 19.430.194 42.84 0.428 49.25 0.492 45.5 19.190.192 43.50 0.435 48.89 0.489 45.5 19.190.192 43.50 0.451 51.21 0.512 47.5 19.190.192 45.14 0.478 48.67 0.487 48.5 19.710.197 47.80 0.478 48.67 0.487 49.5 19.550.195 45.79 0.458 49.13 0.491 50.5 19.250.193 43.90 0.439 48.89 0.489 51.5 18.540.185 46.25 0.46250.050.501 52.5 18.580.186 49.35 0.494 49.70 0.497 53.5 19.080.191 48.89 0.489 47.43 0.474 54.5 19.430.194 43.99 0.440 49.23 0.492 55.5 19.650.196 45.23 0.456 47.98 0.480 56.5 19.490.195 48.91 0.489 49.71 0.497 57.5 18.860.189 43.68 0.437 46.78 0.468 59.5 19.750.187 43.68 0.437 46.78 0.468 59.5 19.750.187 43.60 0.4350.462 59.5 19.700.	41.5	20.23	0.202					45.80	0.458	48.07	0.481
43.5 19.74 0.197 43.93 0.439 49.44 0.494 44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 43.50 0.435 48.89 0.489 46.5 18.85 0.189 45.87 0.459 50.17 0.502 47.5 19.19 0.192 45.14 0.451 51.21 0.512 48.5 19.71 0.197 47.80 0.478 48.67 0.487 49.5 19.55 0.195 45.79 0.458 49.13 0.491 40.5 19.25 0.193 43.90 0.439 48.89 0.489 51.5 18.54 0.185 46.25 0.462 50.05 0.501 52.5 18.58 0.186 49.35 0.494 49.70 0.474 43.99 0.440 49.23 0.492 0.423 0.492 54.5 19.43 0.194 43.99 0.440 49.23 0.492 55.5 19.65 0.196 45.58 0.456 47.98 0.480 56.5 19.49 0.193 48.91 0.489 49.71 0.497 57.5 18.86 0.189 43.68 0.437 46.78 0.468 59.5 19.75 0.187 43.68 0.435 46.62 59.5 19.75 0.187 43.60 0.435 59.5 19.70 0.197 46.1	42.5	19.51	0.195					45.93	0.459	48.96	0.490
44.5 19.43 0.194 42.84 0.428 49.25 0.492 45.5 19.19 0.192 43.50 0.435 48.89 0.489 46.5 18.85 0.189 45.87 0.459 50.17 0.502 47.5 19.19 0.192 45.14 0.451 51.21 0.512 48.5 19.71 0.197 47.80 0.478 48.67 0.487 49.5 19.55 0.195 45.79 0.438 49.13 0.491 50.5 19.25 0.193 43.90 0.439 48.89 0.489 51.5 18.54 0.185 46.25 0.462 50.05 0.501 52.5 18.58 0.186 49.35 0.494 49.70 0.497 53.5 19.08 0.191 48.89 0.489 47.43 0.474 43.99 0.440 49.23 0.492 0.492 0.492 55.5 19.65 0.196 45.58 0.456 47.98 0.480 56.5 19.49 0.195 48.91 0.489 49.71 0.497 57.5 18.86 0.189 43.68 0.437 46.78 0.468 59.5 19.35 0.193 43.68 0.437 46.78 0.468 59.5 19.70 0.197 46.18 0.462 0.423 59.5 19.70 0.197 46.18 0.462 0.423	43.5	19.74	0.197					43.93	0.439	49.44	0.494
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.5	19.43	0.194					42.84	0.428	49.25	0.492
46.5 18.85 0.189 45.87 0.459 50.17 0.502 47.5 19.19 0.192 45.14 0.451 51.21 0.512 48.5 19.71 0.197 47.80 0.478 48.67 0.487 49.5 19.55 0.195 45.79 0.458 49.13 0.491 50.5 19.25 0.193 43.90 0.439 48.89 0.489 51.5 18.54 0.185 46.25 0.462 50.05 0.501 52.5 18.58 0.186 49.35 0.494 49.70 0.497 53.5 19.08 0.191 48.89 0.489 47.43 0.474 54.5 19.43 0.194 43.99 0.440 49.23 0.492 55.5 19.65 0.196 45.58 0.456 47.98 0.480 56.5 19.45 0.195 48.91 0.489 49.71 0.497 57.5 18.86 0.189 43.68 0.437 46.78 0.468 59.5 19.35 0.193 43.68 0.437 46.78 0.468 59.5 19.70 0.197 46.18 0.462 0.423 59.5 19.70 0.197 46.18 0.462 59.5 19.70 0.197 46.18 0.462 59.5 19.70 0.197 46.18 0.462 59.5 19.70 0.197 46.18 0.462 59.5 <t< td=""><td>45.5</td><td>19.19</td><td>0.192</td><td></td><td></td><td></td><td></td><td>43.50</td><td>0.435</td><td>48.89</td><td>0.489</td></t<>	45.5	19.19	0.192					43.50	0.435	48.89	0.489
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46.5	18.85	0.189					45.87	0.459	50.17	0.502
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.5	19,19	0.192					45.14	0.451	51.21	0.512
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48.5	19.71	0.197					47.80	0.478	48.67	0.487
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49.5	19.55	0.195					45.79	0.458	49.13	0.491
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.5	19.25	0.193					43.90	0.439	48.89	0.489
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51.5	18.54	0.185					46.25	0.462	50.05	0.501
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52.5	18.58	0.186					49.35	0.494	49.70	0.497
54.5 19.43 0.194 43.99 0.440 49.23 0.492 55.5 19.65 0.196 45.58 0.456 47.98 0.480 56.5 19.49 0.195 48.91 0.480 49.23 0.497 57.5 18.86 0.189 45.23 0.452 47.88 0.479 58.5 19.35 0.193 43.68 0.437 46.78 0.468 59.5 18.75 0.187 43.50 0.435 0.462 50.5 19.70 0.197 46.18 0.462 51.5 0.180 42.92 0.423 0.423	53.5	19.08	0.191					48.89	0.489	47.43	0.474
55.5 19.65 0.196 45.58 0.456 47.98 0.480 66.5 19.49 0.195 48.91 0.489 49.71 0.497 57.5 18.86 0.189 45.23 0.452 47.88 0.479 58.5 19.35 0.193 43.68 0.437 46.78 0.468 59.5 18.75 0.187 43.50 0.435 0.462 50.5 19.70 0.197 46.18 0.462 51.5 0.180 42.23 0.423 0.423	54.5	19.43	0.194					43.99	0.440	49.23	0.492
19.49 0.195 48.91 0.489 49.71 0.497 17.5 18.86 0.189 45.23 0.452 47.88 0.479 18.5 19.35 0.193 43.68 0.437 46.78 0.468 19.5 18.75 0.187 43.50 0.435 0.468 10.5 19.70 0.197 46.18 0.462 11.5 17.95 0.180 42.32 0.423	55.5	19.65	0.196					45.58	0.456	47.98	0.480
b/.b 18.86 0.189 45.23 0.452 47.88 0.479 88.5 19.35 0.193 43.68 0.437 46.78 0.468 19.5 18.75 0.187 43.50 0.435 10.5 19.70 0.197 46.18 0.462 11.5 17.95 0.180 42.23 0.423	56.5	19.49	0.195					48.91	0.489	49.71	0.497
19.35 0.193 43.68 0.437 46.78 0.468 19.5 18.75 0.187 43.50 0.435 10.5 19.70 0.197 46.18 0.462 11.5 17.95 0.180 42.23 0.423	57.5	18.86	0.189					45.23	0.452	47.88	0.479
18.5 18.75 0.187 43.50 0.435 10.5 19.70 0.197 46.18 0.462 11.5 17.95 0.180 42.23	58.5	19.35	0.193					43.68	0.437	46.78	0.468
10.0 19.70 0.197 46.18 0.462 15 17 05 0.180 42.32 0.423	39.5 80 F	18.75	0.187					43.50	0.435		
	61.5	19.70	0.197					46.18 42 32	0.462		

5480.00	0.50	50.49	T/5.5	5.8/L	19-6466	5448 15	0.48	4/ /0	83.5	88.5	1111-5
5420.00	EP.D	48./4	171.50	1/0.50	C-11.11	18,5275	0.48	48.05	6.18	86.5	5-111
3380.00	0,49	49.50	1/0.50	775.50	2-4111	3415.40	0.49	48.04	80.5	85.5	1111-5
3480.00	0.48	48.29	169.50	1/4.50	G-1111	3477.78	0.49	48.50	29.5	84.5	1111-5
3700.00	0.49	48.99	168.50	173.50	1111-5	3580.53	0.47	46 59	78.5	83 5	1111-5
3600.00	0.49	49,48	166.50	171.50	1111-5	3863.03	0.47	47.00	76.5	81.5	1111-5
3660.00	0.50	49.75	165.50	170.50	1111-5	4764.69	0.45	44.99	75.5	80.5	1111-5
3640.00	0.50	49.56	164.50	169.50	1111-5	4626.79	0.41	40.98	74.5	79.5	1111-5
3420.00	0.50	49.84	163.50	168.50	1111-S	3928.18	0.45	45.47	73.5	78.5	1111-5
3500.00	0.50	49.72	161.50	166.50	1111-5	3872.31	0.46	45,71	71.5	76.5	1111-5
00 0892	0.53	99.05	160.50	165 50	1111-5	4610.00	0 44	43 83	202	77.5	1111.5
00.000	0.00	40.00	150 50	16/ 50	1111.5	203460	0 4 2	13 23	60.0	72 5	
3580.00	0.43	10 00	156 50	161 50	1115	2007 44	0.42	43.19	60 n	2.17	2-111
00.002	0/49	48.30	155 50	DC.ACL	1111-5	5000 00	0.45	44,09	65.5	70.5	1111-5
3280.00	0.48	48.24	153.50	158.50	1111-5	3880.00	0.45	45.19	64,5	69.5	1111-5
3640.00	0,49	48.84	151.50	156.50	1111-5	3920.00	0.44	44.10	63.5	68.5	1111-5
3600.00	0.49	49.45	150.50	155.50	1111-5	3900.00	0.44	44.25	61.5	66,5	1111-5
3520.00	0.49	49.10	149.50	154.50	1111-5	3980.00	0.44	43.65	60.5	65.5	111-5
3457.01	0.48	48.50	148.50	153.50	1111-S	3760.00	0.43	43.35	59.5	64.5	1111-5
3410.91	0.50	49.94	146.50	151.50	1111-5	3820.00	0,44	43.86	58.5	63.5	1111-5
3587.34	0.51	51.16	145.50	150.50	1111-5	3880.00	0.44	43.64	56.5	61.5	1111-5
3562.66	0.52	51.51	144.50	149.50	1111-5	3800.00	0.44	43.84	55.5	60.5	1111-5
3639.45	0.51	51.35	143.50	148.50	1111-5	3740.00	0 45	44.98	54 5	505	1113-5
3811.42	0.47	47.35	141.50	146.50	1111-5	3740.00	0.45	45 14	52.5	2 82	111-5
3907.13	0.48	48.15	140.50	145 50	1111-5	3701 66	0.52	55 37	5	3 -	4 4 4
3703 35	0.49	49 39	139.50	144 50	1111-5	2567 15	0.00	55 10	500	2 2	1-1111
3480 71	0.49	49 3.0	138 50	143 50	111-5	271025	0 45	5/ 50	54	49	1-1-1-1
357300	0.45	49.50	176 50	1/1 50	111-0	2017 200	0.65	56 DZ	48	48	1111-7
2625 61	0.40	40.29	125 50	139.50	21111	3760 00	950	53.79	4/	47	1111-1
2502.40	0.40	40.11	124 60	108.50	2-1111	3640.00	0.54	54.12	46	46	1111-1
7500 70	0.50	49./5	157.50	156.50	C-LLLL	3700.00	0.54	54.19	45	45	1111-1
3635.37	0.49	49.03	130.50	135.50	1111-5	3760.00	0.55	54.96	44	44	1111-1
3637.03	60.0	48.75	129.50	134.50	1111-S	3900.00	0.56	56.25	43	43	1111-1
3538.42	0.50	49.92	128.50	133.50	1111-5	4380.00	0.57	57.42	42	42	1111-1
3602.34	0.49	49.21	126.50	131.50	1111-5	4260.00	0.55	55.32	41	41	1111-1
3584.27	0.48	48.48	125.50	130.50	1111-5	3820.00	0.55	54.60	40	40	1111-1
3545.51	0.48	47.62	124.50	129.50	1111-5	4360.00	0.59	58.55	39	50	1111-1
3486.75	0.49	48.56	123.50	128.50	1111-5	4416.80	0.59	59.11	38	27	1111-1
3530.03	0,49	49.10	121.50	126,50	1111-5	4191.40	0.57	57.23	37	7.7	1111
3531.87	0.48	48.33	120.50	125.50	1111-5	4144.29	0.58	SR 49	3 5	22	1111-1
3613.23	0,49	48.60	119.50	124.50	1111-5	4158 13	0.57	57.24	22	54	1111-1
3376.00	0.49	49.01	118 50	173 50	1111-5	2000/052	0.54	55.80	33	33	1111-1
2108 20	0.45	46.55	103.50	108.50	1111-5	3542.72	0.53	53.06	32	32	1111-1
5428.22	0.46	45.76	101.50	106.50	1111-5	3598.10	0.54	53.62	31	31	1111-1
3284.75	0.47	46.80	100.50	105.50	1111-5	3651.59	0.54	53.86	30	30	1111-1
3380.00	0.48	48.10	99.50	104.50	1111-5	3667.26	0.54	54.12	29	290	3131-3
3460.00	0.47	47 14	98.50	103.50	1111-5	3883.19	0.56	55.66	28	30	1444-4
3660.00	0,46	46.09	96.50	101.50	1111-5	4190.22	0.56	56.29	27	77	4444
3760.00	0.45	45.16	95.50	100.50	1111-5	4162.64	0.57	56.93	26	36	1111-1
3820.00	0.47	46.54	94.SO	99.50	1111-5	4230.12	0.56	55.78	25	25	-1.1.1.1
3660.00	0.47	47.18	93.50	98.50	111-5	4059 A1	0.20	16.97	22	23	1-1111
3440.00	0.47	47.12	91.50	96.50	1111-5	4300.87	0.59	20 25	22	22	1111-1
3420,00	0.47	47.30	90 50	95 50	1111-2	04000./U	0.45	42.66	21	21	1111-1
3420.00	040	10,10	20.00	DC.CR	2.11.11	AL 0001	0.45	44.87	20	20	1111-1
3401 26	D 40	25.75	20 CD	07 50	C-LLLL	5555.60	0.46	45.84	19	19	1111-1
3012000	0.47	40./3	05.58	90.50	2-LLLL	3258.54	0.47	47.26	18	18	1111-1
3545.00	04.0	48.08	84.50	89.50		3428.92	0.48	47.68	17	17	1111-1
ZEAR DE	OV VO	Tour MANDINIDALASS	Here ichu	BOULDALE ICHT	Kern	Magn.Susz. "106(SI)	Wassergehalt Iwwi	WassergehaltiGew%i	Tiefe (cm)	Bohrtlefe (cm)	Kern
USIBOL. JUST	When a sub-	Wannahalenaweni	VIOLO INMI	Patricia (and	- Varma		The second second frances				

Tab. A-7: Wassergehalte und Magnetische Suszeptibiläten der Kernsequenz PG1111

Anhang

Kern	Bohrtlefe (cm)	Tiefe (cm)	Wassergehalt(Gew%)	Wassergehalt (ww)	Magn.Susz. *106(SI)	Kern	Bohrtiefe (cm)	Tiefe (cm)	Wassergehalt(Gew%)	Wassergehalt (www)	Magn Sugz, *106/SII
1111-5	179.5	174.5	50.82	0.51	3480.00	11111-5	260.50	255 50	47.70	0.48	3720.00
1111-5	180.5	175.5	50.20	0.50	3420.00	1111-5	261.50	256.50	47.70	0.49	3620.00
1111-5	181 5	176.5	50.28	0.50	3160.00	1111-5	263.50	258.50	48.60	0.49	3620.00
1111-5	183.5	178.5	49.58	0.50	3280.00	1111.5	264.50	250.50	40.00	0.49	3479 72
1111.5	19/ 5	179.5	50.18	0.50	3300.00	1111.5	265.50	253.50	47.09	0.40	7676.65
1111-5	195.5	190.5	49.99	0.50	3360.00	1111.5	205.50	260.50	46.05	0.48	7754.30
1111.5	105.5	100.5	49.33	0.50	3200.00	11115	200.50	201.30	46.60	0.49	3734,24
1111.5	400.5	192.6	43.70 54.57	0.50	3300.00	1111-5	200.50	205.50	46.82	0.49	5650.24
1111.5	100.5	194.5	31.57 A9 53	0.52	7460.00	11115	209.50	204.50	47.71	0.48	3748.04
1111.5	100.5	104.5	48.32	0.43	3400.00	1111-5	270.30	265.50	47.50	0.47	3820.22
1111-5	101.5	186.5	47.0	0.40	3400.00	111145	277.50	260.50	47.08	0.48	7592.02
11114.5	197.5	189.5	45.04	0.47	3380.00	111115	273.50	200.50	48.11	0.48	3582.02
1111-5	104.5	190.5	48.04	0.40	2200.00	1111-5	274.50	209.50	49.37	0.49	7500.00
1111.5	105.5	100.5	45.30	0.45	3500.00	1111.5	276.50	270.50	47.70	0.48	2520.00
1111.5	196.5	191.5	45.52	0.43	3380.00	1111.5	278.50	277.50	48.30	0.48	3520.00
1111.5	100.5	107.5	49.05	0.42	3400.00	1111-5	270.50	273.50	48.45	0.45	3540.00
1111.5	199.5	194.5	48.45	0.40	3400.00	1111.5	2/3.50	275.50	40.44	0.40	3020.00
1111.5	200.5	195.5	49.73	0.50	3640.00	1111-5	281 50	276.50	48.65	0.45	3600.00
1111.5	200.5	196.5	49.73	0.49	3720.00	1111-5	283.50	278.50	40.05	0.49	3520.00
1111.5	201.5	198.5	43.22	0.48	4160.00	11111-5	284.50	279.50	50.22	0.50	3560.00
1111.5	203.5	199.5	47,60	0.49	4540.00	1111-5	285.50	279.50	52.99	0.50	3581 30
4444.5	204.5	2005	46.02	0.49	4340.00	1111.5	203.30	280.30	49.99	0.55	7662.00
4444 5	205.5	200.5	40.94	0.49	3100.00	1111-5	200.30	201.50	45.50	0.50	7695.04
1414.5	200.5	201.5	49.13	0.45	3560.00	1111-5	280.50	203.50	50.52	0.50	3667.40
4444 5	200.5	203.5	43.03	0.49	7520.00	1111.5	203.50	204.50	50.93	0.51	2640.39
1111-3	209.5	204,5	48.50	0.45	7700.00	4444.5	230.50	205.50	50.87	0.51	7610 70
1111-5	211.5	206.5	50.29	0.50	3700.00	14444 5	291.50	200.50	49.52	0.50	2724.02
1311-5	213.5	208.5	48.22	0.48	2720.00	1111-5	293.30	200.50	49.85	0.50	7657.07
1111-5	214.5	209.5	47.25	0.47	3720.00	And F	294.50	269.30	49.51	0.30	7610.00
1111-5	215.5	210.5	47.72	0.48	3740.00	1111-5	295.50	290.50	48.98	0.49	2409.05
1111-5	216.5	211.5	48.24	0.48	3700.00	1111-5	290.30	291.50	48.96	0.49	7574.62
1111-5	218.5	213.5	48.89	0.49	3200.00	4444 6	298.50	295.50	49.55	0.43	7602.14
1111.5	223.5	218.5	48.15	0.48	7505.94	1111-5	299.30	254.50	48.56	0.49	3701 13
1111-5	224.5	219.5	48.49	0.48	7674.90	1111-5	201 50	235.50	40.07	0.48	3769.27
1113-5	225.5	220.5	49.05	0.49	2752.72	1111-5	202.50	230.30	47.03	0.48	3905.02
1111-5	226.5	227.5	48.69	0.43	2720.96	1111-5	204.50	230.50	40.05	0.49	3663.02
1111-5	228.5	223.5	49.80	0.50	3723.80	1111.5	205.50	299.30	47.01	0.40	3641 57
1111-5	229.5	224.5	48.82	0.49	7764.92	1111-5	305.50	300.30	40.15	0.40	3840.00
1111-5	230.5	225.5	49.42	0.49	7692.07	1111-5	209 50	707 50	40.75	0.43	3660.00
11113-5	231.5	226.5	48.97	0.49	2202.93	1111.6	259.50	303.50	50.63	0.51	3660.00
1111-5	255.5	228.5	48.87	0.43	3302.00	11111-6	253.50	302.50	50.62	0.51	3720.00
3111-5	254.5	229.5	48.26	0.48	3466.25	1111-5	261.50	303.50	51.02	0.51	3620.00
1111-5	235.5	230.5	48.92	0.49	2400.25	11116	201.50	206 50	10.01	0.50	3680.00
1111-5	236.5	251.5	48.70	0.49	7771 60	1111-0	203.30	300.50	49.04	0.50	3478 72
1111-5	238.5	233.5	49.01	0.49	7077.76	1111-0	204.50	709 50	43.73	0.50	3676.65
1111-5	239.5	254.5	48.59	0.49	ZASS 64	11111-0	265.50	209.50	50.02	0.50	3754.24
1111-5	240.5	255.5	48.62	0.49	2576.07	11111-6	260.50	211 50	50.02	0.50	3650.24
1111-5	241.5	256.5	48.40	0.40	2000.00	11111 6	266.50	312.50	50.21	0.50	3748.04
13111-5	245.5	238.5	47.98	0.40	3600.00	11110	203.30	312.50	51.92	0.52	3826.22
1111-5	244.5	259.5	48.92	0.49	2790.00	1111-0	270.50	313.50	31.32 AQ 22	0.49	3724.61
1111-5	245.5	240.5	48.90	0.49	2600.00	11110	271.50	716 50	19.95	0.50	3582.02
1111-5	246.5	241.5	48./1	0.49	2540.00	14444 6	273.50	310.50	49.95	0.50	3600.66
1111-5	248.5	243.5	48.96	0.49	7520.00	1444 4	274.30	210 50	49.95	0.50	3580.00
1111-5	249.5	244.5	49.39	0.49	3520.00	1111-6	275.50	710.50	50.27	0.50	3520.00
1111-5	250.5	245.5	48.73	0.49	3520.00	1111-0	270.50	724 50	0.04	0.01	3540.00
1111-5	251.5	246.5	49.42	0.49	3580.00	1111-6	2/8.50	321.50	49.46	0.50	3620.00
1111-5	253.5	248.5	48.69	0.49	3640.00	111116	2/9.50	322.50	49.50	0.50	3660.00
1111.5	254.5	249.5	48.34	0.48	5680.00	111116	280.50	525.50	49.71	0.50	2600.00
1111-5	255.5	250.5	49.29	0.49	7600.00	1111-6	281.50	324.30	49.00	0.50	3520.00
1111-5	256.5	251.5	49.45	0.49	3000.00	1111-6	285 50	520.50	49.38	0.50	7560.00
1111-5	258.5	253.5	48.18	0.48	5640.00	11111-6	284.5	527.5	49.40	0.49	00.000
11111-5	259.5	254.5	46.41	0.46	3660.00	11111-6	285.5	1 328.5	49.47	0.49	3581.30

Fortsetzung Tab. A-7: Wassergehalte und Magnetische Suszeptibiläten der Kernsequenz PG1111

Fortsetzung Tab. A-7: Wassergehalte und Magnetische Suszeptibiläten der Kernsequenz PG1111

Anhang
Fortsetzung Tab. A-7: Wassergehalte und Magnetische Suszeptibiläten der Kernsequenz PGIII

00:0955	0.444	05.44	C'750	C.0EC	7-11.11	00.0466	LS:0	81.12	5 995	5.523	19.1111
00 08/7		02.00	5100	C C6C	1.1111	00.0825	0.54	/7.175	5'095	254.2	9.1111
92 8620	000	82 00	5 405	5 303	1.1111	00'0805	550	/070	5'995	5'075	9-1111
56 5250	570	82.00	5 0/9	5 705	2.0000	00 0802	230	16.66	\$ 795	5'615	9-1111
DE DZLD	570	96.50	5 629	5 205	2.0000	00'0000	100	90.16	5'195	5'815	19-LLLL
200610	500	V2 SV	5 2 2 9	5 102	2-1111	00'0902	200	60'10	5'655	5.912	9-1111
96 8016	500	86 77	5 929	5 005	2.0000	00 0912	(50)	0175 05'/b	C.8CC	C.CIC	Q-LLLL
DD ZDLD	200	82.90	5 529	5 685	2-6664	000022	200	15.00	C./CC	2.14.5	9-1111
\$6 \$265	200	25.70	5 029	5 885	2.000	00 0910	62.0	C0.2h	C.0CC	CCLC	9-LLLL
222222	200	05.27	5 629	5 985	2-6666	00 0090	200	20.64	C.PCC	C.I.I.C	9-1.1.11
12 0895	86.0	16 20	5129	5 585	2.1111	00 0900	670	C2 60	0.000	C.01C	0-1111
2822.23	670	95.80	5 029	5 1785	2-2222	00 0895	000	02.00	C'7CC	C'60C	9-1111
28.542.	200	66 97	5 6 2 9	5 285	2.1111	00 0882	870	35 47	2033	5.005	0.111
18.7815	200	\$2.90	5 2 6 9	5 485	2.1111	00 0869	000	01:05	C.CPC	C.00C	0.111
92 6005	20 45	66.76	5 969	5.085	12.1111	00 0877	970	32.30	5.002	5 503	0.1111
98'0120	95.0	96.34	932.5	5 625	2.1111	00 0926	86.0	0180	5 872	5 303	10-1111
4112.36	20.47	47.24	934 2	5'825	2-1111	00 0026	200	12 20	5272	5 005	19.0000
08'5507	20'0	85.72	952.5	5 925	12-1111	00.0252	570	91.50	5 905	5 205	0.11(1
95'8200	20.47	47.21	621.5	5.225	2.1111	00 09517	870	02.20	5775	5 205	9-1111
74.1865	90'0	90'90	950.5	5.472	12-1111	4000'00	150	52.05	5 205	5 005	3.1111
65'2962	20.07	47.28	5'619	5'£25	2-1111	2350'00	050	06.67	5 675	5 007	13.111
4286.84	50.05	\$0.24	5'219	5.172	12.1111	4080.00	20.0	90.74	5105	5 867	19.111
12.6227	0'00	81,14	5.919	5.072	12.1111	2840.00	60'0	57.67	5 685	5 967	19.111
96'0277	0'00	95.94	5.213	S'69S	12-1111	3740.00	0'20	62.64	5.852	5'5617	19.111
4652.60	50.43	ZD.2D	5.418	S'89S	16-1111	00.0975	670	66'87	5.782	5'060	19.1111
12 9687	0'44	43.64	915 Z	S 99S	12-1111	2840.00	05'0	98'67	5.952	5.564	19.1111
96 2600	0.44	91.16	S'119	S \$95	6-1111	2637.45	87.0	51.87	5 6525	5.160	9-1111
00'0897	20.42	45.22	S 019	S.482	4-1111	95.2185	67'0	20.60	5.552	\$ 060	9-1111
00'0015	0.42	29.25	S 609	5.582	6-1111	78.2272	05.0	02.67	232.5	5'687	19-1111
00.0802	20.03	43.27	S'209	S'19S	2-1111	16.1785	05'0	20.47	5.152	5'88⊅	9-1111
00.0484	0 44	44.23	S 909	S 09S	12-1111	60'8025	61/0	89'87	236'2	\$'987	9-1111
4240.00	95.0	LL'SD	S S09	5'655	2-1111	0L.3082	85.0	48'52	5.822	\$`\$87	9-1111
4261.55	50.0	29'77	S.408	S'8SS	2-1111	2864.53	67'0	68.84	5.752	5.484	9-1111
00.0020	0.46	98'SÞ	S'Z09	S'655	9-1111	2762.93	85.0	20.80	236.5	5.282	9-1111
\$261.53	90'0	92'97	S 109	S'8SS	9-1111	2640.00	61/0	65'87	224.5	5.182	9-1111
29,7310	0.48	61.85	S 66S	S'955	9-1111	2420.00	67'0	50'60	223.5	\$1087	9-1111
4570.54	0.48	48:06	5'865	S'SSS	9-1111	2050'00	15.0	60'15	255.5	5'622	9-1111
4222'55	0.48	92'20	S'265	5'055	91111	2200.00	15'0	86'05	221.5	\$'82	9-1111
¢12€'06	90.06	60.30	S'96S	S'2SS	9-1111	2900.00	85.0	86'27	S'61S	\$'927	9-1111
26'8107	80.08	48.26	S 176S	SILSS	9-1111	2800.00	67.0	90.60	5'815	5'527	9-1111
12.8778	60.0	49.84	5.562	5:055	9-1111	3500.00	15.0	21.12	SZLS	5.474	9-1111
2017.52	05'0	49.59	292.5	S.642	9-1111	3540.00	15.0	51.00	5'915	473.5	9-1111
2696,60	67.0	10.64	S 165	S.862	9-1111	2340,00	67'0	60'67	5'015	5.174	9-1111
2655.03	05'0	58'67	S'68S	S 975	9-1111	2280'00	12:0	61.18	5.512	5.074	9-1111
S0.4625	0'20	90'05	S'88S	5'505	9-1111	3850'00	85.0	51.85	212.5	5'697	9-1111
222252	15.0	21.00	S'48S	5.44.5	19-1111	2650'00	80.0	68'17	SILLS	5'897	9-1111
85 2992	80.0	85.85	S'98S	5.848	9-1111	2120.00	05.0	11.02	S'60S	5'997	9-1111
\$75.3878	15'0	69'05	5.482	5.192	19-1111	2680.00	05'0	21.02	S'80S	5'597	9-1111
2268.44	60'0	90.60	5.582	240.5	9-1111	2800'00	87'0	\$7.84	5'205	5.464.5	9-1111
2220.22	15:0	92'15	5.282	5'625	9-1111	4000.00	54.0	43.25	5.902	5'297	9-1111
3292.02	0.52	25.25	S 185	5'855	9-1111	4040,00	0.42	56'17	5.402	5.184	9-1111
51'5500	90'0	26 St	\$ 645	5'925	9.1111	52.2262	74.0	88'97	5.102	\$'857	9-1111
2827.24	0.48	48.09	5.872	5'925	9.111	CS:7225	Str O	S0'SÞ	\$'66⊅	5'957	9-1111
2226'44	15.0	£5:05	S 225	5'725	9.1111	3880.00	50.045	91.22	5'867	5.224	9-1111
3438.07	05.0	20.23	5'925	5'225	9-1111	3280'00	0 20	25.62	S'260	5'050	9-1111
3352.28	1 120	\$2.12	5.472	S 125	9-1111	3860.00	0'46	08.22	5'967	5.522	9-1111
2450.84	0 25	99'19	5.572	5.052	9-1111	2680.00	80.0	00'87	5.494.5	5.124	9-1111
2486.87		CC.0C	5775	\$7625	9.1111	2890.00	90.0	02.22	5.264	5.024	9-1111
3445,46	150	23 03						• · · · · · · · · · · · · · · · · · · ·			
	67.0	23 03	5.172	238'2	9.1111	00.0314	970	\$6°\$7	5'267	5'675	9-1111
2485.80	670 150	25 05 25 8b 26 05	S'12S S'69S	238'2 258'2	9.1111 9.1111	00.0014	9 v 0 9 v 0	56'SÞ 05'SÞ	5'267	5'675 5'875	9-1111
2485.80	670 670 150 050	25 05 25 8b 26 05 26 6b	5°425 5°695 5°895	258'2 256'2 252'2	9-1111 9-1111 9-1111	4100'00 4100'00 2040'00	90 0 90 0 20 0	42.95 42.50 42.25	485'2 485'2 488'2	5'675 5'875 5'975	9-1111 9-1111 9-1111
2485.80 2321.78 2520.82	0 21 0 76 0 22 0 20 0 76	23 03 25 85 26 05 26 65 26 65	5 125 5 695 5 895 5 295	258'2 256'2 252'2 254'2	9.1111 9.1111 9.1111 9.1111	400.00 4100.00 4100.00 4160.00	970 970 250 970	42.92 42.50 42.50 49.56 49.56	5767 5167 5685 5885	5 677 5 877 5 977 5 977 5 577	9-1111 9-1111 9-1111 9-1111

1520.00	0.54	54.24	804.5	758.5	17-111	4000.00					
1600 00	0.54	54.31	802.5	2.00/		100,000	D 43	40.98	724.5	678.5	1111-7
1640 00	0.53	53.38	801.5	/35.5	7-111	4020,00	62 U	38,82	722.5	676.5	1111-7
1620.00	0.54	53.58	800,5	/34.5	111-/	7820 00	0.40	39.55	721.5	675 5	1111-7
1720.00	0.52	52.35	C.66/	7545	2222	4880 00	0.39	39.42	720.S	674.5	3111-7
1640.00	0.55	54.69	0.101	752 5	1111-7	4700.00	0.41	40.68	719.5	673.5	1777-/
1500.00	0.54	20.09	2,00	751 5	1111-7	4900.00	0.39	39.32	717.5	5.1/9	7-1.4.4.
1520.00	0.56	25.55	706 5	750 5	1111.7	5300.00	0.37	36.63	716.5	670.5	7-1111
1500.00	0.54	55.0H	705 5	7/09 5	1111-2	5260.00	0.40	39.65	715.5	669.5	/-1111
1720.00	0.51	51.04	20/10	749.5	1111-7	5000.00	0.39	39.10	714.5	668.5	7777-7
1720.00	0.50	50,42	2005	7/16 5	1111-7	4940.00	0.39	38.53	712.5	666.5	1111-7
1900.00	0.49	48.63	194.5	744.0	1111.7	4780 00	0.39	38.53	711.5	665.5	7-1111
2000.00	0.50	49.78	2.68/	7/12.3	1111-7	4360 00	0.42	41.91	710.5	664.5	1111-7
1600.00	0.54	54,45	78/.3	2/14/	1111.7	4480 00	0.40	39.65	709.5	663.5	1111-7
1580.00	0.54	54.01	2007	7/40.0	1111.2	4180.00	0.43	42.86	707.5	661.5	1131-7
1600.00	0.54	55.55	2007	740 5	1111-7	4480.00	0.41	40.56	706.5	660.5	7-1117
1700.00	0.52	57.55	707 5	720.5	1111-7	4600.00	0.41	40.57	705.5	659.5	7111-7
1580.00	0.52	52.24	70/ 5	778 5	1111-7	5220.00	0.42	42.37	704.5	658.5	1111-7
1720.00	0.50	91.05	707.5	726.5	1111-7	4940.00	0.41	40.60	702.5	656.5	7111-7
1940.00	0.47	46.64	704 5	725 5	1111.7	4800.00	0.40	40.22	701.5	655.5	1111-7
2040.00	0,49	48.88	2.E//	7205	1113.7	4660.00	0.41	41.17	700.5	654.5	1111-7
1380.00	0.55	54.82	5.111	727 6	1111-7	4680.00	0.42	41,64	697.5	651.5	7-111
1520.00	0.53	55.12	1/0.2	721 5	1111-7	4480 00	0.42	42.23	696.5	650.5	1111-7
1620.00	0.50	57.26	776.0	730.5	1111-7	4560.00	0.41	41.05	695.5	649.5	1111-7
1820.00	0.49	49.12	174.0	770 5	1111-7	4780.00	0.41	40.79	694.5	648.5	111-7
1980.00	0.49	40.0/	777 5	778 5	1111-7	4698.16	0.42	42.08	692.5	646.5	7111-7
2000.00	85.0	47.24	777 5	7765	1111-7	4516.53	0.44	43.57	691.5	645.5	7-111
2018.22	64.0	17 54	771 5	725.5	1111-7	4474.80	0.43	43.25	690.5	644.5	111-1
2016.40	220	00 10	770 5	724.5	1111-7	4513.25	0.43	43.23	689.5	645.5	111-/
1992.99	0.47	50 15	769 5	723.5	1111-7	4809.23	0.42	41.83	¢./84	641.5	1111-1
23/3.5/	040	A7 21	767.5	721.5	1111-7	4547.56	0.43	42.71	5.989	540.5	11111
2209.35	0.47	45 09	766.5	720.5	1111-7	4405.93	0.43	43.19	6.589	0.900	1.1.1
2107.82	24.0	26.93	765.5	719.5	3111-7	4464.39	0.42	42.04	084.5	0,950	7-111
2104.22	110 CA	46.69	764.5	718.5	1111-7	3840.00	0.46	45.79	0.780	0.000	11117
7102.44	77.0	47 14	762.5	716.5	1111-7	3740.00	0.46	45.72	681.5	0,000	11117
2240.00	7.0	47.01	761.5	715.5	1111-7	3680.00	0.46	45.51	0.080	C.PC0	4444 7
80.2012	0 /7/	47.03	760.5	714.5	1111-7	3820.00	0.45	45.16	C.6/9	030.0	1117
2102 02	0.47	46.90	759.5	713.5	1111-7	5200.00	0.37	57.52	5//0	C.1.CO	1111-7
2404 65	0.48	48.47	757.5	711.5	1111-7	4480.00	0.44	44.06	6.0/0	674 6	1441-7
1000.03	0.00	49.61	756.5	710.5	1111-7	4040.00	0.45	44.95	C.C/B	029.3	111-7
1000.00	0.50	50.06	755.5	709.5	1111-7	3960.00	0.45	45.34	6.4.5	628.5	/-111
1000 22	0.50	50.04	754.5	708.5	1111-7	4060.00	0.45	44.67	C.2/9	620.5	4444.7
1075 07	0.51	51,44	752.5	706.5	1111-7	3780.00	0.45	45.13	6/1.5	625.5	111-1
2180.00	0.50	49.64	751.5	705.5	1111-7	3660.00	0.47	46.53	6/0.5	624.5	/-1.1.1.
1940.00	040	0100	747.5	701.5	1111-7	3940.00	0.45	44.91	669.5	623.5	1111-/
2440.98	0.48	40.47	7465	700.5	1111-7	3860.00	0.46	45.86	667.5	621.5	1111-7
2402.79	0.49	49.44	744.2	5 009	1111-7	3700.00	0.47	46.81	666.5	620.5	1111-7
2705.50	0.45	45,45	742.5	2 809	1111-7	3660.00	0.46	45.93	665.5	619.5	1111-7
2586.93	0.51	51.11	747.5	505 5	1-1-1	3600 00	0.48	47.51	664.5	618.5	1111-7
2188.31	0.53	52.76	C/01/	034.3	1117	A000 00	0.45	45.39	662.5	616.5	7771-7
2309.67	0.52	51,99	739.5	602 5	1111-7	00.0882	0.46	46.16	661.5	615.5	1111-7
2413.76	0.52	52.08	737.5	5.FEG	7-1.1.1	2000.00	0.06	45.53	660.5	614.5	1111-7
2455.19	0.51	51.05	/36.5	090.5	/-/ -/	00.0765	0.42	42.49	659.5	613.5	1111-7
2736.47	0.51	51.09	735.5	689.5	1111-/	4020.00	0.46	45.83	657.5	611.5	1111-7
3000.00	0.47	46.90	734.5	688.5		4440.00	0.45	44 90	656.5	610.5	7:11-7
2760.00	0.51	51.20	732.5	686.5	7171-7	4500.00	044	73 55 70 CF	555 5	5005	1111-7
2880.00	0.49	49.09	731.5	5 589	1111-7	4240.00	0,44	43.03	002.0	5 808	1111.7
3260.00	0.47	47.39	730.5	684.5	1111-7	3960.00	0,45	43.03	577.5	506.5	1111-7
3440.00	0.46	45.87	729.5	683.5	1111-7	4420.00	0.45	42.75	551 7	A05.5	1131-7
4160 00	0.42	41.87	727.5	681.5	1111-7	4480.00	0.42	42.27	640.5	5 000	1111-7
400,00	0.41	40.82	726.5	680.5	1111-7	4680.00	0.44	44.55	645.5	5 (AG	1114-7
1600 CO	0.40	40.18	725.5	679.5	1111-7	4440.00	0.45	44.52	644,5	2,865	7-1111
Bran Citer Manglen	Wassprachalt fwwl	Wassergehalticew %]	Tiefe (cm)	Bohrtiefe (cm)	Kern	Magn.Susz. *106(SI)	Wassergehalt (ww)	WassergehaltiCew %1	LINELA (CLU)	BOULCIAL CUT	NUT
											- Varm

Fortsetzung Tab. A-7: Wassergehalte und Magnetische Suszeptibiläten der Kernsequenz PG1111

Anhang

Fortsetzung Tab. A-7: Wa	assergehalte und N	Magnetische	Suszeptibiläten de	er Kernsequenz I	PG1111

Kern	Bohrtlefe (cm)	Tiefe (cm)	WassergehaltiGew%1	Wassergehalt (ww)	Magn Susz, *106(SII	Kern	Robrtlefe (cm)	Tiefe (cm)	Wassergehalt(Cowe)	Wassenmahalt furni	Mana 6
1111-7	759.5	805.5	54.52	0.55	1760.00	1111-8	821.5	992 5	EZ DE	wassergenatt twwi	Magn.Susz106(SI)
1111.7	760.5	806.5	53.56	0.54	1960.00	1111.8	823.5	002.5	33.23	0.55	1140.00
1111-7	761.5	807.5	48.48	0.48	1860.00	1111.8	924.5	005 5	44.06	0.44	2080.00
1111-7	763.5	809.5	51.25	0.51	1420.00	1111-8	825.5	886.5	47.48	0.47	2558.32
1111-7	764.5	810.5	54.51	0.55	1460.00	1111-8	826.5	897.5	40.52	0.49	2096.41
1111-7	765.5	811.5	54.49	0.54	1660.00	1111-8	828.5	889.5	47.55	0.48	1954.75
1111-7	766.5	812.5	53.43	0.53	1740.00	1111-8	829.5	890.5	56.94	0.55	1770.85
1111-7	768.5	814.5	51,72	0.52	2223 10	1111-8	830.5	891.5	50.04	0.57	1009.08
1111-7	769.5	815.5	42.82	0.43	3066.04	1111-8	831.5	892.5	60.78	0.58	1367.54
1111-7	770.5	816.5	51.25	0.51	1928.82	1111.8	833.5	894.5	59.76	0.60	982 32
1111-7	771.5	817.5	51.63	0.52	1790.67	1111-8	834.5	895.5	61.20	0.61	1060.82
1111-7	773.5	819.5	52.96	0.53	1913.30	1111-8	835.5	896.5	61 15	0.61	960.002
1111-7	774.5	820.5	49.07	0.49	2014.94	1111-8	836.5	897.5	61.87	0.62	840.00
1111-7	775.5	821.5	49.62	0.50	1816.40	1111-8	838.5	899.5	62.51	0.63	760.00
1111.7	776.5	822.5	53.40	0.53	1797.75	1111-8	839.5	900.5	60.72	0.61	780.00
1111.7	778.5	824.5	51.55	0.52	1797.53	1111-8	840.5	901.5	57.14	0.57	800.00
1111-7	779.5	825.5	51.56	0.52	1855.56	1111-8	841.5	902.5	52 50	0.53	960.00
1111-7	780.5	826.5	52.66	0.53	1633.71	1111-8	843.5	904.5	49.32	0.49	1580.00
1111-7	781.5	827.5	54.41	0.54	1532.08	1111-8	844.5	905.5	\$0.25	0.50	1820.00
1111-7	783.5	829.5	54.81	0.55	1549.02	1111-8	845.5	906.5	\$1,91	0.52	1880.00
1111-7	784.5	830.5	52.92	0.53	1627.44	1111-8	846.5	907.5	53.92	0.54	1880.00
1111-7	785.5	831.5	54.46	0.54	1505.80	1111-8	848.5	909.5	57,47	0.57	1340.00
1111-7	786.5	832.5	55.39	0.55	1824.24	1111-8	849.5	910.5	60.40	0.60	1200.00
1111-7	788.5	834.5	50.98	0.51	1761.87	1111-8	853.5	914.5	56.72	0.57	1020.00
1111-7	789.5	835.5	52.39	0.52	1683.53	1111-8	854.5	915.5	58.39	0.58	1060.00
1111-7	790.5	836.5	52.57	0.53	1705.65	1111-8	855.5	916.5	58.85	0.59	1000.00
1111-7	791.5	837.5	52.52	0.53	1607.27	1111-8	856.5	917.5	59.98	0.60	940.00
11111-7	793.5	839.5	56.91	0.57	1330.40	11111-8	858.5	919.5	60 12	0.60	920.00
1111-7	794.5	840.5	56.88	0.57	1332.43	1111-8	859.5	920.5	59.96	0.60	920.00
11111-7	795.5	841.5	56,30	0.56	1354.19	1111-8	860.5	921.5	59.79	0.60	980.00
1111-7	796.5	842.5	55.32	0.55	1455.89	1111-8	861.5	922.5	62.20	0.62	860.00
3111-7	798.5	844.5	57.53	0.58	1599.18	1111-8	863.5	924.5	61.21	0.61	760.00
1111./	799.5	845.5	52.12	0.52	1557.67	11111-8	864.5	925.5	60.53	0.61	780.00
1111-7	800.5	846.5	52.09	0.52	1447.29	1111-8	865.5	926.5	60.37	0.60	780.00
1111-7	801.5	847.5	52.48	0.52	1424.97	11117-8	866.5	927.5	58.87	0,59	880.00
1311-7	805.5	649.5 050.5	55.72	0.54	1040.00	1111-8	868.5	929.5	57.78	0.58	960.00
4444.9	789.5	83U.5 9E4 E	50.01	0.56	1065.55	1111-8	809.5	950.5	57.95	0.58	1000.00
11110	790.5	057.5	53.25	0.59	1703.05	11110	070.5	951.5	51.65	0.52	1460.00
1111.9	791.5	832.3 954.5	/9.79	0.00	1730.40	1111-0	977.5	952.5	49.85	0.50	1820.00
11111.9	794.5	855.5	40.20	0.40	1232 //3	1111.8	874.5	934.5	52.00	0.52	1740.00
11111.8	795.5	856.5	49.23	0.49	1354.19	1111.8	875 5	936.5	50.17	0.52	1700.00
11111-8	796.5	857.5	51.03	0.51	1455.89	1111.8	876.5	937.5	//6.90	0.30	2040.00
1111.8	7985	859.5	60.29	0.60	1599.18	1111.8	878.5	939.5	51.48	0.47	1820.00
1111-8	799.5	860.5	62.59	0.63	1557 67	1111-8	879.5	940.5	50.27	0.50	1880.00
1111-9	800.5	861.5	61.50	0.62	1447.29	1111-8	880.5	941.5	52.66	0.53	1520.00
11111-8	801 5	862.5	60.41	0.60	1424.97	1111-8	881.5	942.5	52.42	0.52	1360.00
1111-8	803.5	864.5	56.13	0.56	1040.00	1111-8	883.5	944.5	53.24	0.53	1400.00
11113-8	804.5	865.5	48.74	0.49	1180.00	1111-8	884.5	945.5	S1.36	0.51	1300.00
11111-8	805.5	866.5	49.86	0.50	1600.00	1111-8	885.5	946.5	49.97	0.50	1160.00
1111-8	806.5	867.5	48.86	0,49	1900.00	1111-8	886.5	947.5	48.28	0.48	1420.00
11111-8	808.5	869.5	50.46	0.50	1960.00	1111-8	888.5	949.5	55.87	0.56	1180.00
1111-8	809.5	870.5	55.31	0.55	1900.00	1111-8	889.5	950.5	59.80	0.60	840.00
1111-8	810.5	871.5	56.08	0.56	1460.00	1111-8	890.5	951.5	62.52	0.63	820.00
1111-8	811.5	872.5	57.69	0.58	1400.00	1111-8	891.5	952.5	62.60	0.63	860.00
1111-8	813.5	874.5	59.95	0.60	1100.00	1111-8	893.5	954.5	58.52	0.59	980.00
1111-8	814.5	875.5	59.74	0.60	980.00	1111-8	894.5	955.S	58.34	0.58	980.00
1111-8	815.5	876.5	58.14	0.58	1000.00	1111-8	895.5	956.5	56.99	0.57	1120.00
1111-8	816.5	877.5	57,44	0.57	980.00	1111-8	896.5	957.5	56.69	0.57	1180.00
1111-8	818.5	879.5	59.14	0.59	900.00	1111.8	898.5	959.5	61.88	0.62	760.00
1111-8	819.5	880.5	57.24	0.57	940.00	1111-8	899.5	960.5	61.53	0.62	760.00
1111-8	820.5	881.5	57.80	0.58	1040.00	1111-8	900.5	961.5	61.39	0.61	760.00

	Both ciere tento	TIPPO ICHIN	wassergenancew%j	Wassergehalt (ww)	Magn.Susz. *106(SII	Kern	Bohrtiefe (cm)	Tiefe (cm)	Wassergehalt/Cow%1	Wasserschold (wow)	-
1111-8	901.5	962.5	59.45	0.59	780.00	1111-8	981.5	1042.5	46.44	Cassel genant (www.	Magn.susz. *106(SI)
1111-8	903.5	964.5	59.42	0.59	820.00	1111-8	983.5	1041.5	40.44	0.46	2060.00
1111-8	904.5	965.5	58.81	0.59	858.24	1111.9	000.0	1044.5	47.70	0.48	1620.00
1111-8	905.5	966.5	56.64	0.57	1036 59	1111.0	005.5	1043.5	36.65	0.37	2160.00
1111-8	906.5	967.5	51,98	0.52	1175.01	1111.0	905.5	1046.5	47.00	0.47	2240.00
1111-8	908.5	969.5	47,17	0.47	2091.22	1111-8	986.5	1047.5	49.69	0.50	1920.00
1111-8	909.5	970.5	61.55	0.62	2031.23	1111-8	988.5	1049.5	37.34	0.37	2840.00
1111-8	910.5	971.5	61.43	0.61	1149.55	1111-8	989.5	1050.5	55.00	0.55	1500.00
1111-8	9115	972.5	59.37	0.01	827.92	1111-8	990.5	1051.5	56.43	0.56	1200.00
1111-8	913.5	974.5	60.13	0.59	785.66	1111-8	991.5	1052.5	56.87	0.57	1140.00
1111-8	914.5	975.5	60.90	0.60	842.55	1111-8	993.5	1054.5	51.60	0.52	1420.00
1111.8	015.5	076 5	53.00	0.61	780.92	1111-8	994.5	1055.5	58.76	0.59	1180.00
1111.0	915.5	970.5	57.80	0.58	801.91	1111-8	995.5	1056.5	61.68	0.62	890.00
1111-0	910.5	977.5	51.45	0.51	963.50	1111-8	996.5	1057.5	61.72	0.62	800.00
4444.0	918.5	ava 2	60.46	0.60	926.39	1111-8	998.5	1059.5	60.55	0.61	820.00
1111-0	919.5	980.5	59.19	0.59	828.39	1111-8	999.5	1060.5	58.86	0.59	840.00
1111-8	920.5	981.5	57,93	0.58	1071.06	1111-8	1000.5	1061 5	57.72	0.59	900.00
1111-8	921.5	982.5	54.82	0.55	1433.49	1111-8	1001 5	1062.5	54.92	0.58	940.00
1111-8	923.5	984.5	53.31	0.53	1776.58	1111.8	1003.5	1064 5	54.25	0.54	1120.00
1111-8	924.5	985.5	51.73	0.52	1578.27	1111.8	1003.5	1065.5	57.62	0.58	940.00
1111-8	925.5	986.5	52.11	0.52	1795 37	1111.0	1004.5	1005.5	54.27	0.54	1060.00
1111-8	926.5	987.5	54.34	0.54	1/32.94	11110	1005.5	1066.5	49.43	0.49	1440.00
1111-8	928.5	989.5	54.74	0.55	1432.00	1111-8	1006.5	1067.5	43.90	0.44	2240.00
1111-8	929.5	990.5	56.28	0.55	1428.00	1111-8	1008.5	1069.5	47.07	0.47	2700.00
1111-8	930.5	991.5	50.50	0.56	1304.65	1111-8	1009.5	1070.5	53.82	0.54	1760.00
1111-8	9315	992.5	30.09	0.51	1601.55	1111-8	1010.5	1071.5	60.28	0.60	1000.00
11112-8	033 5	992.5	49.00	0.49	2398.45	1111-8	1011.5	1072.5	60.55	0.60	1020.00
1111.9	933.5	994.5	50.99	0.51	2330.75	1111-8	1013.5	1074.5	59 31	0.50	/60.00
1111-0	954.5	995.5	51.93	0.52	1925.25	1111-8	1014.5	1075.5	58.34	0.59	760.00
1111-0	935.5	996.5	50.69	0.51	1941.88	1111.8	1015.5	1076 5	57.70	0.58	800.00
4444.0	956.5	997.5	45.56	0.46	1884.03	1111-8	1016.5	1077.5	50.06	0.58	820.00
1111-8	938.5	999.5	41.39	0.41	1850.26	1111-8	1018 5	1070.5	53.00	0.59	800.00
1111-8	939.5	1000.5	47.95	0.48	2053.39	1111-8	1019.5	1079.5	57.75	0.58	880.00
11111-8	940.5	1001.5	49.98	0.50	1977.40	1111.0	1020.5	1080.5	53.57	0.54	1040.00
11111-8	941.5	1002.5	39.76	0.40	2340.77	1111.0	1020.5	1081.5	50.90	0.51	1300.00
1111-8	943.5	1004.5	46.61	0.47	2209.04	1111.0	1021.5	1082.5	38.86	0.39	1920.00
1111-8	944.5	1005.5	36.10	0.36	2452.67	4444.0	1025.5	1084.5	67.24	0.67	2800.00
1111-8	945.5	1006.5	36.63	0.37	2452.05	1111-8	1024.5	1085.5	48.03	0.48	2180.00
1111-8	946.5	1007.5	52.90	0.53	2200.00	1111-8	1025.5	1086.5	51.48	0.51	1780.00
1111-8	948.5	1009.5	52.47	0.52	2200.00	1111-8	1026.5	1087.5	47.99	0.48	1720.00
1111-8	949.5	1010.5	57.09	0.52	1720.00	1111-8	1028.5	1089.5	50.68	0.51	1800.00
1111-8	953.5	1014 5	59 37	0.57	1420.00	1111-8	1029.5	1090.5	47.54	0.48	1060.00
1111-8	954.5	10155	57.05	0.39	1025.68	1111-8	1030.5	1091.5	50.62	0.51	1000.00
1111-8	955.5	1016.5	50.97	0.37	1107.17	1111-8	1031.5	1092.5	52.39	0.52	1900.00
1111-8	956.5	1010.5	59.85	0.60	948.58	1111-8	1033.5	1094.5	37.00	0.32	1/00.00
1111-8	958.5	1010.5	29.93	0.60	890.17	1111-8	1034.5	1095.5	45.61	0.57	2720.00
1111-8	950.5	1019.5	58.72	0.59	892.77	1111-8	1035.5	1096.5	48.70	0.40	2440.00
1111.9	959.5	1020.5	57.76	0.58	855.71	1111-8	1036.5	1097.5	56 77	0.49	2100.00
1111.0	900.5	1021 5	59.33	0.59	796.89	1111-8	1038 5	1099.5	30.77	0.57	2300.00
11110	901.5	1022.5	60.28	0.60	778.02	1111-8	1039.5	1100 5	20.04	0.29	9440.00
4444.0	905.5	1024.5	59.43	0.59	817.60	1111.8	1040.5	1100.5	52.91	0.33	8300.00
1111-8	964.5	1025 5	60.28	0.60	776.18	1111.0	1040.5	4400.0	30.44	0.30	3480.00
1111-8	965.5	1026.5	61.33	0.61	754.50	1111.0	1041.5	1102.5	56.99	0.57	1600.00
1111-8	966.5	1027.5	59.98	0.60	772.01	1444.0	1045.5	1104.5	56.04	0.56	1500.00
1111-8	968.5	1029.5	59.13	0.59	967.41	1111-8	1044.5	1105.5	51.10	0.51	1660.00
1111-8	969.5	1030.5	61.11	0.61	745.00	1111-8	1045.5	1106.5	52.25	0.52	1380.00
1111-8	970.5	1031.5	61.46	0.61	745.95	1111-8	1046.5	1107.5	52.24	0.52	1420.00
1111.8	971.5	1032.5	61.45	0.01	764.42	1111-8	1048.5	1109.5	53.72	0.54	1420.00
1111-8	973 5	1034.5	56 70	0.61	823.02					0.54	1380.00
1111-8	974.5	1075.5	50,50	0.56	1080.00						
1111.8	975.5	1036.5	20.30	0.57	1220.00						
1111-8	976.5	1077 5	56.09	0.56	1360.00						
1111-8	079.5	1020 5	56.58	0.57	1380.00						
1111.9	970.3	1059.5	49.46	0.49	1500.00						
1111-0	3/3'5	1040.5	48.29	0.48	1980.00						
1111-8	980.5	1041.5	43.87	0.44	2140.00						

Fortsetzung Tab. A-7: Wassergehalte und Magnetische Suszeptibiläten der Kernsequenz PG1111

Korngroß	enverteilung	1							
Kern	Bohrtlefe		2 µm [%] 2	- 4 μm (%)	4 - 8 µm (%)	8 · 16 µm (%)	16 - 52 µm (%)	32 - 63 µm (%)	>63 µm [%]
PG1111	46.5	41.5	45.69	14.33	23.50	12.85	3.13	0.44	0.07
	116.5	111.5	53.53	12.48	15.64	11.71	6.14	0.43	0.07
	116.5	111.5	53.40	12.39	15.96	12.06	5.16	0.96	0.07
	116.5	111.5	52.93	13.11	16.31	11.84	5.84	-0.10	0.07
	196.5	191.5	43.18	11.46	16.43	15.16	11.05	2.60	0.12
	196.5	191.5	42.66	11.56	17.14	15.51	10.28	2.73	0.12
	311.5	306.5	41.81	12.63	20.26	16.69	7.15	1.37	0.09
	311.5	306.5	42.44	11.68	20.36	17.05	7.55	0.83	0.09
	379.5	422.5	44.41	12.42	17.89	16.23	7.40	1.49	0.15
	379.5	422.5	44.41	11.83	18.86	16.62	6.38	1,74	0.15
	449.5	492.5	51.04	10.94	17.23	14.49	5.54	0.60	0.15
	449.5	492.5	50.78	10.69	17.39	14.09	5.81	1.08	0.15
	449.5	492.5	50.98	10.90	17.05	14.02	5.15	1.73	0.15
	499.5	542.5	38.93	9.70	15.90	20.08	13.45	1.84	0.11
	499.5	542.5	38.93	9.43	16.24	19.35	12.59	3.35	0.11
	549.5	595.5	55.05	7.06	11.97	12.79	10.32	2.66	0.15
	549.5	595.5	54.72	7.27	12.00	13.09	9.82	2.95	0.15
	549.5	595.5	54.91	7.47	11.65	13.34	10.00	2.48	0.15
	624.5	670.5	46.02	7.28	9.74	14.78	15.15	6.64	0.38
	624.5	670.5	46.08	7.33	10.96	14.71	15.15	5.40	0.38
	699.5	745.5	55.40	9.58	13.59	11.30	7.58	2.34	0.21
	699.5	745.5	55.14	9.84	13.29	11.02	7.99	2.51	0.21
	749.5	795.5	79.04	9.72	6.75	2.83	1.22	0.23	0.21
	749.5	795.5	79.05	10.02	6.68	2.87	1.07	0.09	0.21
	816.5	877.5	69.04	11.07	10.28	4.77	2.66	0.82	1.37
	816.5	877.5	67.31	12.69	10.30	5.21	2.51	0.60	1.37
	816.5	877.5	69.10	11.16	10.27	5.34	2.37	0.38	1.37
	861.5	922.5	91.13	5.47	2.72	0.66	-0.02	0.00	0.04
	861.5	922.5	91.13	5.27	2.79	0.65	-0.04	0.15	0.04
	941.5	1002.5	79.33	14.06	4.16	0.85	0.92	0.34	0.34
	941.5	1002.5	79.50	14.26	4.21	1.56	0.05	0.07	0.34
	1026.5	1087.5	94.23	0.A.	0.A.	0.A.	0.A.	0.A.	0.12
PG1114	1.5		2.73	0.67	2.23	5.10	10.97	13.37	64.94
	1.5		2.73	0.53	2.19	5.33	11.51	12.78	64.94
PG1107	1.5		16.71	2.17	10.57	18.30	25.19	15.45	11.61
	1.5		16.71	2.12	9.57	16.81	23.89	19.29	11.61
PG1108	2.5		17.74	7.05	16.42	26.36	23.88	7.71	0.84
	2.5		18.07	6.84	17.22	26.12	22.83	8.08	0.84
PG1109	1.5		23.69	10.78	22.92	25.80	13.66	2.20	0.94
	1.5		23.32	11.83	22.61	25.17	13.79	2.34	0.94
	1.5		23.32	11.32	23.63	25.75	13.60	1.44	0.94
PG1110	1.5		43.93	12.32	20.34	17.02	5.62	0.69	0.09
	1.5		44.19	11.70	19.60	16.97	5.10	2.35	0.09

Tab. A-6a+7a: Korngrößenzusammensetzung der Kernsequenz PG1111 und der Oberflächenkerne

Tab. A-8: Intensität von Flächen- und Peakreflexen in Röntgendiagrammen der Gesamtmineralogie; Kernsequenz PG1111.

Kern	Bohrtlefe (cm)	Tiefe (cm)	Plagioklas	Plagioklas	Augit	Augit	K Feldspat	K Feldspat	Quarz	Quarz
Kern	Born ciere renti	11070 1011	Peak (3.21 Å)	Fläche (3.21 Å)	Peak (2,99 Å)	Fläche (2.99 Å)	Peak (5.77 Å)	Fläche (5.77 Å)	Peak (4.26 Å)	Fläche (4.26 Å)
1111.5	28.5	23.5	761	19388	169	2245	200	3000	105	991
1111-5	153 5	148.5	712	18108	152	2085	195	2697	120	1482
1111-5	263.5	258.5	749	19919	158	2343	230	3319	120	1502
1111-6	338.5	381.5	859	22270	201	2694	252	3309	119	1330
1111-6	478.5	521.5	724	18553	163	2366	202	3067	113	1310
1111-6	485.5	528.5	761	19816	173	2367	221	2975	130	1419
1111-6	533.5	576.5	733	18813	184	2490	202	2773	109	1246
1111-7	608.5	654.5	911	22281	160	2036	225	3180	119	1412
1111-7	628 5	674.5	761	19450	197	2664	211	2781	142	1556
1111.7	648 5	694.5	903	23682	210	2649	230	3093	126	1537
1111.7	658.5	704.5	823	21577	187	2468	231	3194	142	1654
1111.7	678.5	724 5	746	19940	134	2050	228	3003	137	1621
1111.7	718 5	764.5	610	15737	137	2100	186	2494	65	638
1111.7	777 5	779 5	531	12804	114	1658	168	2409	74	713
1111.8	778 5	839.5	479	11700	104	1414	157	2288	75	770
1111-8	843 5	904.5	549	13640	125	1726	171	2404	73	827
1111-8	873.5	934.5	541	14330	113	1773	167	2164	58	577
1111-8	913 5	974 5	458	11560	87	1251	149	2103	21	213
1111-8	928.5	989.5	533	13738	111	1764	162	2399	45	455
1111-8	948 5	1009.5	674	16702	135	2012	202	2520	29	288
1111-8	968 5	1029 5	489	12064	102	1354	151	2169	25	199
1111-8	998.5	1059.5	428	10279	64	1052	125	1693	10	200
Kern	Bohrtiefe (cm)	Tiefe [cm]	Smektit	Smektit	Kaolinit	Kaolinit	Illit	llit	Korund	Korund
Kern	Bohrtiefe (cm)	Tiefe (cm)	Smektit Peak (14.34 Å)	Smektit Fläche (14.34 Å)	Kaolinit Peak (7.14 Å)	Kaolinit Fläche (7.14 Å)	Illit Peak (4.48 Å)	illit Fläche (4.48 Å)	Korund Peak (5.48 Å)	Korund Fläche (3.48 Å)
Kern 1111-5	Bohrtiefe (cm) 28.5	Tiefe (cm)	Smektit Peak (14.34 Å) 63	Smektit Fläche (14.34 Å) 4135	Kaolinit Peak (7.14 Å) 20	Kaolinit Fläche (7.14 Å) 300	Illit Peak (4.48 Å) 65	illit Fläche (4.48 Å) 1700	Korund Peak (3.48 Å) 230	Korund Fläche (3.48 Å) 4000
Kern 1111-5 1111-5	28.5 153.5	23.5 148.5	Smektit Peak (14.34 Å) 63 85	Smektit Fläche (14.34 Å) 4135 3920	Kaolinit Peak (7.14 Å) 20 24	Kaolinit Fläche (7.14 Å) 300 622	Illit Peak (4.48 Å) 65 74	Illit Fläche (4.48 Å) 1700 1659	Korund Peak (5.48 Å) 230 260	Korund Fläche (3.48 Å) 4000 4272
Kern 1111-5 1111-5 1111-5	28.5 153.5 263.5	7ieFe [cm] 23.5 148.5 258.5	Smektit Peak (14.34 Å) 63 85 44	Smektit Fläche (14.34 Å) 4135 3920 2152	Kaolinit Peak (7.14 Å) 20 24 17	Kaolinit Fläche (7.14 Å) 300 622 215	Hiit Peak (4.48 Å) 65 74 60	iliit Fläche (4.48 Å) 1700 1659 2115	Korund Peak (5.48 Å) 230 260 245	Korund Fläche (3.48 Å) 4000 4272 3801
Kern 1111-5 1111-5 1111-5 1111-5 1111-6	28.5 153.5 263.5 338.5	23.5 148.5 258.5 381.5	Smektit Peak (14.34 Å) 63 85 44 72	Smektit Fläche (14.34 Å) 4135 3920 2152 3627	Kaolinit Peak (7.14 Å) 20 24 17 18	Kaolinit Fläche (7.14 Å) 300 622 215 376	Hiit Peak (4.48 Å) 65 74 60 55	1891 Fläche (4.48 Å) 1700 1659 2115 1085	Korund Peak (5.48 Å) 230 260 245 238	Korund Fläche (3.48 Å) 4000 4272 3801 3729
Kern 1111-5 1111-5 1111-5 1111-6 1111-6	80hrtiefe Icml 28.5 153.5 263.5 338.5 478.5	23.5 148.5 258.5 381.5 521.5	Smektit Peak (14.34 Å) 63 85 44 72 36	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448	Kaolinit Peak (7.14 Å) 20 24 17 18 15	Kaolinit Fläche (7.14 Å) 300 622 215 376 311	lilit Peak (4.48 Å) 65 74 60 55 52	Illit Fläche (4.48 Å) 1700 1659 2115 1085 1344	Korund Peak (5.48 Å) 230 260 245 238 266	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6	28.5 153.5 263.5 338.5 478.5 485.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091	Kaolinit Peak (7,14 Å) 20 24 17 18 15 21	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499	Illit Peak (4.48 Å) 65 74 60 55 52 69	1111t Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760	Korund Peak (5.48 Å) 230 260 245 238 266 288	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6	28.5 153.5 263.5 338.5 478.5 485.5 533.5	Tiefe Icm1 23.5 148.5 258.5 381.5 521.5 528.5 528.5 576.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503	Illit Peak (4,48 Å) 65 74 60 55 52 69 69 62	IIIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355	Korund Peak (5.48 Å) 230 260 245 238 266 288 259	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7	28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5	23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 51	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737	Illit Peak (4.48 Å) 65 74 60 55 52 69 62 73	IIIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869	Korund Peak (5.48 Å) 230 260 245 238 266 289 259 272	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7	Bohrtiefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 608.5 628.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 51 116 99	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31	Kaolinit Fläche (7.14 Å) 300 622 215 376 371 499 503 737 688	Illit Peak (4.48 Å) 65 74 60 55 52 69 62 73 78	IIIIt Fläche (4.48 Å) 1700 1659 2115 1344 1760 1355 1869 1803	Korund Peak (5.48 Å) 230 260 245 238 266 288 259 272 254	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214
Kern 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7	Bohrtiefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 648.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5 694.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 51 116 99 97	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 737 688 867	Illit Peak (4.48 Å) 65 74 60 55 52 69 62 73 78 77	Illit Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807	Korund Peak (5.48 Å) 230 245 245 258 266 288 259 272 254 253	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7	Bohrtlefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 628.5 658.5	23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5 674.5 674.5 704.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 97 105	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5249	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964	Illit Peak (4.48 Å) 65 74 60 55 52 69 62 73 78 77 71	1811 Fläche (4,48 Å) 1659 2115 1344 1760 1355 1869 1803 1807 1758	Korund Peak (5.48 Å) 280 245 238 266 289 259 272 254 253 283	Korund Fläche (3,48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4214 4861
Kern 1111-5 1111-5 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7	Bohrtiefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 628.5 648.5 658.5 678.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5 674.5 674.5 674.5 704.5 704.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5394 5277 5240 5249 4299	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41 34	Kaolinit Fläche (7.14 Å) 300 622 215 376 371 499 503 737 688 867 964 815	Illit Peak (4,48 Å) 65 74 60 55 69 62 73 76 71 73	Illit Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 1582	Korund Peak (5.48 Å) 280 245 258 266 289 259 272 254 253 283 283 283 249	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4444 4861 3975
Kern 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7	Bohrtiefe (cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 628.5 648.5 658.5 678.5 718.5	Tiefe (cm) 23.5 148.5 258.5 381.5 528.5 528.5 576.5 674.5 674.5 694.5 704.5 704.5 724.5 764.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78 159	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5394 5277 5240 5249 4299 7539	Kaolinit Peak (7.14 Å) 20 24 17 18 21 23 34 31 41 34 32	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668	Illit Peak (4.48 Å) 65 74 60 55 52 69 62 73 76 77 71 73 67	Illit Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 1582 2166	Korund Peak (5.48 Å) 230 245 245 258 259 272 254 253 283 249 258	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4214 4861 3975 4113
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7	Bohrtlefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 628.5 658.5 678.5 778.5 778.5 778.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 654.5 674.5 704.5 724.5 764.5 779.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 97 105 78 159 140	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5277 5240 5249 4299 4299 7539 6782	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41 34 32 27	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668 853	Illit Peak (4.48 Å) 65 74 60 55 52 69 62 73 78 77 71 73 67 76	IIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 1582 2166 2145	Korund Peak (5.48 Å) 280 245 238 266 289 259 272 254 253 283 249 253 249 258 249	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4214 4861 3975 4113 4376
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7	Bohrtiefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 628.5 648.5 658.5 678.5 778.5 778.5 778.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5 674.5 674.5 704.5 704.5 764.5 764.5 764.5 765.5 839.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78 159 140 115	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5277 5240 52249 4299 7538 6782 6138	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41 34 32 27 23	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668 863 660	Illit Peak (4,48 Å) 65 74 60 55 52 69 62 73 78 77 71 73 67 76 70	IIIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 1582 2166 2124 2127	Korund Peak (5,48 Å) 280 245 258 266 289 259 272 254 253 283 283 249 258 271 258 271 242	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4444 4861 3975 4113 4376 4083
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-8	Bohrtiefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 628.5 628.5 678.5 7718.5 7718.5 733.5 778.5 843.5	Tiefe (cm) 23.5 148.5 258.5 381.5 528.5 576.5 654.5 674.5 674.5 694.5 704.5 704.5 724.5 764.5 779.5 839.5 904.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78 159 140 115 139	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5277 5240 5249 4299 7539 6782 6782 6138 7210	Kaolinit Peak (7.14 Å) 20 24 17 18 21 23 34 31 41 32 27 23 34 35 36	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668 863 865 865 863 863 860 888	Illit Peak (4.48 Å) 65 74 60 55 52 69 62 73 77 71 73 67 76 70 66	IIIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 2166 2124 2127 2145	Korund Peak (5.48 Å) 250 245 259 259 272 254 253 283 249 258 249 258 271 242 278	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4444 4861 3975 4113 4376 4083 4083 4785
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-8 1111-8 1111-8	Bohrtlefe (Cm) 28,5 153,5 263,5 338,5 478,5 485,5 533,5 608,5 628,5 628,5 658,5 678,5 778,5 778,5 843,5 873,5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 654.5 674.5 704.5 724.5 779.5 839.5 904.5 934.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 97 105 78 159 140 115 139 126	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5249 4299 7539 6782 6138 7210 5999	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41 34 32 27 23 36 34	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668 865 668 883 668 883 867	IIIIt Peak (4.48 Å) 65 74 60 55 52 69 62 73 78 77 73 67 67 76 70 66 70	IIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 1582 2166 2124 2127 2145 2096	Korund Peak (5.48 Å) 280 245 238 266 289 259 272 254 253 283 249 253 249 258 271 242 258	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4214 4214 4861 3975 4113 4376 4083 4376 4083 4312
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-8 1111-8 1111-8	Bohrtiefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 608.5 628.5 648.5 658.5 678.5 718.5 778.5 843.5 873.5 913.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5 674.5 694.5 704.5 724.5 764.5 764.5 764.5 764.5 904.5 934.5 974.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78 159 140 115 139 126 110	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5249 4299 7539 6782 6138 7210 5999 7476	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41 34 32 27 23 36 34 33	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668 863 666 863 660 818 898 282 820	IIIIt Peak (4,48 Å) 65 74 60 55 52 69 62 73 78 77 71 73 67 76 70 66 70 64	IIIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 1582 2166 2124 2127 2145 2096 2484	Korund Peak (5.48 Å) 280 245 258 266 289 259 272 254 253 283 249 258 271 242 271 242 271 242 278 265 265 244	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4214 4214 4861 3975 4113 4376 4083 4785 4312 4721
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-8 1111-8 1111-8 1111-8	Bohrtlefe (Cm) 28.5 153.5 263.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 648.5 648.5 648.5 658.5 678.5 778.5 778.5 778.5 843.5 873.5 973.5 928.5	Tlefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5 674.5 674.5 704.5 704.5 704.5 764.5 779.5 839.5 904.5 934.5 934.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78 159 140 115 139 126 110 85	Smektit Fläche (14.54 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5394 5277 5277 5249 4299 7539 6782 6138 7210 5999 7476 4936	Kaolinit Peak (7,14 Å) 20 24 17 18 15 21 23 34 31 41 41 41 32 27 23 36 34 32 27 23 36 34 38 23	Kaolinit Fläche (7.14 Å) 300 622 215 376 371 499 503 737 688 867 964 815 668 863 867 964 815 668 863 863 860 883 800 818 982 820 630	IIIIt Peak (4,48 Å) 65 74 60 55 52 69 62 73 78 77 71 73 76 70 66 70 66 70 66 70 64 71	IIIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 2166 2124 2127 2145 2096 2484 2035	Korund Peak (5.48 Å) 250 245 245 258 259 272 254 253 249 258 271 242 258 271 242 278 265 244 265 244 249	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4444 4861 3975 4113 4376 4083 4785 4312 4312 4360
Kern 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-8 1111-8 1111-8 1111-8	Bohrtlefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 628.5 628.5 678.5 678.5 778.5 873.5 778.5 843.5 873.5 913.5 928.5 948.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 654.5 674.5 704.5 724.5 795 839.5 934.5 934.5 989.5 1009.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78 159 140 115 139 126 110 85 85	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5249 4299 7539 6782 6782 6138 7210 5999 7476 4936 5221	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41 34 32 27 23 36 34 33 36 34 38 23 17	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668 865 668 863 668 818 883 600 818 982 820 630 630 630 630	IIIIt Peak (4.48 Å) 65 74 60 55 52 69 62 73 78 77 73 67 60 52 69 62 73 76 70 64 71 56	IIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 2166 2124 2127 2145 2096 2484 2035 2073	Korund Peak (5.48 Å) 280 245 238 266 289 259 272 254 253 283 249 258 249 258 271 242 258 249 255 244 249 255 244 242	Korund Fläche (3,48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4214 4444 4861 3975 4113 4376 4083 4785 4312 4721 4360 3763
Kern 1111-5 1111-5 1111-5 1111-5 1111-6 1111-6 1111-6 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-7 1111-8 1111-8 1111-8 1111-8 1111-8 1111-8	Bohrtiefe (Cm) 28.5 153.5 263.5 338.5 478.5 485.5 533.5 608.5 608.5 628.5 648.5 658.5 678.5 778.5 778.5 778.5 843.5 973.5 913.5 928.5 948.5 968.5	Tiefe (cm) 23.5 148.5 258.5 381.5 521.5 528.5 576.5 654.5 674.5 674.5 674.5 704.5 704.5 704.5 764.5 764.5 764.5 904.5 904.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5 934.5	Smektit Peak (14.34 Å) 63 85 44 72 36 73 51 116 99 97 105 78 159 140 115 126 110 85 132	Smektit Fläche (14.34 Å) 4135 3920 2152 3627 2448 4091 2749 5394 5277 5240 5249 4299 7539 6782 6138 7210 5999 7476 4936 5221 6526	Kaolinit Peak (7.14 Å) 20 24 17 18 15 21 23 34 31 41 41 34 32 27 23 36 36 34 38 23 34 38 23 34	Kaolinit Fläche (7.14 Å) 300 622 215 376 311 499 503 737 688 867 964 815 668 863 600 818 982 820 630 376 871	IIIIt Peak (4,48 Å) 65 74 60 55 52 69 62 73 78 77 71 73 67 76 70 64 71 56 67	IIIIt Fläche (4.48 Å) 1700 1659 2115 1085 1344 1760 1355 1869 1803 1807 1758 1582 2166 2124 2127 2145 2096 2484 2035 2034	Korund Peak (5.48 Å) 280 245 258 266 289 259 272 254 253 283 249 258 271 242 271 242 278 265 244 249 243 244 249 243	Korund Fläche (3.48 Å) 4000 4272 3801 3729 4035 4643 4000 4514 4214 4214 4214 4214 43861 3975 4113 4376 4083 4785 4312 4376 33763 43721 4360 3763 4594

2084 2392

Anhang

1111-8 1111-8

1009.5 1029.5 1059.5

Tab. A-9: Intensität von Flächen- und Peakreflexen in Röntgendiagrammen der Tonmineralogie; Kernsequenz PG1111.

Kern	Bohrtiefe (cm	1) Tiefe (cm)	Smektit	Smektit	Smektit	Kaolinit	Kaolinit	Kaolinit	illit	llit	Illit
			Peaklage (Å) ?eakintensität /	Peakfläche (Å)	Peaklage (A)	eakintensität	Peakfläche (Å)	Peaklage (A)	Peakintensität	Peakfläche IAI
1111-5	46.5	41.5	16.769	120	14500	7.142	11	980	9.992	8	210
1111-5	116.5	111.5	16.5	259	15904	7.142	37	892	9,992	13	223
1111-5	196.5	191.5	16.769	245	14577	7.142	44	1192	9.934	17	217
1111-5	311.5	306.5	16.5	151	9596	7.142	27	865	9.992	7	156
1111-6	379.5	422.5	16.66	465	25371	7.142	82	2272	9.992	25	460
1111-6	449.5	492.5	16.66	448	24226	7.142	47	1561	9.992	16	262
1111-6	499.5	542.5	16.5	305	16515	7.074	28	692	9,992	12	142
1111-7	549.5	595.5	16.5	278	16262	7.142	50	1635	9.992	5	108
1111-7	624.5	670.5	16.714	337	19269	7.142	76	2399	9,992	28	573
1111-7	699.5	745.5	16.66	645	33882	7.142	95	2492	9.992	26	432
1111-7	749.5	795.5	16.5	390	19930	7.142	46	1210	9,858	9	69
1111-8	816.5	877.5	16.606	536	27481	7.172	71	1924	9,992	19	290
1111-8	861.5	922.5	16.66	443	23763	7.142	68	2364	9.972	12	147
1111-8	941.5	1002.5	16.5	271	17464	7.113	53	1913	9.992	20	562
1111-8	1026.5	1087.5	16.5	423	23175	7.142	61	1880	9.953	10	133
1114-1	1.5		16.606	164	10300	7.113	20	376	9,992	11	114
1107-1	1.5		16,769	238	15338	7.142	38	1138	9.583	16	573
1108-1	2.5		16.714	276	15595	7.113	43	1019	9,934	20	301
1109-1	1.5		16.769	231	13092	7.142	29	658	9,992	11	194
1110-1	1.5		16.5	270	15404	7.103	43	1021	9,992	18	320
1122-1	1.5		16.879	235	14057	7.142	35	937	9,992	13	192

Kern	Bohrtiefe Id	mi Tiefe (cm)	Plagioklas	Plagiokias	Augit	Augit	K 'Feidspat	K Feldspat	Quarz	Quarz	MoS2	MoS2
			Peak (3.21 Å)	Fläche (3.21 A)	Peak (2.99 /) Fläche (2.99 A)	Peak (3.77 Å)	Fläche (3.77 Å)	Peak (4.26 A)	Fläche (4.26 Å)	Peak (6.15 Å)	Fläche (6.15 Å)
1111-5	46.5	41.5	80	2556	35	510	20	476	26	597	430	6527
1111-5	116.5	111.5	68	2138	29	469	26	410	26	609	573	7525
1111-5	196.5	191.5	101	3058	52	837	37	742	34	604	384	5427
1111-5	311.5	306.5	119	1843	61	1285	48	905	35	486	252	3775
1111-6	379.5	422.5	142	4158	37	658	45	775	25	338	780	10314
1111-6	449.5	492.5	109	3449	49	797	40	822	19	257	585	8148
1111-6	499.5	542.5	106	3185	59	993	46	843	24	339	320	4565
1111-7	549.5	595.5	121	3848	49	944	47	702	9	81	480	7411
1111-7	624.5	670.5	134	3686	45	662	35	650	34	534	617	8825
1111-7	699.5	745,5	113	2879	18	270	35	704	19	228	1008	14792
1111-7	749.5	795.5	154	4544	67	1283	51	912	9	129	454	8475
1111-8	816.5	877.5	103	2850	44	866	39	669	19	245	813	10768
1111-8	861.5	922.5	134	4222	67	1060	53	764	15	138	1193	14690
1111-8	941.5	1002.5	119	3353	35	709	34	687	25	426	380	7089
1111-8	1026.5	1087.5	124	3972	66	1116	57	870	11	127	635	8685
1114-1	1.5		198	2887	117	1857	58	1046	29	465	192	3193
1107-1	1.5		128	4314	59	1387	26	590	25	488	669	10837
1108-1	2.5		84	2786	51	1128	39	607	31	422	421	6237
1109-1	1.5		114	3183	46	905	50	980	29	422	325	4932
1110-1	1.5		142	1990	59	1002	35	612	24	516	605	8450
1122-1	1.5		115	3413	55	1112	48	835	27	500	376	5478

 Tab. A-10: Intensitäten der auf den internen Standard Korund bezogenen Flächenreflexe in Röngtendiagrammen der Gesamtmineralogie; Kernsequenz PG1111.

Kern	Bohrtlefe (cm)	Tiefe (cm)	Plagioklas/Std.	Augit/std.	Orthoklas/Std	Quarz/Std.	Smektit/Std.	Kaolinit/Std.	illit/std.
1111.5	28.5	23.5	4.847	0.561	0.750	0.248	1.034	0.000	0.425
1111.5	153.5	148.5	4.239	0.488	0.631	0.347	0.918	0.146	0.388
11 11- 5	263.5	258.5	5.240	0.616	0.873	0.395	0.566	0.057	0.556
1111-6	338.5	381.5	5.972	0.722	0.887	0.357	0.973	0.101	0.291
11 11-6	478.5	521.5	4.598	0.586	0.760	0.325	0.607	0.077	0.333
1111-6	485.5	528.5	4.268	0.510	0.641	0.306	0.881	0.107	0.379
1111-6	533.5	576.5	4.703	0.623	0.693	0.312	0.687	0.126	0.339
1 111.7	608.5	654.5	4.936	0.451	0.704	0.313	1.195	0.163	0.414
1111-7	628.5	674.5	4.616	0.632	0.660	0.369	1.252	0.163	0.428
1111.7	648.5	694.5	5.329	0.596	0.696	0.346	1.179	0.195	0.407
1111-7	658.5	704.5	4.439	0.508	0.657	0.340	1.080	0.198	0.362
1 111-7	678.5	724.5	5.016	0.516	0.755	0.408	1.082	0.205	0.398
1111-7	718.5	764.5	3.826	0.511	0.606	0.155	1.833	0.162	0.527
1111-7	733.5	779.5	2.926	0.379	0.551	0.163	1.550	0.197	0.485
1111-8	778.5	839.5	2.866	0.346	0.560	0.189	1.503	0.147	0.521
1111-8	843.5	904.5	2.851	0.361	0.502	0.173	1,507	0.171	0.448
1111-8	873.5	934.5	3.323	0.411	0.502	0.134	1.391	0.228	0.486
1111-8	913.5	974.5	2.449	0.265	0.445	0.045	1.584	0.174	0.526
1111-8	928.5	989.5	3.151	0.405	0.550	0.104	1,132	0.144	0.467
1111-8	948.5	1009.5	4.438	0.535	0.670	0.077	1.387	0.100	0.551
1111-8	968.5	1029.5	2.626	0.295	0.472	0.043	1.421	0.190	0.454
1111-8	998.5	1059.5	2.441	0.250	0.402	0.047	1.729	0.200	0.568

Tab. A-11: Intensitäten der auf den internen Standard Molybdänsulfat bezogenen Flächenreflexe in Röngtendiagrammen der Tonmineralogie; Kernsequenz PG1111.

Kern	Bohrtiefe (cm)	Tiefe (cm)	Smektit/Std.	Kaolinit/Std.	Illiit/Std.	Plagioklas/Std.	Augit/Std.	K'Feldspat/Std.	Quarz/Std.
1111-5	46.5	41.5	2.2215	0.1501	0.0322	0.3916	0.0781	0.0729	0.0915
1111-5	116.5	111.5	2.1135	0.1185	0.0296	0.2841	0.0623	0.0545	0.0809
1111-5	196.5	191.5	2.6860	0.2196	0.0400	0.5635	0.1542	0.1367	0.1113
1111-5	311.5	306.5	2.5420	0.2291	0.0413	0.4882	0.3404	0.2397	0.1287
1111-6	379.5	422.5	2.4599	0.2203	0.0446	0.4031	0.0638	0.0751	0.0328
1111-6	449.5	492.5	2.9732	0.1916	0.0322	0.4233	0.0978	0.1009	0.0315
1111-6	499.5	542.5	3.6177	0.1516	0.0311	0.6977	0.2175	0.1847	0.0743
1111.7	549.5	595.5	2.1943	0.2206	0.0146	0.5192	0.1274	0.0947	0.0109
1111-7	624.5	670.5	2.1835	0.2718	0.0649	0.4177	0.0750	0.0737	0.0605
1111.7	699.5	745.5	2.2906	0.1685	0.0292	0.1946	0.0183	0.0476	0.0154
1111-7	749.5	795.5	2.3516	0.1428	0.0081	0.5362	0.1514	0.1076	0.0152
1111-8	816.5	877.5	2.5521	0.1787	0.0269	0.2647	0.0804	0.0621	0.0228
1111-8	861.5	922.5	1.6176	0.1609	0.0100	0.2874	0.0722	0.0520	0.0094
1111-8	941.5	1002.5	2.4635	0.2699	0.0793	0.4730	0.1000	0.0969	0.0601
1111-8	1026.5	1087.5	2.6684	0.2165	0.0153	0.4573	0.1285	0.1002	0.0146
1114-1	1.5		3.2258	0.1178	0.0357	0.9042	0.5816	0.3276	0.1456
1107-1	1.5		1.4153	0.1050	0.0529	0.3981	0.1280	0.0544	0.0450
1108-1	2.5		2.5004	0.1634	0.0483	0.4467	0.1809	0.0973	0.0677
1109-1	1.5		2.6545	0.1334	0.0393	0.6454	0.1835	0.1987	0.0856
1110-1	1.5		1.8230	0.1208	0.0379	0.2355	0.1186	0.0724	0.0611
1122-1	1.5		2.5661	0.1710	0.0350	0.6230	0.2030	0.1524	0.0913

7.2.3 Geochemie

Tab. A-12: Kalibrierungsbereich und Standardabweichung der Röntgenfluoreszenzanlage Philips PW 1404/10 und die zur Auswertung genutzten Elemente.

Element	genutzte Elemente	Kalibrierungsbereich	±Std.Abw.
SiO2	x	0.80 - 99.75 Gew.%	0.50 Gew.%
AI2O3	x	0.10 - 60.00 Gew.%	0.20 Gew.%
TiO2	x	0.02 - 4.20 Gew.%	0.01 Gew.%
Fe2O3	x	0.06 - 85.00 Gew.%	0.10 Gew.%
MgO	x	0.04 - 50.00	0.10 Gew.%
CaO	x	0.04 - 75.00 Gew.%	0.10 Gew.%
Na2O	x	0.04 - 12.00 Gew.%	0.10 Gew.%
K2O	x	0.02 - 15.00 Gew.%	0.10 Gew.%
P2O5	x	0.006 - 40.00 Gew.%	0.05 Gew.%
SO3		0.05 - 65.00 Gew.%	0.10 Gew%
Mn	x	0 - 25000 (mg/kg)	85 (mg/kg)
As		5 - 4000 (mg/kg)	3 [mg/kg]
Ba	x	8 - 5500 [mg/kg]	17 [mg/kg]
Bi		5 - 1200 [mg/kg]	3 [mg/kg]
Ce		16 - 2500 [mg/kg]	10 (mg/kg)
Co	x	3 - 800 (mg/kg)	4 [mg/kg]
Cr	x	8 - 30000 (mg/kg)	20 [mg/kg]
Cu	x	4 - 7500 [mg/kg]	18 [mg/kg]
Ga		8 - 450 (mg/kg)	2 [mg/kg]
Hf		2 - 220 (mg/kg)	1 [mg/kg]
La		14 - 1500 (mg/kg)	8 (mg/kg)
Mo		2 - 800 [mg/kg]	2 [mg/kg]
Nb	x	2 - 1000 (mg/kg)	3 [mg/kg]
Nd		7 - 750 (mg/kg)	5 [mg/kg]
Ni	x	2 - 3500 [mg/kg]	12 [mg/kg]
Pb		4 - 6000 [mg/kg]	9 [mg/kg]
Pr		11 - 250 [mg/kg]	3 (mg/kg)
Rb		4 - 9500 [mg/kg]	10 [mg/kg]
Sc		1 - 350 [mg/kg]	4 [mg/kg]
Sm		6 - 120 (mg/kg)	2 [mg/kg]
Sr	x	4 - 5200 (mg/kg)	8 [mg/kg]
Th		4 - 1200 [mg/kg]	6 [mg/kg]
U		6 -750 (mg/kg)	2 [mg/kg]
v	x	4 - 1100 [mg/kg]	7 [mg/kg]
Y	x	2 - 800 [mg/kg]	4 [mg/kg]
Zn	x	15 - 6000 [mg/kg]	7 (mg/kg)
Zr	<u>x</u>	4 - 12000 (mg/kg)	11 [mg/kg]

Tab. A-13: Wellenlängen und relativer Fehler zu den mit der ICP-OES gemessenen Haupt- und Spurenelementen sowie die zur Kalibrierung genutzten Eichlösungen.

Element	Wellenlänge	gen. Elementere	el. Std Fehler 1%1Konz.	Eichlösungen (HE:mg/l, SE:µg/l)
Aluminium	AI309		2.65	0, 5, 10, 20, 50, 100
Aluminium	AI396	x	3.57	
Eisen	Fe238	x	1.38	0, 2.5, 5, 10, 25, 50
Kalium	K766	x	1.43	0, 2.5, 5, 10, 25, 50
Kalzium	Ca317	x	2.58	0, 2.5, 5, 10, 25, 50
Kalzium	Ca422		0.83	
Magnesium	Mg279		0.43	0, 0.5, 1, 2, 5, 10, 25
Magnesium	Mg285	x	2.31	
Mangan	Mn257	x	6.58	0, 0.25, 0.5, 1, 2.5, 5
Natrium	Na588		7.01	0, 1.25, 2.5, 5, 12.5, 25
Natrium	Na589	x	6.36	
Phosphor	P 177	x	5.19	0, 0.25, 0.5, 1, 2.5, 5
Phosphor	P 178		8.75	
Titan	Ti334	x	0.77	0, 0.25, 0.5, 1, 2.5, 5
Barium	8a455	×	9.12	0, 100, 200, 1000
Blei	Pb220		10.73	0, 50, 100, 500
Chrom	Cr205		24.69	0, 50, 100, 500
Chrom	Cr206		24.35	
Cobalt	Co228	x	10.05	0, 50, 100, 500
Kupfer	Cu327	x	6.73	0, 50, 100, 500
Molybdän	M0202		28.37	0, 50, 100, 500
Molybdän	M0204		16.29	
Nickel	Ni221	x	4.46	0, 50, 100, 500
Niob	Nb269		78.89	0, 50, 100, 500
Strontium	Sr407		8.93	0, 50, 100, 500
Strontium	\$r421	x	6.71	
Vanadium	V292	х	7.46	0, 50, 100, 500
Wolfram	W207		8.97	0, 50, 100, 500
Zink	Zn213	x	10.10	0, 50, 100, 500
Zirkon	Zr339		58.88	0, 50, 100, 500
Zirkon	Zr343		54.22	

Tab. A-14: Hauptelementverteilung im Gesamtsediment der Kernsequenz PG1111; Ergebnisse in {Gew.%} der Röntgenfluoreszenzanalyse (RFA) der Untersuchungen mit Summen von 100 ± 1.5 Gew.%.

1111-5 16.5 11.5 48.46 15.64 1.11 11.34 5.24 6.99 1.76 0.82 0.21 0.24 9.02 100.84 2.74 0.080 1.37 0.380 0.603 0.158 0.082 0.011 0.02 1111-5 28.5 23.5 48.76 15.52 1.14 11.14 5.09 7.07 1.82 0.23 0.23 0.23 9.19 100.95 2.78 0.083 1.36 0.372 0.615 0.683 0.012 0.01 0.011 0.012 0.011 0.015 2.78 0.080 1.37 0.380 0.554 0.157 0.083 0.012 0.011 0.012 0.01 1.11 1.11 1.11 1.11 1.10 5.02 6.55 1.73 0.83 0.24 0.23 9.99 100.36 2.73 0.080 1.34 0.365 0.568 0.166 0.083 0.011 0.011 0.111 0.111 0.15 0.80 0.21 0.23 1.033 100.97 2.72 0.077 1.35 0.368 0.568 0.
1111-5 28.5 28.5 48.78 15.52 1.14 11.14 5.09 7.07 1.82 0.23 0.23 9.19 100.95 2.78 0.083 1.36 0.372 0.615 0.065 0.083 0.012 0.021 1111-5 43.5 38.5 48.64 15.55 1.11 11.21 4.90 6.51 1.77 0.84 0.22 0.21 9.80 100.91 2.70 0.079 1.34 0.351 0.556 0.615 0.083 0.012 0.01 1111-5 48.5 48.5 48.51 15.66 1.07 11.20 5.24 6.76 1.87 0.84 0.22 0.23 9.37 101.09 2.71 0.08 1.34 0.366 0.568 0.165 0.83 0.01 0.01 1111-5 53.5 48.5 15.66 1.07 11.20 5.08 6.55 1.67 0.83 0.21 0.23 9.89 10.33 10.09 2.72 0.077 1.55 0.58 0.56 0.68 0.165 0.83 0.01 0.02
1111-5 43.5 38.5 48.46 15.85 1.11 11.21 4.90 6.51 1.77 0.84 0.22 0.21 9.80 100.91 2.70 0.79 1.34 0.351 0.554 0.157 0.083 0.012 0.011 1111-5 48.5 48.03 15.57 1.10 11.05 5.20 6.55 1.73 0.83 0.22 9.99 100.36 2.73 0.080 1.34 0.351 0.554 0.157 0.083 0.013 0.00 1111-5 53.5 48.04 15.79 1.09 11.23 5.24 6.55 1.87 0.84 0.22 0.23 10.33 100.97 2.72 0.077 1.35 0.368 0.55 0.013 0.02 1111-5 63.5 73.5 48.42 15.46 1.09 1.118 6.64 1.71 0.88 0.25 0.23 9.65 10.087 2.77 0.080 1.40 0.380 0.594 0.158 0.083 0.013 0.02 1111-5 88.5 47.62 15.2 1.07 </td
1111-5 48.5 43.5 48.03 15.75 1.10 11.05 5.02 6.55 1.73 0.83 0.24 0.23 9.99 100.36 2.73 0.080 1.34 0.365 0.568 0.156 0.083 0.013 0.021 1111-5 53.5 48.5 48.41 15.79 1.09 11.23 5.24 6.76 1.87 0.84 0.22 0.23 10.109 2.71 0.076 1.34 0.365 0.565 0.156 0.083 0.011 0.01 1111-5 63.5 58.5 48.15 15.66 1.07 11.20 5.08 6.57 1.67 0.83 0.21 0.037 0.77 0.080 1.37 0.376 0.568 0.156 0.083 0.011 0.02 1111-5 78.5 73.5 48.42 1.54 1.09 1.12 5.08 6.71 1.02 0.23 0.24 0.23 0.23 0.080 1.40 0.380 0.594 0.168 0.083 0.013 0.02 1111-5 98.5 93.5 47.61
1111-5 53.5 48.5 48.41 15.79 1.09 11.25 5.24 6.76 1.87 0.84 0.22 0.20 9.37 101.09 2.71 0.078 1.34 0.376 0.578 0.166 0.083 0.011 0.011 1111-5 63.5 58.5 48.15 15.66 1.07 11.20 5.08 6.55 1.67 0.83 0.21 0.23 10.03 100.97 2.72 0.077 1.35 0.368 0.56 0.50 0.50 0.010 0.02 1111-5 78.5 73.5 48.42 15.42 1.09 11.26 5.10 6.70 1.72 0.88 0.25 0.23 9.26 0.080 1.40 0.380 0.59 0.164 0.085 0.013 0.02 1111-5 88.5 83.5 47.62 15.2 1.07 11.20 5.08 6.72 1.77 0.82 0.24 9.99 9.99 2.76 0.080 1.40 0.164 0.085 0.013 0.02 1111-5 108.5 173.4 17.1
1111-5 63.5 58.5 48.15 15.66 1.07 11.20 5.08 6.55 1.67 0.83 0.21 0.23 100.33 100.97 2.72 0.077 1.55 0.368 0.565 0.150 0.083 0.011 0.02 1111-5 78.5 73.5 48.42 15.45 1.09 11.19 5.14 6.64 1.71 0.88 0.23 9.85 100.87 2.77 0.80 1.37 0.38 0.565 0.150 0.083 0.013 0.02 1111-5 88.5 83.5 47.62 15.22 1.08 11.26 5.10 6.70 1.77 0.80 0.25 0.24 9.79 99.40 2.76 0.080 1.40 0.380 0.594 0.168 0.083 0.013 0.02 1111-5 98.5 93.5 47.61 15.12 1.07 11.20 5.08 6.56 2.68 0.21 10.07 10.09 2.76 0.080 1.40 0.831 0.025 0.014 0.02 0.014 0.02 0.014 0.02 0.014 </td
1111-5 78.5 73.5 48.42 15.45 1.09 11.19 5.14 6.64 1.71 0.88 0.25 0.23 9.85 100.87 2.77 0.080 1.37 0.378 0.580 0.156 0.089 0.013 0.02 1111-5 88.5 83.5 47.62 15.22 1.08 11.26 5.10 6.70 1.72 0.80 0.25 0.24 9.99 99.99 2.76 0.080 1.40 0.380 0.59 0.158 0.085 0.013 0.02 1111-5 98.5 93.5 47.29 15.12 1.07 11.20 5.08 6.72 1.77 0.82 0.24 9.79 99.40 2.76 0.080 1.40 0.38 0.99 0.04 0.02 0.02 1.00 10.19 2.78 0.080 1.42 0.39 0.04 0.02 0.02 0.01 10.07 10.109 2.78 0.080 1.42 0.37 0.20 0.01 10.07 10.109 2.78 0.080 1.40 0.40 0.02 0.02 0.01
1111-5 88.5 83.5 47.62 15.22 1.08 11.26 5.10 6.70 1.72 0.80 0.24 9.99 99.99 2.76 0.80 1.40 0.380 0.594 0.158 0.083 0.013 0.02 1111-5 98.5 93.5 47.29 15.13 1.07 11.20 5.08 6.70 1.77 0.82 0.23 9.79 99.40 2.76 0.80 1.40 0.380 0.594 0.164 0.085 0.013 0.021 1111-5 108.5 103.5 47.61 15.12 1.07 11.20 5.05 6.56 2.68 0.21 0.021 10.07 10.92 2.88 0.081 1.40 0.58 0.024 0.024 0.23 9.70 9.94 2.76 0.80 1.40 0.38 0.94 0.94 0.02 0.02 0.001 1.00 1.02 0.164 0.80 0.04 0.021 0.012 0.021 0.011 0.011 0.33 0.94 0.94 0.94 0.94 0.92 0.91 0.80 0.81
1111-5 98.5 93.5 47.29 15.13 1.07 11.20 5.08 6.72 1.77 0.82 0.23 9.79 99.40 2.76 0.080 1.40 0.581 0.599 0.164 0.085 0.010 0.021 1111-5 108.5 103.5 47.61 15.12 1.07 11.20 5.05 6.26 2.68 0.21 10.07 10.109 2.78 0.080 1.40 0.331 0.590 0.249 0.020 0.01 0.02 1111-5 118.5 113.5 48.12 15.11 1.04 11.44 4.94 6.50 1.43 0.82 0.22 0.20 9.08 98.75 2.81 0.078 1.39 0.371 0.581 0.133 0.085 0.012 0.01 1111-5 128.5 123.5 48.52 15.41 1.08 11.37 5.04 6.70 1.47 0.80 0.21 0.19 2.80 0.079 1.38 0.371 0.587
1111-5 108.5 103.5 47.61 15.12 1.07 11.32 5.05 6.56 2.68 0.91 0.23 0.21 10.07 101.09 2.78 0.080 1.42 0.379 0.586 0.249 0.04 0.02 0.02 1111-5 118.5 113.5 48.12 15.11 1.04 11.14 4.94 6.50 1.43 0.82 0.22 9.08 98.75 2.81 0.078 1.89 0.371 0.581 0.133 0.085 0.012 0.01 1111-5 128.5 123.5 48.52 15.11 1.08 11.37 5.04 6.70 1.47 0.80 0.23 0.20 8.81 99.79 2.78 0.079 1.38 0.371 0.587 0.14 0.082 0.01 0.01 1111-5 143.5 138.5 49.08 15.50 1.08 1.47 6.82 0.22 0.20 8.81 99.79 2.78 0.079 1.38 0.37 0.586 0.68 0.014 0.012 0.011 0.011 0.011 0.011 0.0
1111-5 118.5 113.5 48.12 15.11 1.04 11.14 4.94 6.50 1.43 0.82 0.22 0.00 90.8 98.75 2.81 0.078 1.39 0.371 0.581 0.133 0.085 0.012 0.01 1111-5 128.5 123.5 48.52 15.41 1.08 11.37 5.04 6.70 1.47 0.80 0.23 0.20 8.81 99.79 2.78 0.079 1.39 0.371 0.587 0.133 0.082 0.012 0.011 1111-5 143.5 138.5 49.08 15.50 1.08 1.13 5.14 6.70 1.47 0.80 0.23 0.20 8.81 99.79 2.78 0.079 1.38 0.371 0.587 0.134 0.082 0.012 0.011 1111-5 143.5 138.5 49.08 15.50 1.08 1.80 0.87 0.21 9.078 2.80 0.079 1.38 0.376 0.58 0.68 0.014 0.02 1111-5 135.5 148.5 7.97 15
1111-5 128.5 123.5 48.52 15.41 1.08 11.37 5.04 6.70 1.47 0.80 0.23 0.20 8.81 99.79 2.78 0.079 1.39 0.371 0.587 0.134 0.082 0.012 0.011 1111-5 143.5 138.5 49.08 15.50 1.08 11.31 5.14 6.53 1.80 0.87 0.21 0.19 8.90 100.78 2.80 0.079 1.38 0.569 0.168 0.080 0.011 0.011 1111-5 1535 148.6 47.97 15.54 1.05 12.65 0.26 0.23 9.77 101.34 2.73 0.076 1.46 0.377 0.555 0.149 0.083 0.014 0.021 0.01
1111-5 143.5 49.08 15.50 1.08 11.31 5.14 6.53 1.80 0.87 0.21 0.19 8.90 100.78 2.80 0.079 1.38 0.376 0.569 0.163 0.088 0.011 0.01 1111-5 153.5 148.5 47.97 15.54 1.05 12.00 5.17 6.39 1.65 0.82 0.26 0.23 9.77 101.34 2.73 0.076 1.46 0.377 0.555 0.149 0.083 0.014 0.02 1111-5 163.5 158.5 49.27 14.86 1.09 1.10 5.01 7.10 1.49 0.75 0.21 0.19 8.33 99.47 2.93 0.083 1.40 0.383 0.645 0.141 0.079 0.012 0.011
1111-5 153.5 148.5 47.97 15.54 1.05 12.00 5.17 6.39 1.65 0.82 0.26 0.23 9.77 101.34 2.73 0.076 1.46 0.377 0.555 0.149 0.083 0.014 0.02 1111-5 163.5 158.5 49.27 14.86 1.09 11.00 5.01 7.10 1.49 0.75 0.21 0.19 8.33 99.47 2.93 0.083 1.40 0.383 0.645 0.141 0.079 0.012 0.011
1111-5 163.5 158.5 49.27 14.86 1.09 11.00 5.01 7.10 1.49 0.75 0.21 0.19 8.33 99.47 2.93 0.083 1.40 0.383 0.645 0.141 0.079 0.012 0.01
1111-5 173.5 168.5 48.75 15.12 1.09 11.12 5.21 6.90 1.89 0.82 0.21 0.19 8.93 100.52 2.85 0.082 1.39 0.391 0.616 0.175 0.085 0.012 0.01
1111-5 183.5 178.5 49.33 14.96 1.08 11.03 5.02 6.99 1.50 0.75 0.21 0.19 8.57 99.80 2.91 0.082 1.39 0.380 0.631 0.141 0.079 0.012 0.01
1111-5 193.5 188.5 50.16 15.44 1.11 11.04 5.28 6.87 1.86 0.85 0.20 0.19 8.34 101.47 2.87 0.082 1.35 0.388 0.601 0.169 0.086 0.011 0.01
1111-5 203.5 198.5 49.43 15.06 1.09 11.27 5.19 7.19 1.54 0.72 0.21 0.19 8.29 100.35 2.90 0.082 1.41 0.391 0.644 0.144 0.075 0.011 0.01
1111-5 203.5 198.5 49.66 15.08 1.09 11.28 5.17 7.21 1.50 0.72 0.20 0.19 8.24 100.49 2.91 0.082 1.41 0.389 0.645 0.139 0.074 0.011 0.01
1111-5 213.5 208.5 49.03 14.63 1.05 10.98 5.05 6.91 1.49 0.76 0.20 0.18 8.35 98.81 2.96 0.082 1.42 0.392 0.638 0.143 0.081 0.011 0.01
1111-5 223.5 218.5 49.17 14.84 1.07 11.08 5.09 6.94 1.51 0.79 0.20 0.18 8.04 99.06 2.93 0.082 1.41 0.389 0.631 0.142 0.084 0.011 0.01
1111-5 233.5 228.5 49.18 14.55 1.07 11.01 5.08 7.09 1.54 0.74 0.19 0.18 8.32 99.11 2.99 0.084 1.43 0.396 0.658 0.148 0.080 0.011 0.01
1111-5 233.5 228.5 49.02 14.79 1.07 11.05 5.07 6.92 1.50 0.79 0.20 0.18 8.32 99.06 2.93 0.082 1.41 0.389 0.631 0.142 0.084 0.011 0.01
1111-5 243.5 238.5 50.44 15.14 1.11 11.23 5.19 7.19 1.55 0.79 0.20 0.18 8.18 101.39 2.94 0.083 1.40 0.389 0.641 0.144 0.082 0.011 0.01
1111-5 253.5 248.5 49.39 14.74 1.08 11.03 5.14 7.18 1.54 0.76 0.19 0.18 8.10 99.53 2.96 0.083 1.41 0.396 0.658 0.147 0.081 0.010 0.01
1111-5 253.5 248.5 49.39 14.74 1.08 11.03 5.14 7.18 1.54 0.76 0.19 0.18 8.10 99.53 2.96 0.083 1.41 0.396 0.658 0.147 0.081 0.010 0.01
1111-5 263.5 258.5 49.42 14.90 1.09 11.14 5.33 7.07 1.77 0.79 0.20 0.21 8.55 100.46 2.93 0.083 1.41 0.406 0.640 0.167 0.083 0.011 0.02
1111-5 273.5 268.5 49.50 14.80 1.07 11.11 5.14 6.96 1.47 0.77 0.21 0.19 8.35 99.73 2.95 0.082 1.42 0.394 0.635 0.139 0.082 0.012 0.01
1111-5 283.5 278.5 49.50 15.08 1.10 11.24 5.33 7.06 1.92 0.81 0.20 0.19 8.42 101.05 2.90 0.083 1.41 0.401 0.632 0.179 0.084 0.011 0.01/
1111-5 298.5 293.5 48.87 14.79 1.06 11.81 5.20 6.91 1.74 0.77 0.22 0.20 8.41 101.13 2.92 0.081 1.51 0.399 0.631 0.165 0.082 0.012 0.02
1111-5 308.5 303.5 45.81 14.60 0.88 12.97 7.29 6.42 1.48 0.82 0.20 0.17 8.36 99.02 2.77 0.068 1.68 0.566 0.594 0.142 0.088 0.011 0.01
1111-6 278.5 321.5 48.80 15.00 1.08 11.08 5.24 6.94 1.72 0.78 0.19 0.22 8.86 99.94 2.87 0.082 1.40 0.396 0.624 0.161 0.082 0.010 0.02
1111-6 288.5 331.5 49.13 14.99 1.07 11.14 5.06 6.89 1.50 0.79 0.21 0.19 8.35 99.48 2.90 0.081 1.41 0.383 0.620 0.141 0.082 0.011 0.01
1111-6 298.5 341.5 48.67 15.08 1.08 11.21 5.06 6.86 1.50 0.81 0.20 0.19 8.73 99.55 2.85 0.081 1.41 0.381 0.614 0.139 0.084 0.011 0.011
1111-6 298.5 341.5 48.67 15.08 1.08 11.21 5.06 6.86 1.50 0.81 0.20 0.19 8.73 99.55 2.85 0.081 1.41 0.381 0.614 0.139 0.084 0.011 0.011
1111-6 308.5 351.5 49.35 15.18 1.08 11.26 5.06 6.86 1.52 0.80 0.21 0.19 8.79 100.47 2.87 0.080 1.40 0.379 0.610 0.141 0.083 0.011 0.011
1111-6 308.5 351.5 49.35 15.18 1.08 11.26 5.06 6.86 1.52 0.80 0.21 0.19 8.79 100.47 2.67 0.080 1.40 0.379 0.510 0.141 0.083 0.011 0.011
1111-6 318.5 361.5 48.80 14.65 1.10 11.51 5.18 7.24 1.54 0.76 0.18 0.18 7.85 99.16 2.94 0.085 1.49 0.401 0.667 0.147 0.082 0.010 0.011
1111-6 328.5 371.5 49.61 14.23 1.07 10.86 5.21 7.36 1.55 0.75 0.18 0.19 7.74 98.90 3.08 0.085 1.44 0.415 0.698 0.153 0.082 0.010 0.011
1111-6 338.5 381.5 49.86 14.74 1.14 11.08 5.46 7.55 1.86 0.80 0.19 0.22 7.43 100.40 2.99 0.088 1.42 0.420 0.691 0.177 0.685 0.011 0.02
1111-6 348.5 391.5 49.71 14.89 1.11 11.15 5.27 7.43 1.65 0.79 0.18 0.19 7.68 100.23 2.95 0.084 1.42 0.402 0.674 0.156 0.084 0.040 0.01

Anhang 7.2.3.1 Gesamtsediment

MUALAL MATAL 0.018 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.021 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.022 0.021 0.020 **KAA** 0.0392 0.0399 0.0389 0.0389 0.0389 0.0389 0.0395 0.0 **Na/A Na/A** 0.0182 0.0182 0.0165 0.0165 0.01756 0.01756 0.01756 0.01757 0.01757 0.01747 0.01747 0.01747 0.01747 0.01747 0.01747 0.01747 0.01747 0.0175 0.0175 0 May Al Ma
 Fe/AI

 1,147

 1,142

 1,142

 1,142

 1,142

 1,143

 1,143

 1,143

 1,143

 1,144

 1,145

 1,145

 1,145

 1,144

 1,145

 1,144

 1,144

 1,145

 1,144

 1,145

 1,144

 1,144

 1,145

 1,146

 1,146

 1,146

 1,147

 1,146

 1,147

 1,146

 1,147

 1,146

 1,146

 1,147

 1,147

 1,146

 1,147

 1,147

 1,147

 1,147

 1,147

 1,147

 1,147

 1,147

 1,147

 1,147

 1,147

 1,147
 </tr
 Titlat

 10.079
 30.079
 30.079
 30.079
 30.079
 30.079
 30.079
 30.079
 30.079
 30.079
 30.079
 30.071
 30.071
 30.071
 30.071
 30.071
 30.071
 30.071
 30.071
 30.071
 30.071
 30.071
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021
 30.021 Summe 99.85 99.85 99.64 99.64 99.55 99.56 99.55 99.55 99.55 99.55 99.57 100.41 101.42 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.57 100.56 99.57 99.57 99.57 99.57 100.57 100.56 99.57 100.57 100.57 100.56 99.57 100.55 100.57 K20 2018/7 2018/2 2000/2 2018/ Na20 (11.55) (**7.200 7.200 7.200 6.91 7.200 6.924 6.924 6.924 6.924 6.924 6.926 A1203** 14.203 15.05 15.05 15.05 14.74 14.74 14.74 14.50 14.
 Tiefe term

 116fe term

 401.5

 401.5

 411.5

 411.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 421.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 531.5

 541.5

 734.5

 734.5

 734.5

 734.5

 734.5

 734.5

 734.5

 < Ē Bohrtlefe It 358.5 358.5 358.5 358.5 358.5 358.5 358.5 358.5 358.5 358.5 358.5 358.5 358.5 358.5 408.5 408.5 408.5 508.5 508.5 508.5 508.5 518.5 518.5 518.5 533.5 508.5 533.5 553.5 533.5 5555.5 553.

Fortsetzung: Tab. A-14: Hauptelementverteilung im Gesamtsediment der Kernsequenz PG1111.

Anhang

Fortsetzung: Tab. A-14: Hauptelementverteilung im Gesamtsediment der Kernsequenz PG1111.

•

Kern	Bohrtlefe (cm)	Tiefe (cm)	5102	AI203	TI02	Fe203	MgO	CaO	Na20	K20	P205	MnO	Glühverlust	Summe	SI/AI	TI/AI	Fe/Al	Mg/Al	Ca/Al	Na/Al	K/AI	P/AI	Mn/Al
1111-7	773.5	819.5	44.87	14.35	0.85	13.00	7.19	6.27	1.31	0.77	0.19	0.21	12.05	101.45	2.76	0.067	1.71	0.568	0.590	0.128	0.084	0.011	0.021
1111-7	778.5	824.5	46.30	14.76	0.90	12.96	6.93	6.36	1.38	0.84	0.21	0.18	10.15	100.97	2.77	0.069	1.66	0.533	0.582	0.131	0.089	0.012	0.018
1111-7	788.5	834.5	45.76	14.47	0.88	12.71	7.03	6.30	1.47	0.89	0.18	0.17	9.95	99.78	2.79	0.069	1.66	0.551	0.588	0.142	0.097	0.010	0.017
1111-8	803.5	864.5	45.82	14.79	0.80	13.22	7.42	6.25	1.36	0.84	0.19	0.16	10.23	101.06	2.74	0.061	1.69	0.569	0.570	0.129	0.089	0.010	0.016
1111-8	808.5	869.5	45.30	14.36	0.87	12.38	6.60	6.28	1.36	0.87	0.17	0.18	10.06	99.22	2.79	0.069	1.63	0.521	0.590	0.133	0.095	0.010	0.019
1111-8	818.5	879.5	44.82	14.55	0.73	13.30	7.49	6.49	1.38	0.75	0.18	0.16	11.01	100.83	2.72	0.057	1.73	0.584	0.602	0.133	0.081	0.010	0.016
1111-8	828.5	889.5	46.44	14.81	0.88	12.75	7.04	6.63	1.56	0.85	0.17	0.16	9.14	100.45	2.77	0.067	1.63	0.539	0.604	0.148	0.090	0.009	0.015
1111-8	838.5	899.5	43.95	14.27	0.67	14.15	8.05	6.26	1.17	Q.71	0.17	0.16	11.63	101.18	2.72	0.053	1.87	0.640	0.592	0.115	0.078	0.010	0.017
1111-8	848.5	909.5	44.97	14.43	0.77	13.46	7.63	6.38	1.35	0.75	0.16	0.16	9.88	99.92	2.75	0.061	1.76	0.600	0.597	0.131	0.082	0.009	0.016
1111-8	858.5	919.5	44.23	14.20	0.70	13.76	7.83	6.66	1.27	0.74	0.17	0.16	10.93	100.62	2.75	0.056	1.83	0.625	0.633	0.125	0.082	0.010	0.016
1111-8	868.5	929.5	44.64	14.31	0.70	13.86	7.84	6.20	1.31	0.74	0.16	0.16	10.78	100.66	2.76	0.055	1.83	0.621	0.585	0.128	0.081	0.009	0.016
1111-8	873.5	934.5	46.38	14.75	0.87	12.54	6.84	6.57	1.40	0.84	0.17	0.18	11.86	100.78	2.78	0.067	1.61	0.526	0.601	0.133	0.089	0.010	0.018
1111-8	878.5	939.5	46.42	14.97	0.86	12.25	6.86	7.11	1.68	0.79	0.17	0.15	8.78	100.01	2.74	0.065	1.55	0.520	0.641	0.157	0.083	0.009	0.015
1111 1- 8	888.5	949.5	44.55	14.59	0.74	12.50	7.08	7.76	1.64	0.69	0.17	0.15	10.21	100.05	2.70	0.058	1.62	0.550	0.718	0.158	0.074	0.009	0.015
1111-8	903.5	964.5	44.47	14.65	0.70	13.37	7.63	6.98	1.42	0.71	0.18	0.15	10.78	101.02	2.68	0.054	1.73	0.591	0.643	0.136	0.076	0.010	0.015
1111-8	908.5	969.5	45.31	15.03	0.81	11.16	6.46	9.75	1.99	0.67	0.17	0.15	8.85	100.34	2.66	0.061	1.40	0.487	0.876	0.186	0.070	0.009	0.015
1111-8	913.5	974.5	43.20	14.11	0.66	13.44	7.64	6.46	1.23	0.68	0.17	0.19	10.80	99.14	2.70	0.053	1.80	0.614	0.618	0.122	0.076	0.010	0.019
1111-8	923.5	984.5	46.27	14.67	0.86	12.61	7.02	6.85	1.58	0.82	0.17	0.16	9.65	100.65	2.79	0.066	1.62	0.543	0.630	0.151	0.088	0.009	0.016
1111-8	928.5	989.5	44.68	14.38	0.81	12.84	7.13	6.64	1.46	0.82	0.19	0.19	9.00	101.11	2.75	0.064	1.69	0.563	0.623	0.143	0.089	0.011	0.019
1111-8	933.5	994.5	46.52	14.76	0.89	12.28	6.96	7.17	1.65	0.81	0.16	0.16	8.81	100.20	2.78	0.068	1.57	0.535	0.656	0.157	0.086	0.009	0.015
1111-8	938.5	999.5	48.42	15.77	0.93	11.17	6.16	8.43	2.06	0.71	0.17	0.16	6.47	100.44	2.71	0.067	1.34	0.443	0.722	0.183	0.071	0.009	0.015
1111-8	938.5	999.5	46.46	15.12	0.91	10.88	6.03	8.38	2.04	0.71	0.18	0.17	10.68	101.15	2.71	0.068	1.36	0.452	0.748	0.189	0.074	0.010	0.017
1111-8	943.5	1004.5	47.89	15.13	0.95	11.69	6.58	8.04	1.89	0.74	0.15	0.16	7.44	100.63	2.80	0.071	1.46	0.493	0.717	0.175	0.077	0.008	0.015
1111-8	948.5	1009.5	46.40	14.95	0.82	12.51	7.08	7.61	1.69	0.68	0.17	0.18	12.55	100.25	2.74	0.062	1.58	0.537	0.687	0.159	0.072	0.010	0.018
1111-8	953.5	1014.5	44.24	14.42	0.70	13.36	7.76	6.90	1.43	0.70	0.17	0.16	10.37	100.18	2.71	0.055	1.75	0.610	0.646	0.139	0.076	0.010	0.016
1111-8	958.5	1019.5	43.28	14.05	0.67	13.24	7.55	7.95	1.31	0.65	0.22	0.19	11.98	101.12	2.72	0.054	1.78	0.610	0.764	0.131	0.073	0.013	0.019
1111-8	963.5	1024.5	43.29	14.14	0.65	13.23	7.77	7.32	1.40	0.68	0.16	0.15	11.54	100.28	2.70	0.052	1.77	0.623	0.699	0.139	0.075	0.010	0.016
111 1- 8	973.5	1034.5	45.25	14.53	0.74	12.99	7.36	6.86	1.57	0.73	0.18	0.15	9.96	100.31	2.75	0.058	1.69	0.575	0.637	0.152	0.079	0.010	0.015
1111-8	983.5	1044.5	48.37	15.80	0.87	11.67	6.63	7.89	1.98	0.81	0,16	0.15	6.92	101.25	2.70	0.062	1.40	0.476	0.674	0.176	0.080	0.009	0.014
1111-8	988.5	1049.5	47.36	15.52	1.02	10.79	6.09	9.54	2.33	0.60	0.16	0.18	5.02	98.62	2.70	0.074	1.31	0.445	0.830	0.210	0.060	0.009	0.017
1111-8	998.5	1059.5	41.98	13.81	0.65	13.50	7.96	6.62	1.22	0.69	0.19	0.19	11.79	98.60	2.68	0.053	1.85	0.653	0.647	0.124	0.078	0.012	0.020
1111-8	1008.5	1069.5	47.88	15.45	0.96	11.29	6.29	8.98	2.09	0.64	0.13	0.18	9.43	99.69	2.74	0.070	1.38	0.462	0.784	0.190	0.065	0.007	0.017
111 1- 8	1013.5	1074.5	43.58	14.27	0.66	13.72	8.04	6.56	1.37	0.70	0.16	0.16	11.30	100.48	2.70	0.052	1.82	0.639	0.620	0.135	0.077	0.009	0.016
1111-8	1028.5	1089.5	47.56	15.09	0.87	12.08	6.74	7.18	1.76	0.88	0.15	0.15	8.43	100.90	2.78	0.065	1.51	0.507	0.642	0.164	0.091	0.008	0.015
1111-8	1033.5	1094.5	48.41	15.83	0.99	10.55	6.09	9.16	2.38	0.69	0.14	0.15	4.95	99.33	2.70	0.071	1.26	0.436	0.781	0.211	0.068	0.007	0.014
1111-8	1038.5	1099.5	49.10	15.78	1.34	11.37	6.05	10.56	2.48	0.52	0.12	0.19	2.93	100.43	2.75	0.096	1.36	0.435	0.903	0.220	0.052	0.006	0.017
1111-8	1043.5	1104.5	45.63	14.58	0.76	12.95	7.53	6.97	1.55	0.73	0.16	0.16	9.82	100.83	2.76	0.059	1.68	0.586	0.645	0.149	0.079	0.009	0.016

Tab. A-15: Spurenelementverteilung im Gesamtsediment der Kernsequenz PG1111; Ergebnisse in [mg/kg] der Röntgenfluoreszenzanalyse (RFA) der Untersuchungen mit Summen von 100 ± 1.5 Gew. %.

Kern	Bohrtiefe (cm)	Tiefe (cm)	ва	Co	Cr	Cu	Nb	Ni	Sr	v	Y	Zn	Zr	Ba/Al	Co/Al	Cr/Al	Cu/Al	Nb/Al	NI/AI	Sr/Al	V/AI	Y/AI	Zn/Al	Zr/Al
1111-5	16.5	11.5	257	51	132	116	9	101	267	234	29	102	120	31.06	6.16	15.95	14.02	1.09	12.21	32.27	28.28	3.51	12.33	14.50
1111-5	28.5	23.5	235	50	124	138	7	108	265	246	31	103	119	28.61	6.09	15.10	16.80	0.85	13.15	32.27	29.95	3.77	12.54	14.49
1111-5	43.5	38.5	235	43	114	123	10	94	235	215	29	99	107	28.03	5.13	13.60	14.67	1.19	11.21	28.03	25.64	3.46	11.81	12.76
1111-5	48.5	43.5	260	50	131	150	10	105	276	243	31	107	123	31.57	6.07	15.91	18.21	1.21	12.75	33.51	29.50	3.76	12.99	14.93
1111-5	53.5	48.5	204	48	104	118	6	96	247	203	25	81	105	24.42	5.75	12.45	14.13	0.72	11.49	29.57	24.30	2.99	9.70	12.57
1111-5	63.5	58.5	222	51	125	142	10	106	270	246	31	99	121	26.80	6.16	15.09	17.14	1.21	12.80	32.59	29.70	3.74	11.95	14.61
1111-5	78.5	73.5	238	55	136	144	8	106	271	241	30	96	123	29.12	6.73	16.64	17.62	0.98	12.97	33.16	29.49	3.67	11.75	15.05
1111-5	88.5	83.5	249	55	120	140	9	108	270	242	29	96	116	30.93	6.83	14.90	17.39	1.12	13.41	33.53	30.06	3.60	11.92	14.41
1111-5	98.5	93.5	232	52	144	129	10	111	277	229	30	111	120	28.99	6.50	17.99	16.12	1.25	13.87	34.61	28.62	3.75	13.87	15.00
1111-5	108.5	103.5	211	47	116	121	6	100	245	208	29	103	110	26.38	5.88	14.50	15.13	0.75	12.50	30.63	26.00	3.63	12.88	13.75
1111-5	118.5	113.5	213	54	177	161	7	207	268	257	29	98	118	26.65	6.76	22.14	20.14	0.88	25.90	33.53	32.15	3.63	12.26	14.76
1111-5	128.5	123.5	223	51	175	143	8	186	269	262	31	101	120	27.36	6.26	21.47	17.54	0.98	22.82	33.00	32.15	3.80	12.39	14.72
1111-5	143.5	138.5	240	53	101	124	8	102	244	209	24	90	102	29.27	6.46	12.32	15.12	0.98	12.44	29.76	25.49	2.93	10.98	12.44
1111-5	153.5	148.5	235	53	123	156	9	109	285	222	33	92	121	28.58	6.45	14.96	18.97	1.09	13.26	34.66	27.00	4.01	11.19	14.72
1111-5	163.5	158.5	210	51	177	142	7	193	272	253	28	101	123	26.71	6.49	22.51	18.06	0.89	24.55	34.60	32.18	3.56	12.85	15.65
1111-5	173.5	168.5	216	51	116	116	10	95	240	226	25	83	98	27.01	6.38	14.50	14.50	1.25	11.88	30.01	28.26	3.13	10.38	12.25
1111-5	183.5	178.5	229	46	205	137	9	242	268	278	28	92	124	28.93	5.81	25.90	17.31	1.14	30.57	33.85	35.12	3.54	11.62	15.66
1111-5	193.5	188.5	216	47	106	118	9	100	246	220	23	84	100	26.45	5.75	12.98	14.45	1.10	12.24	30.12	26.94	2.82	10.28	12.24
1111-5	203.5	198.5	217	48	185	141	6	188	273	280	28	91	125	27.23	6.02	23.22	17.69	0.75	23.59	34.26	35.14	3.51	11.42	15.69
1111-5	203.5	198.5	210	55	183	140	7	183	269	269	30	94	120	26.32	6.89	22.93	17.55	0.88	22.93	33.71	33.71	3.76	11.78	15.04
1111-5	213.5	208.5	207	51	171	149	7	172	250	266	29	97	111	26.75	6.59	22.10	19.25	0.90	22.22	32.30	34.37	3.75	12.53	14.34
1111-5	223.5	218.5	219	46	172	132	7	171	261	261	31	92	125	27.90	5.86	21.91	16.82	0.89	21.78	33.25	33.25	3.95	11.72	15.92
1111-5	233.5	228.5	204	51	245	135	7	306	259	258	28	95	122	26.51	6.63	31.84	17.54	0.91	39.76	33.66	33.53	3.64	12.34	15.85
1111-5	233.5	228.5	219	46	172	132	7	171	261	261	31	92	125	27.98	5.88	21.98	16.87	0.89	21.85	33.35	33.35	3.96	11.76	15.97
1111-5	243.5	238.5	203	50	187	150	9	215	268	285	30	103	127	25.34	6.24	23.35	18.73	1.12	26.84	33.46	35.58	3.75	12.86	15.86
1111-5	253.5	248.5	214	52	172	146	6	202	265	273	30	97	127	27.44	6.67	22.05	18.72	0.77	25.90	33,98	35.00	3.85	12.44	16.28
1111-5	253.5	248.5	214	52	172	146	6	202	265	273	30	97	127	27.44	6.67	22.05	18.72	0.77	25.90	33.98	35.00	3.85	12.44	16.28
1111-5	263.5	258.5	214	52	130	136	6	102	264	240	31	103	123	27.15	6.60	16.49	17.25	0.76	12.94	33.49	30.45	3.93	13.07	15.60
1111-5	273.5	268.5	212	49	168	146	8	178	265	256	32	99	126	27.08	6.26	21.46	18.65	1.02	22.74	33.85	32.70	4.09	12.65	16.10
1111-5	283.5	278.5	224	51	109	109	9	97	243	201	25	84	102	28.08	6.39	13.66	13.66	1.13	12.16	30.46	25.20	3.13	10.53	12.79
1111-5	298.5	293.5	184	41	107	119	8	91	242	220	27	91	106	23.52	5.24	13.68	15.21	1.02	11.63	30.93	28.12	3.45	11.63	13.55
1111-5	308.5	303.5	186	65	98	164	7	137	186	164	21	73	104	24.08	8.42	12.69	21.23	0.91	17.74	24.08	21.23	2.72	9.45	13.47
1111-6	278.5	321.5	238	47	132	132	7	98	268	238	31	102	121	29.99	5.92	16.64	16.64	0.88	12.35	33.77	29.99	3.91	12.85	15.25
1111-6	288.5	331.5	218	49	185	136	8	194	267	254	29	94	130	27.50	6.18	23.34	17.15	1.01	24.47	33.68	32.04	3.66	11.86	16.40
1111-6	298.5	341.5	213	57	192	149	6	195	272	255	31	99	123	26.70	7.14	24.07	18.68	0.75	24.44	34.09	31.96	3.89	12.41	15.42
1111-6	298.5	341.5	213	57	192	149	6	195	272	255	31	99	123	26.70	7.14	24.07	18.68	0.75	24.44	34.09	31.96	3.89	12.41	15.42
1111-6	308.5	351.5	219	51	171	153	7	167	269	257	30	104	126	27.28	6.35	21.30	19.06	0.87	20.80	33.51	32.01	3.74	12.95	15.70
1111-6	308.5	351.5	219	51	171	153	7	167	269	257	30	104	126	27.28	6.35	21.30	19.06	0.87	20.80	33.51	32.01	3.74	12.95	15.70
1111-6	318.5	361.5	201	49	161	137	7	162	256	263	28	97	125	25.94	6.32	20.77	17.68	0.90	20.90	33.03	33.94	3.61	12.52	16.13
1111-6	328.5	371.5	210	52	190	130	7	234	240	269	27	92	106	27.90	6.91	25.24	17.27	0.93	31.08	31.88	35.73	3.59	12.22	14.08

Anhang

Fortsetzung: Tab. A-15: Spurenelementverteilung im Gesamtsediment der Kernsequenz PG1111.

Kern	Bohrtlefe icml Tiefe	e (cm)	Ba	Co	Cr	Cu	Nb	NI	Sr	v	Y	Zn	Zr	Ba/Al	Co/Al	Cr/Al	Cu/Al	Nb/Al	Ni/Ai	Sr/Al	V/AI	Y/AI	Zn/Al	Zr/Al
1111-6	338.5 38	31.5	237	49	135	130	12	101	253	243	32	98	120	30.39	6.28	17.31	16.67	1.54	12.95	32.44	31.16	4.10	12.57	15.39
1111-6	348.5 39	91.5	212	48	200	142	9	247	256	270	28	99	120	26.91	6.09	25.38	18.02	1.14	31.35	32.49	34.27	3.55	12.57	15.23
1111-6	358.5 40)1.5	208	51	102	124	7	97	234	217	23	90	103	26.46	6.49	12.98	15.77	0.89	12.34	29.77	27.60	2.93	11.45	13.10
1111-6	368.5 41	1.5	221	51	195	150	8	268	256	255	29	94	122	27.76	6.41	24.50	18.84	1.01	33.67	32.16	32.04	3.64	11.81	15.33
1111-6	368.5 41	1.5	221	51	195	150	8	268	256	255	29	94	122	27.76	6.41	24.50	18.84	1.01	33.67	32.16	32.04	3.64	11.81	15.33
1111-6	378.5 42	21.5	213	48	126	151	9	106	254	239	30	106	120	26.86	6.05	15.89	19.04	1.13	13.37	32.03	30.14	3.78	13.37	15.13
111 1-6	388.5 43	51.5	211	60	150	148	9	154	246	232	30	98	120	27.06	7.69	19.23	18.98	1.15	19.75	31.55	29.75	3.85	12.57	15.39
111 1-6	398.5 44	11.5	219	49	101	111	8	101	225	193	22	88	101	27.77	6.21	12.81	14.07	1.01	12.81	28.53	24.47	2.79	11.16	12.81
1111-6	408.5 45	51.5	259	47	122	140	10	98	249	216	31	99	122	33.25	6.03	15.66	17.97	1.28	12.58	31.97	27.73	3.98	12.71	15.66
1111-6	418.5 46	51.5	216	57	191	168	6	305	251	233	27	100	127	27.41	7.23	24.24	21.32	0.76	38.71	31.85	29.57	3.43	12.69	16.12
111 1-6	428.5 47	1.5	229	51	95	121	9	99	216	191	24	82	98	29.01	6.46	12.04	15.33	1.14	12.54	27.37	24.20	3.04	10.39	12.42
1111-6	438.5 48	31.5	235	58	185	150	8	271	234	233	28	97	117	29. 98	7.40	23.60	19.14	1.02	34.57	29.85	29.73	3.57	12.38	14.93
1111-6	448.5 49	91.5	204	57	174	162	7	239	242	238	30	101	123	26.04	7.28	22.21	20.68	0.89	30.51	30.89	30.38	3.83	12.89	15.70
1111-6	458.5 50)1.5	213	58	181	178	10	223	240	224	29	100	12 9	27.06	7.37	23.00	22.61	1.27	28.33	30.49	28.46	3.68	12.70	16.39
1111-6	468.5 51	1.5	209	47	120	104	10	97	220	230	26	85	100	27.25	6.13	15.64	13.56	1.30	12.65	28.68	29.99	3.39	11.08	13.04
1111-6	478.5 52	1.5	200	51	131	142	7	103	226	233	32	104	114	27.16	6.93	17.79	19.28	0.95	13.99	30.69	31.64	4.35	14.12	15.48
1111-6	488.5 53	51.5	228	52	162	142	7	125	226	263	29	93	115	31.00	7.07	22.03	19.31	0.95	17.00	30.73	35.76	3.94	12.64	15.64
1111-6	498.5 54	11.5	243	46	153	131	9	116	224	262	29	98	121	32.72	6.19	20.60	17.64	1.21	15.62	30.16	35.28	3.90	13.20	16.29
111 1-6	498.5 54	1.5	239	44	172	133	8	117	217	258	28	94	113	31.76	5.85	22.86	17.67	1.06	15.55	28.84	34.28	3.72	12.49	15.02
1111-6	508.5 55	51.5	232	49	178	136	9	152	227	280	28	97	127	29.97	6.33	22.99	17.57	1.16	19.63	29.32	36.17	3.62	12.53	16.40
1111-6	518.5 56	61.5	232	47	415	157	9	796	207	264	29	97	109	31.98	6.48	57.21	21.64	1.24	#####	28.54	36.39	4.00	13.37	15.03
1111-7	533.5 57	9.5	226	53	134	150	7	115	216	230	29	104	119	30.34	7.12	17.99	20.14	0.94	15.44	29.00	30.88	3.89	13.96	15.98
1111-7	543.5 58	9.5	221	51	225	162	8	281	220	253	30	101	123	28.70	6.62	29.22	21.04	1.04	36.50	28.57	32.86	3.90	13.12	15.98
1111-7	553.5 59	9.5	240	48	176	148	9	164	220	256	30	96	130	30.79	6.16	22.58	18.99	1.15	21.04	28.22	32.84	3.85	12.32	16.68
1111-7	563.5 60	9.5	221	49	1//	148	9	152	219	261	25	95	116	28.31	6.28	22.67	18.96	1.15	19.47	28.05	33.43	3.20	12.17	14.86
1111-7	5/8.5 62	4.5	219	45	129	124	8	95	195	208	26	88	114	27.97	5.75	16.48	15.84	1.02	12.13	24.91	26.57	3.32	11.24	14.56
1111-7	588.5 63	4.5	215	50	135	140	11	106	209	237	28	95	120	27.73	6.45	17.41	18.06	1.42	13.67	26.96	30.57	3.61	12.25	15.48
1111-7	598.5 64	4.5	241	55	148	140	/	99	213	245	30	99	123	31.33	6.89	19.24	18.20	0.91	12.87	27.69	31.85	3.90	12.87	15.99
1111-/	608.5 65	4.5	261	45	145	147	9	104	206	244	30	130	116	33.60	5.54	18.41	18.93	1.16	13.39	26.52	31.42	3.86	16.74	14.94
1111-7	615.5 65	9.5	251	48	139	103		93	194	228	24	77	102	29.56	6.14	17.79	13.18	0.90	11.90	24.83	29.18	3.07	9.85	13.05
1111-7	623.5 66	9.5	222	48	155	123	11	95	188	219	25	88	105	28.07	6.07	16.82	15.55	1.39	12.01	23.77	27.69	3.16	11.13	13.28
1111-7	633.5 67	9.5	229	48	125	118	9	110	188	226	24	107	113	28.16	5.90	15.37	14.51	1.11	13.53	23.12	27.80	2.95	13.16	13.90
1111-7	038.5 08	4.5	257	45	129	120	10	91	187	220	27	96	114	29.61	5.37	16.12	14.99	0.87	11.37	23.36	27.49	3.37	11.99	14.24
1111-7	648.5 69	4.5	205	50	159	126	12	9/	203	241	29	98	122	33.40	6.30	17.52	15.88	1.51	12.23	25.59	30.37	3.66	12.35	15.38
111-7	677.5 74	4.5	234	52 A7	145	142	9	104	211	240	51	105	150	52.61	6.68	18.56	18.25	1.16	15.55	27.09	30.81	3.98	13.48	16.69
1111.7	679.5 70	9.0 // E	243	4/ /Z	122	147	0	99	195	220	25	101	112	29.98	5.80	15.05	16.16	1.36	12.22	25.81	27.15	3.08	12.46	13.82
1111-7	697.5 72	4.5	241	45 57	121	145	9	99	189	225	27	99	11/	29.54	5.27	14.85	17.53	1.10	12.14	23.17	27.34	3.31	12.14	14.34
1111-7	693.5 72	9.5	215	62	140	221	5	1/17	204	200	20	90	109	31.05	0.58	15.28	18.65	1.12	15./9	25.47	25.59	2.86	11.18	13.54
1111-7	698.5 74	15	203	60	109	173	10	143	100	200	21	9/ 70	129	28.17	0.12 7.00	14.95	28.95	0.79	18.75	26.53	26.99	4.06	12.71	16.90
1111-7	713 5 74	4.J 9.5	173	60	98	174	a	129	102	100	20	/8 77	00	20.05	7.00	14.51	22./1	1.51	10.93	25.89	24.68	5.28	10.24	13.78
1111-7	718.5 76	4.5	198	60	120	191	2	130	210	100	27	/ 3 01	99 117	22.17	7.05	12.50	22.50	1.15	10.06	24.99	19.99	5.46	9.56	12.69
1111-7	728.5 70	45	195	57	98	164	7	125	196	169	25	01 72	101	25.85	7.85	10.00	23.05	1.04	17.62	27.41	25.10	3.92	10.57	15.27
1111-7	7385 73	4.5 15	176	62	9/	162	, g	120	100	108	23	75	101	23.00	7.48	12.86	21.55	0.92	16.41	24.42	22.05	5.28	9.58	15.26
1111-7	/50.5 /0	4.5	170	02	34	102	0	121	104	154	24	74	99	22.95	8.08	12.25	21.12	1.04	17.08	25.99	20.08	5.13	9.65	12.91

Kern Bol	hrtlefe (cm] Tiefe [cm]	Ba	8	5	5	qN	Z	5	>	ŀ	42	72	a/ALC	10/01	/al Cu/	AN NA	01 201/0	1 Cr/D	1 V/N		10/02	14/14
1111-7	753.5	799.5	179	63	86	181	9	135	179	156	5	78	99	3.51 8	28 12	87 23	78 0.7	9 17.7	3 23 5	1 20 4	9 2 76	10.25	13 01
1111-7	758.5	804.5	231	64	115	185	∞	140	213	182	29	84	118 3	0.68 8	1 23	28 24	1.0	6 18.6	0 28.2	9 24.1	3.85	11.16	15.67
1111-7	763.5	809.5	166	59	104	158	6	127	195	180	23	79	99	1.43 7	62 13	.43 20.	40 1.1	6 16.4	0 25.1	8 23.2	1 2.97	10.20	12.78
1111-7	768.5	814.5	179	60	93	130	2	128	183	163	23	20	93 2	3.24 7	79 12	07 16.8	88 0.9	1 16.6	2 23.7	6 21.1	5 2.99	9.09	12.07
1111-7	773.5	819.5	185	76	6	223	S	168	201	129	26	114	116 2	4.37 10	11 11	.86 29.3	38 0.6	6 22.1	3 26.4	8 16.9	9 3.43	15.02	15.28
1111-7	778.5	824.5	191	58	9	190	80	133	177	150	24	88	99 2	4.46 7	43 11	.65 24.3	53 1.0	2 17.0	3 22.6	7 19.2	1 3.07	11.27	12.68
1111-7	788.5	834.5	206	64	89	169	2	128	185	145	24	81	101 2	6.91 8	36 11	.63 22.0	0.9 BC	1 16.7	2 24.1	7 18.9	1 3.14	10.58	13.19
1111-8	803.5	864.5	179	64	79	192	00	140	183	155	24	78	102 2	2.88 8	.18 10	10 24	54 1.0	2 17.8	9 23.3	9 19.8	1 3.07	9.97	13.04
1111-8	808.5	869.5	201	99	106	212	10	153	201	176	28	88	110 2	6.46 8	69 13	:95 27.9	91 1.3	2 20.1	4 26.4	6 23.1	7 3.69	11.58	14.48
1111-8	818.5	879.5	175	62	79	164	80	147	184	143	23	73	97 2	2.74 8	06 10	1.26 21.3	31 1.0	4 19.1	0 23.9	1 18.5	3 2.99	9.48	12.60
1111-8	828.5	889.5	190	59	84	185	7	129	192	170	24	74	106 2	4.25 7	53 10	.72 23.6	61 0.8	9 16.4	7 24.5	1 21.7	3.06	9.45	13.53
1111-8	838.5	899.5	157	69	68	211	7	154	178	119	23	74	99 2	0.80 9	14 9.	01 27.9	95 0.9	3 20.4	0 23.5	8 15.7	5 3.05	9.80	13,11
1111-8	848.5	909.5	149	62	81	201	თ	139	185	143	20	72	102 1	9.52 8	12 10	.61 26.3	53 1.1	8 18.2	1 24.2	4 18.7	3 2.62	9.43	13.36
1111-8	858.5	919.5	172	68	67	212	ъ	150	179	123	22	77	98 2	2.90 9	05 8	92 28.3	22 0.6	7 19.9	7 23.8	3 16.3	7 2.93	10.25	13.05
1111-8	868.5	929.5	164	۲	70	173	9	145	180	126	19	78	99 2	1.66 9	38 9	25 22.8	35 0.7	9 19.1	5 23.7	8 16.6	1 2.51	10.30	13.08
1111-8	873.5	934.5	184	20	106	184	S	150	208	168	29	96	118 2	3.58 8	97 13	58 23.5	58 0.6	4 19.2	2 26.6	6 21.5	3 3.72	12.30	15.12
1111-8	878.5	939.5	180	54	86	165	7	123	196	160	24	69	98 2	2.73 6	82 10	.86 20.8	34 0.8	3 15.5	3 24.7	5 20.2	3.03	8.71	12.38
1111-8	888.5	949.5	154	99	78	162	80	130	193	139	23	67	88 1	9.95 8	55 10	11 20.9	99 1.0	4 16.8	4 25.0	1 18.0	1 2.98	8.68	11.40
1111-8	903.5	964.5	162	64	7	178	7	137	189	125	22	77	95 2	0.90 8	26 9.	16 22.9	97 0.9	0 17.6	8 24.3	9 16.1	3 2.84	9.94	12.26
1111-8	908.5	969.5	186	53	89	266	S	105	205	322	21	7	87 2	3.39 6	67 11	.19 33.4	16 0.6	3 13.2	1 25.7	8 40.5(2.64	8.93	10.94
1111-8	913.5	974.5	197	64	107	184	2	135	197	188	31	89	121 2	6.39 8	57 14	.34 24.6	65 D.9	4 18.0	9 26.3	9 25.1	9 4.15	11.92	16.21
1111-8	923.5	984.5	184	09	94	177	80	128	190	159	2	97	101 2	3.71 7	73 12	.11 22.8	31 1.0	3 16.4	9 24.4	8 20.4	9 2.71	12.50	13.01
1111-8	928.5	989.5	204	59	107	180	9	133	227	171	26	85	108 2	6.82 7	76 14	.07 23.6	57 0.7	9 17.4	9 29.8	5 22.4	3 3.42	11.18	14.20
1111-8	933.5	994.5	185	61	89	166	ი	119	195	168	23	75	101 2	3.69 7	81 11	40 21.3	26 1.1	5 15.2	4 24.9	7 21.53	2.95	9.61	12.94
1111-8	938.5	999.5	196	49	105	138	9	96	220	172	25	76	100 2	3.49 5	87 12	59 16.5	54 0.7	2 11.5	1 26.3	7 20.63	2 3.00	9.11	11.99
1111-8	938.5	999.5	190	64	109	170	2	137	211	177	29	06	121 2	3.75 8	00 13	.62 21.2	25 0.8	7 17.1	2 26.3	7 22.1:	2 3.62	11.25	15.12
1111-8	943.5	1004.5	172	58	96	162	9	110	211	182	23	73	96 2	1.49 7	25 11	.99 20.3	24 0.7	5 13.7	4 26.3	6 22.7	1 2.62	9.12	11.99
1111-8	948.5	1009.5	189	70	92	204	ഗ	162	199	151	26	107	110 2	3.90 8	85 11	.63 25.8	30 0.6	3 20.4	9 25.1	6 19.0	9 3.29	13.53	13.91
1111-8	953.5	1014.5	160	67	82	195	8	141	191	130	22	79	99 2	0.97 8	78 10	.75 25.5	56 1.0	5 18.4	8 25.0	4 17.0	1 2.88	10.36	12.98
1111-8	958.5	1019.5	182	70	97	217	¢	159	210	150	29	6	116 2	4.48 9	42 13	.05 29.	19 1.0	8 21.3	9 28.2	5 20.18	3.90	12.24	15.61
1111-8	963.5	1024.5	151	67	82	181	æ	143	184	121	20	74	91 2	0.19 8	96 10	.96 24.2	20 1.0	7 19.1	2 24.6	0 16.18	3 2.67	9.89	12.17
1111-8	973.5	1034.5	153	63	78	184	9	127	192	143	23	70	97 1	9.91 8	20 10	.15 23.9	94 0.7	3 16.5	2 24.9	8 18.6(0 2.99	9.11	12.62
1111-8	983.5	1044.5	213	53	102	143	8	113	216	163	23	73	97 2	5.48 6	34 12	.20 17.	11 0.9	6 13.5	2 25.8	4 19.5	0 2.75	8.73	11.61
1111-8	988.5	1049.5	208	20	130	145	9	101	240	199	28	83	96 2	5.34 6	09 15	.84 17.6	36 0.7	3 12.3	0 29.2	4 24.2	1 3.41	10.11	11.69
1111-8	998.5	1059.5	154	75	63	228	7	160	205	139	26	93	115 2	1.07 10	1.26 12	.73 31.2	20 0.9	5 21.9	0 28.0	5 19.0	2 3.56	12.73	15.74
1111-8	1008.5	1069.5	203	63	109	187	œ	135	220	166	28	8	108 2	4.84 7	71 13	34 22.8	38 0.9	3 16.5	2 26.9	2 20.3	3.43	9.91	13.21
1111-8	1013.5	1074.5	168	67	82	183	~	142	182	120	19	103	92 2	2.26 8	88 10	86 24.2	24 0.9	3 18.8	1 24.1	1 15.9(2.52	13.64	12.19
1111-8	1028.5	1089.5	217	58	84	130	8	117	201	149	22	74	100 2	7.18 7	27 10	.52 16.2	29 1.0	0 14.6	6 25.1	8 18.6	7 2.76	9.27	12.53
1111-8	1033.5	1094.5	193	47	106	130	Q	89	231	203	23	68	86 2	3.05 5	61 12	.66 15.5	52 0.7	2 10.6	3 27.5	9 24.2	1 2.75	8.12	10.27
1111-8	1038.5	1099.5	168	41	138	109	7	84	231	269	22	88	85 2	0.13 4	91 16	.53 13.0	36 0.8	4 10.0	6 27.6	7 32.2	2 2.64	10.54	10.18
1111-8	1043.5	1104.5	172	63	78	169	∞	139	194	148	22	78	2	2.30 8	17 10	11 21.9	91 1.0	4 18.0	2 25.1	5 19.1	2.85	10.11	12.97

Fortsetzung: Tab. A-15: Spurenelementverteilung im Gesamtsediment der Kernsequenz PG1111.

	'	1			į	ļ												
		; ;	5 : 1 :	1	20	00	19	103	⁷⁶ 124	37 17	226 1	S,	152	1108.5	Û	11-8 104.	1=	
		2.0	23	*	\$	20	20	110	224	28 16	439 1	5	158	1083.5	v	201 8-11	1	
		1	ي بر	17	27	8	21	101	79 127	31 17	212 1	ድ	162	1058.5	U	11-10	: :	
		24	2 15	18	29	œ	19	101	119	41 17	229 1	5	ά	1013.5	1 C			
		13	22 17	18	31	9	20	102	59 12 <u>9</u>	38 16	201 1	¢	BCI	0.066	n i.	1.0 000		
		12	21 17	17	27	8	21	97	57 132	16	215 1	8	Ī	004 1	ΠÈ	11.0	;;	
		15	نة 18	3	36	90	21	109	36 135	16	265 1	8	752	808.5	ηü		; -	
		11	22 16	86 	33	9	20	88	71 124	157 1.	228	8 8	5 2	040.0	n i	11.0 000	::	
		11	20 16	17 :	25	8	21	87	154		200	3 8			л	11-7 785		
		1	20 16	18	26	9	20	92	12	14/ 14	36	52	3 8	772 5	лi	11-7 723	1:	
		1	20 16	18 	30	9	2	89	58 128	10	2 <u>2</u>	38			πi	11-7 725		
		12	19 16	38	30	9	21	26	12	145 15	857	3 2		762 5	лi	11-7 713	1 :	
		13	23 16	19	33	9	20	96	12	145	220	3 9	20		ñ i	11.7 71.7	1:	
		12	19 16	8	30	9	22	3 97	53 12	146 1	258	3 6	10	740.0	лi	11-7 70.	4 :	
		12	19 19	19	30	9	23	96	48 14	14/	100	6 9	170	740.0	лi	11-7 700	11 ::	
		- 14	17 20	8	29	œ	23	112	40 16	148 1.	20	3 8	2 6	7/2 5	71	11-7 693	1:	
		13	17 20	16	27	7	24	011	5 5 1 7		200	8 8	o	728 5	лі	11-7 69	1	
		12	15 15	13	24	. ~	29	2112		35	i i	2 8	3	2225	ũ	11-7 68	11	
		3 11	15 16	13	24	. ~	26				22	ព្ ទ	2	7775	vi i	11-7 67	11	
) 13	18 20	5	ы	1 -	26	10/	56	1.1	207	Ϋ́,	205	713 5	ŭ,	11-7 66	4	
		15	16 2(14	26	7	27	152	5 5	2 2	3 2	8 8	212	602 5	S,	11-7 64	11	
		15	18 21	14	8	7	27	1 126		1.9	3 2	55	35	672 7	5	11-7 62	1	
		2 16	20 22	15	36	7	25	9 125	18 16	114 1	212	3 2	3 3 3	664.5	2.0	11-7 61	<u>.</u>	
		12	23 20	15	26	80	24	4 101	90 16	129	222	: 8	è a	540 5	n i	11.0		
		15	25 24	16	30	80	23	3 121	98 19	124 1	229	98	ģ	500	ž i	11.6 05		
		14	30 27	5	37	7	24	1 105	25 20	116 2	277	8 8	80	242.0	7 0	11.5 24	<u>.</u>	
		17 :	25	14	24	6	22	2 146	23 19	119 2	214	56	194	152.5	10	117-5 75		
	ľ	16	28 23	12	31	6	20	0 129	30 19	114 2	257	54	165	12.5				
	-1	R/NZ	T/AI V/J	Ni/Al S	Cu/Al	CD/AI	B3/A	27	×	= Sr	2	8	83	lefe (cm)	fe (cm) T	ern Bohrtie	*	
		0-4	rung: *1(-Normie	/kg]; Al	l in [mg	PG111	sequenz	ter Kern	aktion c	r Tonfr	g in de	verteilun	elementv	Spurene	ab. A-17:		
094 0.0167	9835 0.0	0708 0.0	0.5990 0.	1.3035 (0.6408	0.0550	0.17	0.17	0.79	0.75	6.59	8.39	10.24	0.72	14.85	1108.5	1047.5	1111-8
111 0.0188	0.0	.0691 0.0).5896 0.	1.3989 (0.6173	0.0674	0.19	0.20	0.80	0.73	6,47	8.06	70.96	0.88	14,81	C.CB01.	0.2201	0-1114
096 0.0170	3901 0.0	.0681 0.0	0.5705 O.	1,2710 (0.6168	0.0543	0.17	0.17	0.84	0.71	6.18	7.95	9.85	0.70	14.62	-BC01.2	5//5	8-11-1-B
100 0.0168	0.0 0846	.0653 0.0	0.5870 0.	1.3218 (0.6562	0.0520	0.17	0,18	0.80	0.69	6.45	8.58	10.37	0.68	14.85	1013.5	2.756	8-1111
095 0.0168	3975 0.0	.0616 0.0	0.5395 0.	1.3160 (0.6173	0.0582	0.17	0.17	0.92	0.65	5.92	8.06	10.31	0.76	14.81	993.5	932.5	1111-8
105 0.0167	1012 0.0	.0594 0.1).5297 0.	1,2920 (0.6037	0.0587	0.17	0.19	0.96	0.63	5.84	7.92	10.17	0.77	14.88	933.5	872.5	1111-8
119 0.0169	1007 0.0	0597 0.1).5187 0.	1.3275 (0.6174	0.0597	0.16	0.20	0.89	0.59	5.33	7.55	9.74	0.73	13.87	868.5	807.5	111-8
118 0.0190	3880 0.0	.0595 0.0	0.5539 0.	1.3615 0	0.6594	0.0597	0.19	0.21	0.82	0.62	6.00	8.50	10.53	0.77	14.62	828.5	782.5	7777-7
112 0.0199	1996 0.0	.0672 0.0	0.5158 0.	1.3002 0	0.6031	0.0566	0.21	0.21	0.98	0.74	5.90	8.21	10.62	0.77	15.44	773.5	727.5	1111-7
108 0.0202)928 0.0	.0627 0.0	0.5049 0	1.3274 (0.6249	0.0544	0.21	0.20	0.90	0.68	5.69	8.38	10.68	0.73	15.21	768.5	722.5	1111-7
110 0.0195	3954 0.0	.0796 0.0	0.5022 0	1.3108	0.6084	0.0568	0.20	0.20	0.91	0.85	5.57	8.03	10.38	0.75	14.97	763.5	717.5	1111-7
114 0.0193	1005 0.0	.0945 0.1),4859 0	1.3160 0	0.6001	0.0569	0.20	0.21	0.97	1.02	5,45	8.01	10.54	0.76	15.14	758.5	712.5	7171-7
127 0.0205	0.0 2060	0581 0.0	0.5446 0	1.3982 0	0.6519	0.0597	0.20	0.22	0.82	0.59	5.75	8,19	10.54	0.75	14.25	753.5	707.5	1111-7
	1024 0.0	.0527 0.1	1.4877 0	1.3495	0.6064	0.0576	0.21	0.23	66.0	0.57	5.42	8.11	10.83	0.77	15.17	748.5	702.5	1111-7
	1020 0.0			1 2012	0.0065	0.0500	0.20	0.20	n 98	0 54	5	80	11 09	0 79	14.96	743.5	697.5	1111-7
n97 0.0201	1178 0.0	0486 N	0.0007 0	1 3640	0.5560	0.0593	0.23	0 18	1.10	0.53	4.81	7.50	11.04	0.80	15.30	738.5	692.5	1111-7
112 0.0103		n517 n.	1 7077 0	1 2764	0 5016	0.0574	0.22	0.22	1 18	0 29	4.67	7 08	10.81	0.81	16.01	733.5	687.5	1111-7
2010.0 2010		0567 D.	0.2564 0	1 1318	0.4280	0.0600	0.22	0.22	1.62	0.71	4.64	6.63	10.52	56.0	17.57	723.5	677.5	1111-7
001 0.0158	1/10 0.0	NG70 0.1	0 07870	1 1613	0.4245	0.0613	0.19	0.20	1.58	0.84	4.78	6.58	10.80	0.95	17.58	713.5	667.5	1111-7
101 0.0100	1777 0.0	0507 0.	0.3834 0	1 2631	0.4489	0.0652	0.18	0.19	1.31	0.56	4.40	6.13	10.35	0.89	15.49	693.5	647.5	1111-7
084 0.0159	1296 0.0	0511 0.	12202 0	1 1523	0 4056	0.001	1 19	0 17	1 48	0.61	4.21	5 99	10.21	02.0	16.75	673.5	627.5	1111-7
0.0192	12/6 0.0	0.023	0.4409 0	1,2977	0.4851		2.0	0.22	1.10		4.74	n 0. 10 10	0.0	0,00	17.55		D 1 7 7	1111.7
0.0230	1116 0.0	0.0636 0.	0.4315 6	1.5122	0.5018	0,0627	0.25	0.24	1.15	0.72	D.C	2.5		0.0	10.03	200.2		1110
0.0156	1066 0.0	0551 0.	0,4046 0	1.3312	0.4625	0.0642	0.16	0.25	1.02	1.29	4.20	0.12	10.57		10.01	400.0		11110
0180 0.0216	1026 0.0	1.0592 0.	0.4509 0	1.2988	0.4578	0.0726	0.21	0.31	0.93	0.60	4.75	5.74	9.77	0.91	14.22	242.5	207.5	0-1111
0.0212	0937 0.0	1.0491 0.1	0.3574 C	1.1458	0.3892	0.0602	0.24	0.34	0.99	0.58	4.39	5,69	10.05	0.88	16.58	152.5	157.5	2-111-5
0152 0.0232	0945 0.0	1.0489 0.	0.3943 0	1.2003	0.4054	0,0676	0.25	0.29	0.95	0.55	4.61	5.64	10.02	0.94	15,78	12.5	17.5	0-6611
/Al Mn/Al	VAI P	Va/AI	Ca/AI 1	Fe /Al	Mg /AI	TI/AI	Mno	P205	K20	Na20	Cao	OBM	Feotor	TIOZ	J AI203	n Tiefe (cm	UDI BIBILIC	Kern B
										-				5				

7.2.3.2 **Tonfraktion (< 2 μm)**

Anhang

 Tab. A-16: Hauptelementverteilung in der Tonfraktion der Kernsequenz PG1111 in [Gew. %].

 Kern Bohrtlefe (cm) Tiefe (cm) 14203 TI02 Feotot Mg0 Cao Ma20 K20 P205 Mno Ti/Al Mg /Al Fe /Al

114

Kern	Bohrtlefe (cm)	Tiefe (cm)	TI [%]	Mg [%]	Fe (%)	Ca (%)	Na (%)	K [%]	P [%]	Mn 1%1	Verw.index
1111-5	17.5	12.5	17.74	-35.62	-9.23	-31.68	+27.01	7.23	52.64	34.61	0.85
1111-5	157.5	152.5	4.90	-38.19	-13.35	-38.08	-26.75	6.36	70.32	22.99	0.89
1111-5	247.5	242.5	26.48	-27.29	·1.78	-21.89	-11.64	16.49	81.06	25.48	0.77
1111-6	357.5	400.5	11.93	-26.56	0.67	-29.89	-17.69	21.04	27.27	-9.43	0.78
1111-6	457.5	500.5	8.21	-20.31	-0.77	-25.24	-5.12	26.67	25.45	33.68	0.75
1111-7	572.5	618.5	21.23	-23.29	-2.37	-23.61	-10.52	44.85	25.93	11.26	0.77
1111-7	617.5	663.5	11.07	-32.37	-11.09	-35.19	-19.77	53.55	0.77	-7.76	0.87
1111.7	627.5	673.5	6.20	-35.59	-12.86	-41.22	-23.74	57.38	-15.70	-3.62	0.91
1111.7	647.5	693.5	13.56	-28.72	-4.48	-33.57	-24.30	50.64	1.88	-1.27	0.83
1111-7	667.5	713.5	6.81	-32.58	-12.18	-36.42	0.06	60.09	-5.51	-8.17	0.87
1111-7	677.5	723.5	4.62	-32.03	-14.41	-38.24	-15.38	66.26	4.00	6.39	0.90
1111-7	687.5	733.5	0.00	-20.35	-3.48	-31.79	-22.83	31.28	14.13	16.75	0.78
1111.7	692.5	738.5	3.34	-11.71	3.15	-26.48	-27.46	28.06	-2.29	27.73	0.72
1111.7	697.5	743.5	4.37	-3.68	5.97	-21.84	-24.41	16.68	11.04	36.31	0.68
1111-7	702.5	748.5	0.32	-3.71	2.05	-16.45	-21.32	16.24	25.93	17.62	0.68
1111.7	707.5	753.5	4.02	3.52	5.73	-5.64	-13.30	2.50	28.23	19.25	0.63
1111.7	712.5	758.5	-0.78	-4.71	-0.48	-15.82	41.08	14.12	15.20	12,24	0.67
1111-7	717.5	763.5	-0.98	-3.38	-0.88	-12.99	18.90	8.28	10.96	13.51	0.67
1111.7	722.5	768.5	-5.14	-0.76	0.38	-12.52	-6.38	5.40	9.21	17.31	0.66
1111.7	727.5	773.5	-1.43	-4.23	-1.67	-10.64	0.36	13.06	12.97	15.56	0.67
1111-7	782.5	828.5	4.10	4.72	2.96	-4.03	-11.20	-0.10	19.30	10.42	0.63
1111-8	807.5	868.5	4.02	-1.96	0.39	-10.14	-10.92	14.30	19.76	-1.99	0.67
1111-8	872.5	933.5	2.28	-4.13	-2.30	-8.22	-11.34	14.92	6.05	-2.93	0.68
1111-8	932.5	993.5	1.43	-1.98	-0.48	-6.52	-8.09	10.65	-4.66	-2.47	0.66
1111-8	952.5	1013.5	-9.37	4.21	-0.04	1.71	-2.57	-3.91	0.81	-2.60	0.63
1111-8	977.5	1038.5	-5.37	-2.06	-3.88	-1.15	1.69	2.34	-3.42	-1.20	0.65
1111-8	1022.5	1083.5	17.44	-1.98	5.79	2.16	3.22	-3.78	12.16	9.00	0.63
1111-8	1047.5	1108.5	-4.17	1.76	-1.43	3.78	5.76	-5.24	-4.92	-2.73	0.63

Tab. A-18: Prozentuale Ab-und Zufuhr von Hauptelementen der $< 2\mu m$ - Fraktion in der Kernsequenz in Bezug auf Kernabschnitt 1112 - 950 cm; Berechnungsformel s. Text S.69.

 Tab. A-19: Prozentuale Ab-und Zufuhr von Spurenelementen der < $2\mu m$ - Fraktion in der Kernsequenz in Bezug auf Kernabschnitt 1112 - 950 cm; Berechnungsformel s. Text S.69.

Kern	Bonrtiefe (cm)	Tiefe (cm)	Ba 1%1	CO 1%1	CU 1%1	NI [%]	Sr 1%1	V 1%1	<u>zn (%)</u>
1111-5	17.5	12.5	-1.75	-21.82	-7.37	-20.86	25.79	25.01	18.56
1111-5	157.5	152.5	10.03	-22.33	-26.66	-20.81	16.31	20.35	27.14
1111-5	247.5	242.5	18.96	-10.71	10.59	·10.46	36.59	46.48	6.46
1111.6	357.5	400.5	13.32	-9.16	-9.36	-9.00	13.93	33.73	16.52
1111-6	457.5	500.5	17.75	-6.10	-21.31	-11.14	3.05	7.22	-8.14
1111-7	572.5	618.5	27.00	-11.07	7.04	-13.85	-8.66	20.90	24.27
1111.7	617.5	663.5	33.70	-20.67	-0.47	-16.84	-18.78	13.13	16.31
1111-7	627.5	673.5	36.30	-18.97	-22.96	-20.94	-25.20	7.45	13.70
1111-7	647.5	693.5	27.99	-13.29	3.45	-13.99	-17.66	11.41	-0.19
1111-7	667.5	713.5	31.03	-21.37	-28.99	-26.12	-30.31	0.23	-15.33
1111.7	677.5	723.5	41.99	-18.87	-27.04	-21.64	-29.58	5.55	-8.20
1111.7	687.5	733.5	18.23	-10.02	-18.15	-5.83	-21.11	8.60	-0.93
1111-7	692.5	738.5	13.01	-2.58	-11.74	6.16	-21.11	8.65	6.11
1111-7	697.5	743.5	12.43	5.74	-10.59	7.97	-14.56	3.36	-7.68
1111-7	702.5	748.5	9.48	3.42	-10.62	6.05	-12.92	-12.16	-7.95
1111-7	707.5	753.5	1.11	7.38	-0.13	11.99	3.33	-11.66	-3.05
1111-7	712.5	758.5	5.41	3.99	10.62	4.05	-12.45	-12.66	-10.99
1111-7	717.5	763.5	4.25	3.33	-10.95	3.33	-8.58	-11.39	-13.75
1111-7	722.5	768.5	0.61	4.46	-22.44	6.07	-8.30	-13.00	-12.70
1111-7	727.5	773.5	5.02	0.74	-23.34	0.51	-8.28	-9.63	-18.25
1111-7	782.5	828.5	-2.34	5.88	0.50	3.12	0.76	11.69	-13.35
1111-8	807.5	868.5	3.13	-1.02	8.81	9.48	3.25	1.09	13.40
1111-8	872.5	933.5	4.24	-2.04	-17.68	-1.84	-3.15	-7.89	-6.16
1111-8	932.5	993.5	0.49	2.58	-7.42	2.51	-1.66	-9.31	-0.33
1111-8	952.5	1013.5	-6.26	0.35	-12.21	4.73	0.80	-16.39	-1.07
1111-8	977.5	1038.5	4.39	0.34	-17.54	-1.30	5.86	-10.08	0.04
1111-8	1022.5	1083.5	0.60	-0.34	68.44	-5.21	-4.23	57.23	7.29
1111-8	1047.5	1108.5	-3.47	-0.89	-13.59	1.11	2.39	-13.56	0.22

Tab. A-20: Elementintensitäten des beim Zentrifugieren abgegossenen Wassers zur Gewinnung der Tonfraktion dreier unterschiedlicher Proben und eines Blindwertes; 50 ml Lösung; Einwaage Probe 1 = 9.74 g; 2 = 4.64 g; 3 = 7.07 g.

Variabel	blind	1	2	3
P (ppm)	0.00	0.00	0.03	0.07
FE (ppm)	0.00	0.54	4.53	4.54
MN (ppm)	0.00	0.08	0.15	0.08
MG (ppm)	0.06	2.40	2.54	3.21
CA (ppm)	0.06	17.87	6.86	16.96
Ti (ppm)	0.00	0.00	0.08	80.0
AL (ppm)	0.03	0.32	2.46	2.85
NA (ppm)	0.18	8.16	2.58	4.94
K (ppm)	0.36	1.01	0.73	1.11
Ba (ppm)	2.44	5.98	12.34	8.21
Zn (ppb)	3.73	5.82	5.52	5.69
Ni (ppb)	0.80	-1.92	5.59	6.48
Co (ppb)	-2.94	-4.35	-1.27	-0.88
V (ppb)	0.57	23.49	42.00	46.10
Cu (ppb)	4.95	12.88	52.27	64.73

7.2.3.3 Sand (> 63 μm) -, Silt (2 - 63 μm) - und Tonfraktion (< 2 μm)

Tab. A-21: Hauptelementkonzentrationen der Sand (> 63 μ m) -, Silt (2 - 63 μ m)- und Tonfraktion (< 2 μ m) In IGew.%); Kern PG1111.

Fraktion	Kern	Bohrtlefe	Tiefe	AI203	TIO2	FeOtot	MgO	CaO	Na2O	K20	P205	MnC
sand (> 63 µm)	1111-6	445-455	488-498	13.62	1.15	6.62	5.44	10.42	1.85	0.99	0.18	0.17
sand (> 63 µm)	1111-7	607-617	653-663	14.93	1.00	6.24	4.96	8.15	1.43	1.00	0.10	0.14
sand (> 63 µm)	1111-7	682-692	728-738	13.45	0.90	4.92	4.42	10.69	1.50	0.97	0.14	0.18
sand (> 63 µm)	1111-8	803-813	864-874	14.55	1.18	7.11	5.95	9.79	1.33	1.14	0.12	0.16
silt (2 - 63 µm)	1111-6	445-455	488-498	16.28	1.27	6.56	5.08	8.29	1.44	1.06	0.12	0.18
siit (2 - 63 µm)	1111-7	607-617	653-663	15.84	1.29	6.92	5.56	8.69	1.46	1.04	0.10	0.16
silt (2 - 63 µm)	1111-7	682-692	728-738	16.10	1.23	6.27	5.17	8.32	1.53	1.15	0.13	0.16
silt (2 - 63 µm)	1111-8	803-813	864-874	16.21	1.18	6.44	5.13	8.18	1.40	1.17	0.12	0.15
ton (< 2 μm)	1111-6	445-455	488-498	15.64	0.83	10.62	6.96	4.78	0.62	1.14	0.22	0.26
ton (< 2 μm)	1111-7	607-617	653-663	15.94	0.86	9.54	5.89	4.12	2.12	1.44	0.19	0.18
ton (< 2 μm)	1111-7	682-692	728-738	15.80	0.87	10.20	6.63	4.64	0.64	1.24	0.19	0.20
ton (< 2 µm)	1111-8	803-813	864-874	15.29	0.75	10.05	7.82	5.63	0.71	0.99	0.18	0.17

Tab. A-22: Spurenelementkonzentrationen der Sand (> 63 μ m) -, Silt (2 - 63 μ m)- und Tonfraktion (< 2 μ m) in [Gew.%]; Kern PG1111.

Fraktion	Kern	Bohrtlefe	Tiefe	ва	Co	Cu	NI	Sr	٧	Zn
sand (> 63 µm)	1111-6	445-455	488-498	309.19	48.50	129.93	57.48	115.98	119.58	137.23
sand (> 63 µm)	1111-7	607-617	653-663	242.57	42.39	113.84	77.37	212.06	207.03	89.47
sand (> 63 µm)	1111-7	682-692	728-738	244.31	28.39	231.58	67.48	223.64	175.81	130.34
sand (> 63 µm)	1111-8	803-813	864-874	222.71	40.61	89.66	77.57	219.45	239.45	86.20
siit (2 · 63 µm)	1111-6	445-455	488-498	238.70	35.79	70.33	71.01	217.62	235.79	85.84
silt (2 - 63 µm)	1111-7	607-617	653-663	226.37	39.69	60.49	75.22	196.19	255.73	84.72
siit (2 - 63 µm)	1111-7	682-692	728-738	254.65	33.90	90.71	69.39	203.04	234.64	78.30
silt (2 - 63 µm)	1111-8	803-813	864-874	247.90	35.75	75.48	71.11	206.19	226.35	80.31
ton (< 2 µm)	1111.6	445-455	488-498	207.88	63.34	209.75	128.03	182.38	156.42	104.63
ton (< 2 μm)	1111-7	607-617	653-663	235.59	58.15	296.68	119.58	141.95	171.94	121.91
ton (< 2 μm)	1111.7	682-692	728-738	217.71	60.60	269.74	129.71	141.41	168.54	117.97
ton (< 2 μm)	1111-8	803-813	864-874	181.66	65.95	223.94	140.16	160.50	136.91	89.05

7.2.4 Statistik

7.2.4.1 Hauptkomponentenanalyse

Ausgangspunkt einer Faktorenanalyse ist eine quantitative Datenmatrix mit n Zeilen und x Spalten. N ist dabei die Anzahl der interessierenden Objekte (z.B. Schichten, Tiefen usw.) und x die Anzahl der betrachteten Variablen (z.B. Haupt- und Spurenelemente). Bei einer Hauptkomponentenanalyse wird die Korrelationsmatrix mit den beobachteten abhängigen Merkmalen verwendet und in unabhängige Komponenten transponiert (Hartung et al. 1995).

In einem zweidimensionalen Fall werden z.B. zwei Merkmale an n Objekten beobachtet. Die n Zeilen der sich ergebenden Datenmatrix lassen sich durch n Punkte mit den Koordinaten $(y_{11}, y_{12})...(y_{n1}, y_{n2})$ zweidimensional darstellen. Bei einer Normalverteilung der Merkmale und Korrelationen ungleich Null liegen die konstruierten Punkte innerhalb einer imaginären Ellipse mit zwei Hauptachsen, die sich im Mittelpunkt M treffen. Dabei soll die längste Achse das Maximum der Gesamtvarianz repräsentieren, die zweite Achse das Maximum der Restvarianz ausschöpfen (Hartung et al. 1995). Das ursprüngliche Koordinatensystem wird durch Drehung und Verschiebung in die Lage der Achsen der Ellipse transponiert (Prinzip der PCA). Hierbei erhält man neue, unkorrelierte und orthogonale Komponenten bzw. Faktoren. Der Winkel zwischen Ausgangsvariablen und Faktor ist dabei ein Maß für die Entfernung bzw. Korrelation und wird als Faktorladung bezeichnet.

Analog werden im mehrdimensionalen Fall mit Merkmalen x > 2 xKoordinatenpunkte mit x Achsen erzeugt. Geometrisch wird nun die Form eines Ellipsoids gebildet. (Davis 1986; Hartung et al. 1995; Swan et al. 1995).

Eine anschließende Rotation führt zu Faktoren, die die x Merkmale möglichst einfach beschreiben sollen, d.h. die Merkmale werden in sich ausschließende Gruppen aufgeteilt. Die Matrix wird solange rotiert bis die Summe der Varianzen keine weitere Veränderung mehr erfährt (Davis 1986). In der vorliegenden Arbeit ist die *Varimax-Rotation* zur Anwendung gekommen. Varimax ist eine orthogonale Rotation, bei der die Faktoren so rotiert werden, daß die Orthogonalität bestehen bleibt (Davis 1986; Hartung et al. 1995). Anschließend werden die Eigenwerte der rotierten Faktoren bestimmt, die die Summe der quadrierten Faktorladungen eines Faktors bzw. in der graphischen Veranschaulichung die Länge eines Faktors darstellen (Backhaus et al. 1990; Davis 1986; Hartung et al. 1995; Swan et al. 1995). Die Summe der Eigenwerte repräsentiert die totale Varianz des gesamten Datensatzes, d.h. der prozentuale Varianzanteil eines jeden Faktors kann berechnet werden.

Mit Hilfe der multiplen Regressionsanalyse erhält man die Ausprägung der Faktoren bei den einzelnen Objekten (z.B. Tiefen). Diese bezeichnet man als Faktorwerte (Backhaus et al. 1990). Negative Faktorwerte bedeuten eine unterdurchschnittliche, ein Faktorwert von 0 eine durchschnittliche und ein positiver Faktorwert eine überdurchschnittliche Ausprägung in Bezug zum Faktor und allen anderen Objekten.

Tab. A-23: Faktorwerte der Hauptkomponentenanalyse Heges. Und HE ges./Al: Gesamtdeiment Kern PG111.

Bohrtiefe	Tiefe (cm)	Faktor1HEges.	Faktor2HEges.	Faktor3HEges.	Faktor1HEges/Al	Faktor2HEges./Al	Faktor3HEges./Al
16,5	11.5	0.307	0.680	1.885	0.628	1.415	-0.737
28.5	23.5	0.379	0.758	2.094	0.854	1.617	-0.834
43.5	38.5	0.507	0.402	1.742	0.474	1.329	-0.452
48.5	43.5	0.307	0.319	2.374	0.585	2.023	-0.671
53.5	48.5	0.404	0.644	1.397	0.466	0.932	-0.565
63.5	58.5	0.349	0.263	1.951	0.432	1.622	-0.489
78.5	73.5	0.403	0.083	2.389	0.571	2.091	-0.339
88.5	83.5	0.021	0.319	2.597	0.629	2.333	-0,899
98.5	93.5	0.065	0.262	2.457	0.674	2.235	-0.822
108.5	103.5	0.628	0.839	1.247	1.292	0.695	-0.535
118.5	113.5	0.301	-0.389	1.293	0.197	1.402	-0.019
128.5	123.5	0.235	0.010	1.494	0.210	1.377	-0.310
143.5	138.5	0.663	0.054	0.944	0.424	0.735	0.122
153.5	148.5	-0.133	0.082	2.881	0.148	2.505	-0.667
103.5	158.5	0.352	0.162	0.793	0.636	0.839	-0.341
173.5	100.5	0.469	0.405	0.765	0.730	0.567	-0.302
103.5	188.5	0.335	0.103	0.632	0.555	0.050	0.044
203.5	198.5	0.190	0.370	0.320	0.548	0.204	-0.617
203.5	198.5	0.230	0.479	0.678	0.531	0.578	-0.558
213.5	208.5	0.415	-0.168	0.173	0.523	0.388	0.044
223.5	218.5	0.483	-0 131	0.369	0 484	0.495	0.095
233.5	228.5	0.398	0.021	0.050	0.664	0.220	-0.091
233.5	228.5	0.469	-0.163	0.342	0.484	0.495	0.095
243.5	238.5	0.608	0,242	0.471	0.592	0.382	-0.001
253.5	248.5	0.499	0.115	~0.029	0.639	0.061	-0.028
253.5	248.5	0.499	0.115	-0.029	0.639	0.061	-0.028
263.5	258.5	0.452	0.359	0.901	0.850	0.776	-0.301
273.5	268.5	0.402	-0.105	0.561	0.488	0.690	-0.001
283.5	278.5	0.562	0.523	0.433	0.802	0.203	-0.219
298.5	293.5	0.098	0.192	1.108	0.553	1.027	-0.388
308.5	303.5	-0.943	-0.809	0.050	-1.245	0.264	0.342
278.5	321.5	0.390	0.336	0.985	0.761	0.873	-0.404
288.5	331.5	0.432	-0.056	0.673	0.451	0.732	-0.040
298.5	341.5	0.450	-0.121	0.625	0.358	0.674	0.045
298.5	341.5	0.450	-0.121	0.625	0.358	0.674	0.045
308.5	351.5	0.465	-0.005	0.797	0.393	0.768	-0.022
318.6	351.5	0.405	-0.005	0.797	0.393	0.700	~0.022
328.5	371.5	0.534	0.035	-0.123	0.930	-0.020	0.004
338.5	381.5	0.585	0.653	0.590	1 193	0.389	-0.343
348.5	391.5	0.606	0.368	-0.022	0.766	-0.093	-0.044
358.5	401.5	0.853	0.095	-0.585	0.745	-0.627	0.469
368.5	411.5	0.533	-0.184	0.109	0.279	0.157	0.336
368.5	411.5	0.533	-0.184	0.109	0.279	0,157	0.336
378.5	421.5	0.739	0.076	0.287	0.730	0.226	0.255
388.5	431.5	0.559	-0.435	0.056	0.356	0.267	0.500
398.5	441.5	0.873	-0.183	-0.230	0.596	-0.251	0.742
408.5	451.5	0.638	-0.250	0.750	0.728	0.764	0.397
418.5	461.5	0.479	-0.532	0.125	0.126	0.315	0.573
428.5	471.5	0.661	-0.258	0.136	0.442	0.101	0.647
438.5	481.5	0,374	-0.333	0.084	0.220	0.221	0.369
448.5	491.5	0.450	-0.552	0.040	0.140	0.233	0.610
458.5	501.5	0.386	-0.822	0.301	-0.085	0.532	0.798
468.5	511.5	0.780	0.619	-0.831	1.191	-0.954	0.045
4/0.0	521.5 521.5	0.703	-0.290	-0.485	1.151	-0.165	0.403
400.5	541.5	0.002	-0.403	-0.998	1.031	-0.503	0.003
498.5	541.5	1 044	-0.307	-1.194	1 101	-0.897	0.673
508.5	551 5	1 188	-0.140	-1.102	0.957	-0.007	0.879
518.5	561.5	0.689	-0.103	-1.070	0.679	-0.464	1.038
533.5	579.5	0.894	-0.684	-0.614	0.873	-0.244	1.064
543.5	589.5	1.125	-0.717	-1.060	0.548	-0.732	1.330
553.5	599.5	1.083	-0.698	-0.737	0.459	-0,469	1.262
563.5	609.5	0,738	0.077	-0.867	0.603	-0,815	0.447
578.5	624.5	0,989	-0.171	-0.360	0.725	-0.360	0.874
588.5	634.5	0.659	-0.136	0.076	0.669	0.060	0.600
598.5	644.5	1.061	-0.229	-0.986	0.875	-0,853	0.899
608.5	654.5	1.047	-0.323	-0.540	0.779	-0.459	0.964
613.5	659.5	1.266	0.233	-1.622	0.974	-1.733	0.994
623.5	669,5	1.708	-0.636	-1.826	0.657	-1.672	1.928
633.5	679.5	2.118	-1.068	-1.741	0.424	-1.565	2.581
638.5	684.5	1.601	-0.552	-1.238	0.621	-1.148	1.663
648.5	694,5	1,260	-0.154	-0.446	0.819	-0.534	1.091

Bohrtiefe	Tiefe (cm)	Faktor1HEges.	Faktor2HEges.	Faktor3HEges.	Faktor1HEges./Al	Faktor2HEges./Al	Faktor3HEges./Al
778.5	824.5	-0.801	-0.950	0.576	-1.191	0,797	0.427
788.5	834.5	-0.473	-1.291	-0.715	-1.203	-0.327	1.123
803.5	864.5	-1.009	-1.088	-0.419	-1.752	-0.150	0.680
808.5	869,5	-0.452	-1.377	-0.424	-1.052	0.079	0.971
818.5	879,5	-1.563	-0.667	-0.536	-1.865	-0.308	-0.079
828.5	889.5	-0.520	-0.627	-0.953	-1.113	-0.813	0.632
838.5	899.5	-2.171	-1.116	-0.478	-2.563	-0.073	0.011
848.5	909.5	-1.421	-0.881	-0.959	-1.867	-0.648	0.296
858.5	919.5	-1.861	-0.888	-0.815	-2.167	-0.482	0.040
868.5	929.5	-1.734	-1.100	-0.890	-2.244	-0.518	0.335
873.5	934.5	-0.548	-0.807	-0.322	-1.054	-0.087	0.551
878.5	939.5	-0.645	0.217	-0.979	-0.804	-1.059	-0.234
888.5	949.5	-1.582	0.811	~0.967	-1.055	-1.145	-1.396
903.5	964.5	-1.903	-0.059	-0.481	-1.862	-0.452	-0.770
908.5	969.5	-1.278	2.996	-0.967	0.253	-1.808	-3.037
913.5	974.5	-2.178	-0.782	-0.020	-2.091	0,389	-0.615
923.5	984.5	-0.646	-0.403	-0.982	-1.005	-0.872	0.328
928.5	989.5	-1.182	-0.756	0.238	-1.244	0.497	0.014
933.5	994.5	-0.533	0.004	-1.120	-0.733	-1.123	0.056
938.5	999,5	-0.357	2.426	-0.518	0.341	-1.306	-1.898
938.5	999.5	-0.569	2.060	-0.350	0.480	-0.940	-2.059
943.5	1004.5	-0.325	1.389	-1.280	0.035	-1.690	-0.946
948.5	1009.5	-1.314	1.031	-0.082	-0.701	-0.423	-1.421
953.5	1014.5	-1.923	-0.198	-0.709	-1.870	-0.596	-0.661
958.5	1019.5	-2.584	0.443	0.740	-1.558	0.768	-2.027
963.5	1024.5	-2.162	-0.030	-1.093	-1.919	-0.970	-0.984
973.5	1034.5	-1.456	-0.114	-0.750	-1.450	-0.694	-0.460
983.5	1044.5	-0.219	1.517	-1.036	-0.258	-1.602	-0.842
988.5	1049.5	-0.729	3.879	-0.301	1.187	-1.460	-3.452
998.5	1059.5	-2.534	-0.833	0.384	-2.208	0.877	-0.894
1008.5	1069.5	-0.555	2.915	-1.006	0.632	-1.851	-2.388
1013.5	1074.5	-2.124	-0.605	-0.898	-2.271	-0.650	-0.379
1028.5	1089.5	-0.032	0.021	-1.562	-0.618	-1.631	0.497
1033.5	1094.5	-0.074	3,432	-1.427	0.975	-2,416	-2.401
1038.5	1099.5	-0.333	5,119	-0.874	2.028	-2,376	-3.853
1043.5	1104.5	-1.371	-0.046	-0.937	-1.409	-0.905	-0.383

Fortsetzung Tab. A-23: Faktorwerte der Hauptkomponentenanalyse (HE)

Tab. A-24: Faktorwerte der Hauptkomponentenanalyse der $SE_{ges.}$ und $SE_{ges./Al}$: Gesamtsediment Kern PG1111.

Kern	Bohrtiefe	Tiefe (cm)	Faktor1SEges	Faktor2SEges	Faktor3SEges	Faktor1SEges./Al	Faktor2SEges./Al	Faktor3SEges./Al
1111-5	16.5	11.5	1.002	1.056	-0.798	0.421	1.053	-0.890
1111-5	28.5	23.5	1.228	0.303	-0.571	0.332	0.701	-0.197
1111-5	43.5	38.5	0.172	1.481	-0.885	-0.303	1.226	-1.201
1111-5	48.5	43.5	1.631	0.670	-1.006	1.095	0.621	-1.120
1111-5	53.5	48.5	-0.706	0.790	-0.179	-1.669	1.227	0.270
1111-5	63.5	58.5	1.119	0.593	-0.766	0.485	0.636	-0.780
1111-5	78.5	73.5	1.191	0.193	-0.560	0.495	0.473	-0.317
1111-5	88.5	83.5	0.909	0.592	-0.754	0.609	0.582	-0.775
1111-5	98.5	93.5	1.295	0.700	-0.737	1.130	0.572	-0.914
1111-5	108.5	103.5	0.418	0.454	-0.464	-0.195	0.761	-0.067
1111-5	118.5	113.5	0.752	-0.271	0.942	0.311	0.289	1.157
1111-5	128.5	123.5	1.006	0.261	0.566	0.441	0.682	0.599
1111-5	143.5	138.5	-0.414	1.001	-0.607	-0.819	0.985	-0.616
1111-5	153.5	148.5	1.371	0.153	-0.812	0.624	0.369	-0.567
1111-5	163.5	158.5	0.753	0.069	0.841	0.493	0.522	1.027
1111-5	173.5	168.5	-0.875	1.523	-0.422	-0.731	1.174	-0.822
1111-5	183.5	178.5	0.367	0.903	1.458	0.508	1.100	0.992
1111-5	193.5	188.5	-0.986	1.537	-0.327	-1.208	1.396	-0.516
1111-5	203.5	198.5	0.574	0.273	1.157	0.045	0.955	1.454
1111-5	203.5	198.5	0.733	0.004	0.870	0.288	0.551	1.093
1111-5	213.5	208.5	0.358	0.168	0.758	0.347	0.481	0.879
1111-5	223.5	218.5	0.761	0.492	0.646	0.543	0.860	0.733
1111-5	233.5	228.5	0.158	0.112	2.516	0.421	0.625	2.358
1111-5	233.5	228.5	0.761	0.492	0.646	0.578	0.847	0.736
1111-5	243.5	238.5	1.026	0.196	0.949	0.790	0.521	0.809
1111-5	253.5	248.5	1.011	-0.219	0.930	0,699	0.372	1.279
1111-5	253.5	248.5	1.011	-0.219	0.930	0.699	0.372	1.279
1111-5	263.5	258.5	1.280	-0.113	-0.438	0.673	0.328	0.12B
1111-5	273.5	268.5	1.154	0.125	0.429	1.028	0.388	0.473
1111-5	283.5	278.5	-0.710	1.369	-0.537	-0.686	1.114	-0.784
1111-5	298.5	293.5	-0.476	1.181	-0.340	-0.551	1.127	-0.324

Fortsetzung Tab. A-24: Faktorwerte der Hauptkomponentenanalyse (SE)

Kom	Pohrtiala	Tiofo (cm)	FaktoriSEgge	Faktor2SEcor	Eaktor SEcon	Eaktor1SEgat (A)	Eaktor2SEgas /Al	Faktor3SEgar /Al
1111-5	308.5	303.5	-1 290	-0.641	-0.075	-1 117	-0.767	0.060
1111-6	278.5	321.5	1.208	0.530	-0.578	0.747	0.767	-0.318
1111-6	288.5	331.5	0.787	0.384	0.819	0.608	0.695	0,746
1111-6	298.5	341.5	1,142	-0.524	0.946	0.520	0.214	1.391
1111-6	298.5	341.5	1.142	-0.524	0.946	0.520	0.214	1.391
1111-6	308.5	351.5	1.262	-0.130	0.414	0.675	0.386	0.687
1111-6	308,5	351.5	1.262	-0.130	0.414	0.675	0.386	0.687
1111-6	318.5	361.5	0.604	0.229	0.558	0.499	0.549	0.733
1111-6	328.5	371.5	+0.368	0.526	1.584	0.164	0.728	1.427
1111-6	338.5	381.5	1.001	1.241	-0.965	1.538	0.615	-1.699
1111-6	348.5	391.5	0.344	0,581	1.420	0.516	0.757	1.010
1111-6	358.5	401.5	-0.684	0.788	-0.329	-0.818	0.810	-0.200
1111-6	368.5	411.5	0.483	0.128	1,510	0.408	0.501	1.278
1111-6	368,5	411.5	0.483	0.128	1.510	0.408	0.501	1.278
1111-6	3/8.5	421.5	1.074	0.355	-0.673	0.864	0.326	-0.6/1
1111-0	388.5	431.5	0.877	-0.193	-0.109	0.978	-0.227	-0,175
1111-0	409.5	441.5	-1.036	0.030	-0.432	-0.946	0.485	-0.020
1111.6	419.5	461.5	0.719	0.000	1 772	0.473	0.405	1 961
1111-6	428.5	471.5	1 011	1 273	0.658	0.4756	0.846	-1 043
1111-6	438.5	481.5	0.386	-0.140	1 243	0.612	0.017	0.923
1111-6	448.5	491.5	0.892	-0.744	0.990	0.736	-0.326	1,148
1111-6	458.5	501.5	1.036	-0.559	0.546	1.248	-0.598	0.196
1111-6	468.5	511.5	-0.938	1.756	-0.356	-0.274	1.197	-0.999
1111-6	478.5	521.5	0.867	-0.050	-0.463	1.379	-0.190	-0.349
1111-6	488.5	531.5	0.425	0.353	0,181	1.133	0.247	0.081
1111-6	498.5	541.5	0.622	1.067	-0.270	1.551	0.618	-0.877
1111-6	498.5	541.5	0.100	1.140	0.177	0.782	0.891	-0.298
1111-6	508.5	551.5	0.641	0.772	0.333	1.040	0.622	-0.146
1111-8	518.5	561.5	-1.229	0.083	7.776	1.107	0.419	6.206
1111-/	533.5	579.5	0.863	-0.095	-0.451	1.366	-0.281	-0.477
1111-7	543.5	589.5	0.629	-0.178	1.743	1.096	-0.020	1.305
1111-7	553.5	599.5	0.912	0,500	0.214	1.234	0.338	-0.272
1111-7	570 E	609.5	-0.066	0.750	0.505	0.292	0.594	0.025
1111-7	598.5	624.5	-0.415	1.021	-0.375	-0.229	0.737	-0.772
1111-7	598.5	644.5	0.235	0.004	-0.463	1 108	0.247	-0.511
1111-7	608.5	654.5	1 491	0.100	-0.403	1 859	0.343	-1.552
1111-7	613.5	659.5	-1 241	1 504	0.072	-1 013	1 327	-0.265
1111-7	623.5	669.5	-0.812	1.567	-0.523	-0.226	0.836	-1.419
1111-7	633.5	679.5	-0.125	1.119	-0,561	-0.177	0.779	-1.057
1111-7	638.5	684.5	-0.074	1.062	-0.472	-0.241	0.939	-0.692
1111-7	648.5	694.5	0.666	1.460	-1,064	1.270	0.617	~2.111
1111-7	668.5	714.5	1.435	0.360	-0.881	1.703	0.014	-1.299
1111-7	673.5	719.5	-0.093	1.410	-0.894	0.165	0.739	-1.715
1111-7	678.5	724.5	0.211	0.994	-0.753	0.058	0.678	-1.192
1111-7	683.5	729.5	-0.435	0.738	-0.552	-0.296	0.354	-1.050
1111-7	693.5	739.5	1.566	-2.044	-0,578	1.480	-1.895	-0.065
11111-7	098.5 712.5	744.5	-0.755	-0.066	-0.459	0.015	-0.722	-0.9/4
1111-7	710.0	759.5	-0.952	-0.456	-0.375	-0.744	-0,745	-0.425
1111-7	728.5	774.5	-1.063	-0.255	-0.403	-0 754	-0.483	-0.181
1111-7	738.5	784.5	-1.262	-0.445	-0 273	-0.922	-0.759	-0.287
1111-7	753.5	799.5	-1.293	-0.980	-0.008	-1.121	-1.047	0.304
1111-7	758.5	804,5	0.609	-0.942	-0.611	1.113	-1.254	-0.624
1111-7	763.5	809.5	-1.296	-0.060	-0.150	-0.959	-0.388	-0.294
1111-7	768.5	814.5	-1.813	0.152	-0.032	-1.569	-0.044	-0.015
1111-7	773.5	819.5	1.190	-3.164	-0.713	0.982	-2.975	0.213
1111-7	778.5	824.5	-0.759	-0.699	-0.519	-0.601	-0.972	-0.540
1111-7	788.5	834.5	-0.765	-0.724	-0.550	-0.501	-0.985	-0.444
1111-8	803.5	864.5	-0.849	-1.047	-0.475	-0.780	-1.228	-0.336
1111-8	808.5	869.5	0.302	-1.236	-0.657	0.944	-1.767	-0.891
1111-8	818.5	879.5	-1.457	-0.476	-0.267	-1.135	-0.795	-0.280
1111-8	0∠0.5 830 ⊑	009.0 900 F	-0.814	-0./43	-0.340	-0.901	~0.755	0.091
1111-8	848.5	0005	-1.104	-1.070	-0.359	-0.041	-2.110	-0.245
1111-0	858.5	909.0	-1.043	-0.900	-0.234	-1.099	-2.019	0.423
1111-B	868.5	929.5	-1.476	-1.406	-0.241	-1.310	-1.540	0.224
1111-8	873.5	934.5	0.810	-2.145	-0.373	0.272	-1.702	0.483
1111-8	878.5	939,5	-1.413	-0,141	-0,167	-1.574	-0.129	0.043
1111-8	888.5	949.5	-1.863	-0.572	-0,216	-1.650	-0.801	-0.059
1111-8	903.5	964.5	-1.400	-1.020	-0.355	-1.384	-1.125	-0.010
1111-8	908.5	969.5	-1.131	-1.014	0.486	-1.714	-0.353	1.237
1111-8	913.5	974.5	0.814	-1.447	-0.612	1.175	-1.635	-0.346

Variabel	Faktor 1HEges./A	I Faktor 2HEges./A	Faktor 3HEges./Al
Si/Al	0.587	•	0.536
TI/AI	0.917	+	+
Fe/Al	-0.939		
Mg/Al	-0.916	-	•
Ca/AI	+	-0.62	-0.577
Na/Al	0.629	-0.401	-
K/Al	+		0.904
P/AI		0.929	•
Mn/Al	+	0.802	
Eigenwert	3.6	2.34	1.3
Varianz	40	25.9	14.4

Tab. A-25: Faktormatrix $_{HEges./Al}$ der Hauptelementkonzentrationen des Gesamtsedimentesin Kern PG1111 (n=125) nach Anwendung der Hauptkomponentenanalyse und Varimax-Rotation.Positive bzw. negative Faktorladungen < 0.4 werden mit + bzw. - gekennzeichnet.</td>

Tab. A-26: Faktormatrix $_{SEges./Al}$ der Spurenelementkonzentrationen des Gesamtsedimentesin Kern PG1111 (n=125) nach Anwendung der Hauptkomponentenanalyse und Varimax-Rotation.Positive bzw. negative Faktorladungen < 0.4 werden mit + bzw. - gekennzeichnet.</td>

Variabel	Faktor 1SEges./Al	Faktor 2SEges./Al	Faktor 3SEges./Ai
Ba/Al	0.695	0.51	
Co/AI	•	-0.95	
Cr/Al	0.548	+	0.672
Cu/Al	+	-0.92	+
Nb/Al	+	+	-0.481
Ni/Al	+	•	0.83
Sr/Al	0.522	0.479	+
V/AI	0.57	0.648	+
Y/AI	0.887	+	+
Zn/Al	0.848		
Zr/Al	0.924		+
Eigenwert	5.23	2.06	1.2
Varianz	47.5	18.8	10.9

.

7.3 ¹⁴C-Alter

Tab. A-27: 14C-Alter innerhalb der Kernsequenz PG1111.

Tiefe (cm)	Labor-Nr.	Probentyp	d13C [‰-V-PDB]	14C Alter [BP]
170-171	OXA-6067	Pollen	-23.3	12170±130
306-307	OXA-5623	Gesamtsediment	-25.9	10590 <u>+</u> 130
378-379	OXA-6066	Pollen	-23.6	15060±90
540-541	OXA-6065	Pollen	-24.6	14760 <u>+</u> 120
591-592	OXA-6064	Pollen	-23.4	15460 <u>+</u> 160
604-605	OXA-5624	Gesamtsediment	-25.5	15680 <u>+</u> 180

7.4 Lamaseewasser

Tab. A-28: Temperatur (t), pH-Wert, gelöster Sauerstoff (O_2) und Leitfähigkeit (Lf) des Lamaseewassers an fünf verschiedenen Stationen

Station1 69°32,6 N 90°11,6 E; Wassertiefe: 37 m										
Tiefe imi	t [°C]	рн	02 (mg/l)	Lf [µS/cm]						
0.15	10.5	7.81	12.26	83.82						
5	10.5	7.77	12.23	83.4						
10	9.6	7.72	12.29	84.5						
25	5.25	7.57	12.74	97.1						
30	4.67	7.57	12.75	100.67						
41	3.85	7,37	12.51	112.43						
PG1111 69°52,9 N 90°12.7 E; Wassertlefe: 52.5 m										
0.1	10.4	7.77	12.77	82.78						
5	10.35	7.68	12.78	81.6						
12	7.4	7.63	12.82	85.6						
15	6.1	7.51	12.82	90.84						
20	5.4	7.46	12.81	94.83						
25	5	7.45	12.9	94.48						
30	4.4	7.48	12.42	95.83						
43	3.9	7.45	12.45	100.95						
Station3 69°53,1 N 90)°05,7 E; W	asser	tiefe: 25 n	1						
0	10.6	7.71	12.26	80.88						
5	10.4	7.65	12.44	81.68						
10	7.53	7.47	12.93	83.75						
15	6.9	7.43	13	83.83						
16	6.5	7.42	12.9	86.5						
17	6.4	7.42	12.88	88.8						
18	6.5	7.5	12.81	91.85						
19	6.5	7.5	12.78	92.8						
20	6.2	7.48	12.75	111.34						
Station5 69° 34,2 N 90)°12.2 E; W	asser	tiefe: 40 n	1						
0	10	7.67	12.47	80.9						
5	9.8	7.69	12.46	80.7						
10	7.2	7,53	12.94	83.7						
15	6.1	7.49	12.94	87.5						
17.5	5.8	7.42	12.89	88.4						
20	5.4	7.44	12.86	90.3						
25	5	7.39	12.69	92.2						
38	4.1	7.43	12.74	101.7						
Station6 69°34,7 N 90°1	12,6 E; Wasse	ertiefe	e: 20 m							
0	8.7	7.7	12.64	79.84						
5	8.5	7.66	12.79	82						
10	7.2	7.64	12.98	87.8						
15	5.8	7.58	13	90.78						
17	5.5	7.76	13	97.3						

Wassertlefe (m)	\$i [mg/i]	Al (mg/l)	Ti Img/II	Fe (mg/l)	Ca (mg/l)	Mg (mg/il	Na (mg/i)	K (mg/l)	P [mg/l]	Mn (mg/i)	Ba (µg/l)	Sr [µg/i]
1	2.18	< 0.1	< 0.05	< 0.1	7.93	1.3	2.1	< 0.1	< 0.1	< 0.01	< 20	78
2	2.24	< 0.1	< 0.05	< 0.1	8.15	1.35	2.12	< 0.1	< 0.1	< 0.01	< 20	80
3	2.44	< 0.1	< 0.05	< 0.1	8.78	1.44	2.27	< 0.1	< 0.1	< 0.01	< 20	86
4	2.43	< 0.1	< 0.05	< 0.1	8.74	1.45	2.27	< 0.1	< 0.1	< 0.01	< 20	86
5	2.43	< 0.1	< 0.05	< 0.1	8.72	1.44	2.28	< 0.1	< 0.1	< 0.01	< 20	86
7	2.44	< 0.1	< 0.05	< 0.1	8.7	1.41	2.3	< 0.1	< 0.1	< 0.01	< 20	86
10	2.27	< 0.1	< 0.05	< 0.1	8.29	1.37	2.19	< 0.1	< 0.1	< 0.01	< 20	83
12	2.42	< 0.1	< 0.05	< 0.1	8.76	1.43	2.32	< 0.1	< 0.1	< 0.01	< 20	88
15	2.45	< 0.1	< 0.05	< 0.1	8.86	1.46	2.36	< 0.1	< 0.1	< 0.01	< 20	89
20	2.53	< 0.1	< 0.05	< 0.1	6.02	1.49	2.42	< 0.1	< 0,1	< 0.01	< 20	96
40	2.67	< 0.1	< 0.05	< 0.1	9.96	1.63	2.77	0.104	< 0.1	< 0.01	< 20	109
80	2.68	< 0.1	< 0.05	< 0.1	10.4	1.7	2.97	0.105	< 0.1	< 0.01	< 20	117
120	2.67	< 0.1	< 0.05	< 0.1	11.2	1.81	3.38	0.159	< 0,1	< 0.01	< 20	127
160	2.63	< 0.1	< 0.05	< 0.1	10.7	1.73	3.1	0.106	< 0.1	< 0.01	< 20	125
200	2.65	< 0.1	< 0.05	< 0.1	11.1	1.81	3.24	0.109	< 0.1	< 0.01	< 20	133
station PG 1341;	59°53.3 N	90°16.1	E									
1	2.19	< 0.1	< 0.05	< 0.1	8	1.27	2.11	< 0,1	< 0.1	< 0.01	< 20	80
2	2.15	< 0.1	< 0.05	< 0.1	7.93	1.26	2.11	< 0.1	< 0.1	< 0.01	< 20	79
3	2.15	< 0.1	< 0.05	< 0.1	7.8	1.27	2.07	< 0.1	< 0.1	< 0.01	< 20	78
4	2.15	< 0.1	< 0.05	< 0.1	7.88	1.25	2.1	< 0.1	< 0.1	< 0.01	< 20	79
5	2.21	< 0.1	< 0.05	< 0.1	8.1	1.3	2.14	< 0.1	< 0.1	< 0.01	< 20	80
6	2.14	< 0.1	< 0.05	< 0.1	7.83	1.25	2.06	< 0.1	< 0.1	< 0.01	< 20	78
7	2.22	< 0.1	< 0.05	< 0.1	7.96	1.28	2.08	< 0.1	< 0.1	< 0.01	< 20	79
8	2.19	< 0.1	< 0.05	< 0.1	8.03	1.27	2.17	0.113	< 0.1	< 0.01	< 20	80
9	2.2	< 0.1	< 0.05	< 0.1	7.88	1.25	2.09	< 0.1	< 0.1	< 0.01	< 20	79
10	2.24	< 0.1	< 0.05	< 0.1	7.73	1.25	2.07	< 0.1	< 0.1	< 0.01	< 20	77
12	2.18	< 0.1	< 0.05	< 0.1	7.54	1.23	2.04	< 0.1	< 0.1	< 0.01	< 20	75
15	2.23	< 0.1	< 0.05	< 0.1	7.9	1.26	2.14	< 0.1	< 0.1	< 0.01	< 20	80
20	2.2	< 0.1	< 0.05	< 0.1	8.04	1.3	2.08	< 0.1	< 0.1	< 0.01	< 20	83
40	2.22	< 0.1	< 0.05	< 0.1	8.89	1.39	2.41	< 0.1	< 0.1	< 0.01	< 20	95
66	2.28	< 0.1	< 0.05	< 0.1	8.96	1.42	2 5 2	< 0.1	< 0.1	< 0.01	< 20	93

Tab. A-29: Kationenkonzentration im Tiefenprofil des Lamaseewassers an zwei verschiedenen Positionen

Folgende Hefte der Reihe "Berichte zur Polarforschung" sind bisher erschienen:

Sonderheft Nr. 1/1981 – "Die Antarktis und ihr Lebensraum" Eine Einführung für Besucher – Herausgegeben im Auftrag von SCAR Heft Nr. 1/1982 - "Die Filchner-Schelfeis-Expedition 1980/81" zusammengestellt von Heinz Kohnen Heft Nr. 2/1982 – "Deutsche Antarktis-Expedition 1980/81 mit FS "Meteor" First International BIOMASS Experiment (FIBEX) – Liste der Zooplankton- und Mikronektonnetzfänge zusammengestellt von Norbert Klages Heft Nr. 3/1982 – "Digitale und analoge Krill-Echolot-Rohdatenerfassung an Bord des Forschungs-schiffes "Meteor" (im Rahmen von FIBEX 1980/81, Fahrtabschnitt ANT III), von Bodo Morgenstern Heft Nr. 4/1982 – "Filchner-Scheifeis-Expedition 1980/81" Liste der Planktonfänge und Lichtstärkemessungen zusammengestellt von Gerd Hubold und H. Eberhard Drescher Heft Nr. 5/1982 – "Joint Biological Expedition on RRS 'John Biscoe', February 1982" by G. Hempel and R. B. Heywood by G. Hempel and H. B. Heywood Heft Nr. 6/1982 – "Antarktis-Expedition 1981/82 (Unternehmen ,Eiswarte')" zusammengestellt von Gode Gravenhorst Heft Nr. 7/1982 – "Marin-Biologisches Begleitprogramm zur Standorterkundung 1979/80 mit MS ,Polar-sirkel' (Pre-Site Survey)" – Stationslisten der Mikronekton- und Zooplanktonfänge sowie der Bodenfischerei zusammengestellt von R. Schneppenheim Witche 2002 (The Part Site Date Interactation Warterboot) Heft Nr. 8/1983 – "The Post-Fibex Data Interpretation Workshop" by D. L. Cram and J.-C. Freytag with the collaboration of J. W. Schmidt, M. Mall, R. Kresse, T. Schwinghammer Heft Nr. 9/1983 – "Distribution of some groups of zooplankton in the inner Weddell Sea in summer 1979/80" by I. Hempel, G. Hubold, B. Kaczmaruk, R. Keller, R. Weigmann-Haass Heft Nr. 10/1983 – "Fluor im antarktischen Ökosystem" – DFG-Symposium November 1982 zusammengestellt von Dieter Adelung Zusammengesteilt von Dieter Aderung
 Heft Nr. 11/1983 – "Joint Biological Expedition on RRS 'John Biscoe', February 1982 (II)"
 Data of micronecton and zooplankton hauls, by Uwe Piatkowski
 Heft Nr. 12/1983 – "Das biologische Programm der ANTARKTIS-I-Expedition 1983 mit FS ,Polarstern"
 Stationslisten der Plankton-, Benthos- und Grundschleppnetzfänge und Liste der Probennahme an Robben und Vögeln, von H. E. Drescher, G. Hubold, U. Piatkowski, J. Pictz und J. Voß Heft Nr. 13/1983 – "Die Antarktis-Expedition von MS "Polarbjörn' 1982/83" (Sommerkampagne zur Atka-Bucht und zu den Kraul-Bergen), zusammengestellt von Heinz Kohnen Sonderheft Nr. 2/1983 – "Die erste Antarktis-Expedition von FS "Polarstern' (Kapstadt, 20. Januar 1983 – Rio de Janeiro, 25. März 1983)", Bericht des Fahrtleiters Prof. Dr. Gotthilf Hempel Sonderheft Nr. 3/1983 – "Sicherheit und Überleben bei Polarexpeditionen" zusammengestellt von Heinz Kohnen zusammengestellt von Heinz Kohnen Heft Nr. 14/1983 – "Die erste Antarktis-Expedition (ANTARKTIS I) von FS "Polarstern' 1982/83" herausgegeben von Gotthilf Hempel Sonderheft Nr. 4/1983 – "On the Biology of Krill *Euphausia* superba" – Proceedings of the Seminar and Report of the Krill Ecology Group, Bremerhaven 12. - 16. May 1983, edited by S. B. Schnack Heft Nr. 15/1983 – "German Antarctic Expedition 1980/81 with FRV 'Walther Herwig' and RV 'Meteor" – First International BIOMASS Experiment (FIBEX) – Data of micronekton and zooplankton hauls by Uwe Platkowski and Norbert Klages Sonderheft Nr. 5/1984 - "The observatories of the Georg von Neumayer Station", by Ernst Augstein Heft Nr. 16/1984 – "FIBEX cruise zooplankton data" by U. Piatkowski, I. Hempel and S. Rakusa-Suszczewski Heft Nr. 17/1984 - Fahrtbericht (cruise report) der ,Polarstern'-Reise ARKTIS I, 1983" von E. Augstein, G. Hempel und J. Thiede von E. Augstein, G. Hempel und J. Thiede
Heft Nr. 18/1984 – "Die Expedition ANTARKTIS II mit FS "Polarstern' 1983/84", Bericht von den Fahrtabschnitten 1, 2 und 3, herausgegeben von D. Fütterer
Heft Nr. 19/1984 – "Die Expedition ANTARKTIS II mit FS "Polarstern' 1983/84", Bericht vom Fahrtabschnitt 4, Punta Arenas-Kapstadt (Ant-II/4), herausgegeben von H. Kohnen
Heft Nr. 20/1984 – "Die Expedition ARKTIS II des FS "Polarstern' 1984, mit Beiträgen des FS "Valdivia" und des Forschungsflugzeuges "Falcon 20" zum Marginal Ice Zone Experiment 1984 (MIZEX)" von E. Augstein, G. Hempel, J. Schwarz, J. Thiede und W. Weigel

Heft Nr. 21/1985 - "Euphausiid larvae in plankton from the vicinity of the Antarctic Penisula, February 1982" by Sigrid Marschall and Elke Mizdalski

Heft Nr. 22/1985 - "Maps of the geographical distribution of macrozooplankton in the Atlantic sector of the Southern Ocean" by Uwe Piatkowski

Heft Nr. 23/1985 – "Untersuchungen zur Funktionsmorphologie und Nahrungsaufnahme der Larven des Antarktischen Krills Euphausia süperba Dana" von Hans-Peter Marschall

Heft Nr. 24/1985 – "Untersuchungen zum Periglazial auf der König-Georg-Insel Südshetlandinseln/ Antarktika. Deutsche physiogeographische Forschungen in der Antarktis. – Bericht über die Kampagne 1983/84" von Dietrich Barsch, Wolf-Dieter Blümel, Wolfgang Flügel, Roland Mäusbacher, Gerhard Stäblein, Wolfgang Zick Heft Nr. 25/1985 – "Die Expedition ANTARKTIS III mit FS ,Polarstern' 1984/1985' herausgegeben von Gotthilf Hempel. Heft Nr. 26/1985 - "The Southern Ocean"; A survey of oceanographic and marine meteorological research work by Hellmer et al. Heft Nr. 27/1986 – "Spätpleistozäne Sedimentationsprozesse am antarktischen Kontinentalhang vor Kapp Norvegia, östliche Weddell-See" von Hannes Grobe Heft Nr. 28/1986 – "Die Expedition ARKTIS III mit, Polarstern 1985 mit Beiträgen der Fahrtteilnehmer, herausgegeben von Rainer Gersonde Heft Nr. 29/1986 – "5 Jahre Schwerpunktprogramm "Antarktisforschung' der Deutschen Forschungsgemeisnchaft." Rückblick und Ausblick. Zusammengestellt von Gotthilf Hempel, Sprecher des Schwerpunktprogramms Heft Nr. 30/1986 – "The Meteorological Data of the Georg-von-Neumayer-Station for 1981 and 1982" by Marianne Gube and Friedrich Obleitner . Heft Nr. 31/1986 – "Zur Biologie der Jugendstadien der Notothenioidei (Pisces) an der Antarktischen Halbinsel" von A. Kellermann Heft Nr. 32/1986 - "Die Expedition ANTARKTIS IV mit FS "Polarstern' 1985/86" mit Beiträgen der Fahrteilnehmer, herausgegeben von Dieter Fütterer Heft Nr. 33/1987 – "Die Expedition ANTARKTIS-IV mit FS "Polarstern" 1985/86 – Bericht zu den Fahrtabschnitten ANT-IV/3-4" von Dieter Karl Fütterer Heft Nr. 34/1987 – "Zoogeographische Untersuchungen und Gemeinschaftsanalysen an antarktischen Makroplankton" von U. Piatkowski Heft Nr. 35/1987 – "Zur Verbreitung des Meso- und Makrozooplanktons in Oberflächenwasser der Weddell See (Antarktis)" von E. Boysen-Ennen Heft Nr. 36/1987 - "Zur Nahrungs- und Bewegungsphysiologie von Salpa thompsoni und Salpa fusiformis" von M. Reinke Heft Nr. 37/1987 -- "The Eastern Weddell Sea Drifting Buoy Data Set of the Winter Weddell Sea Project (WWSP)" 1986 by Heinrich Hoeber und Marianne Gube-Lehnhardt Heft Nr. 38/1987 - "The Meteorological Data of the Georg von Neumayer Station for 1983 and 1984" by M. Gube-Lenhardt Heft Nr. 39/1987 - "Die Winter-Expedition mit FS "Polarstern' in die Antarktis (ANT V/1-3)" herausgegeben von Sigrid Schnack-Schiel herausgegeben von Signi Schnack-Schiel Heft Nr. 40/1987 – "Weather and Synoptic Situation during Winter Weddell Sea Project 1986 (ANT V/2) July 16 - September 10, 1986" by Werner Rabe Heft Nr. 41/1988 – "Zur Verbreitung und Ökologie der Seegurken im Weddellmeer (Antarktis)" von Julian Gutt Heft Nr. 42/1988 – "The zooplankton community in the deep bathyal and abyssal zones of the eastern North Atlantic" by Werner Beckmann Heft Nr. 42/1989 – "Gienetic arguing sport of Artic Evendition ABK IV/2" Heft Nr. 43/1988 - "Scientific cruise report of Arctic Expedition ARK IV/3" Wissenschaftlicher Fahrtbericht der Arktis-Expedition ARK IV/3, compiled by Jörn Thiede Heft Nr. 44/1988 - "Data Report for FV 'Polarstern' Cruise ARK IV/1, 1987 to the Arctic and Polar Fronts" by Hans-Jürgen Hirche Heft Nr. 45/1988 – "Zoogeographie und Gemeinschaftsanalyse des Makrozoobenthos des Weddellmeeres (Antarktis)" von Joachim Voß Hett Nr. 46/1988 – "Meteorological and Oceanographic Data of the Winter-Weddell-Sea Project 1986 (ANT V/3)" by Eberhard Fahrbach Heft Nr. 47/1988 – "Verteilung und Herkunft glazial-mariner Gerölle am Antarktischen Kontinentalrand des östlichen Weddellmeeres" von Wolfgang Oskierski Heft Nr. 48/1988 - "Variationen des Erdmagnetfeldes an der GvN-Station" von Arnold Brodscholl Heft Nr. 49/1988 - "Zur Bedeutung der Lipide im antarktischen Zooplankton" von Wilhelm Hagen Heft Nr. 50/1988 - "Die gezeitenbedingte Dynamik des Ekström-Schelfeises, Antarktis" von Wolfgang Kobarg Heft Nr. 51/1988 - "Ökomorphologie nototheniider Fische aus dem Weddellmeer, Antarktis" von Werner Ekau Heft Nr. 52/1988 - "Zusammensetzung der Bodenfauna in der westlichen Fram-Straße" von Dieter Piepenburg Heft Nr. 53/1988 – "Untersuchungen zur Ökologie des Phytoplanktons im südöstlichen Weddellmeer (Antarktis) im Jan./Febr. 1985" von Eva-Maria Nöthig Heft Nr. 54/1988 – "Die Fischfauna des östlichen und südlichen Weddellmeeres: geographische Verbreitung, Nahrung und trophische Stellung der Fischarten" von Wiebke Schwarzbach Heft Nr. 55/1988 – "Weight and length data of zooplankton in the Weddell Sea in austral spring 1986 (Ant. V/3)" by Elke Mizdalski Heft Nr. 55/1989 - "Scientific cruise report of Arctic expeditions ARK IV/1, 2 & 3" by G. Krause, J. Meinke und J. Thiede

Heft Nr. 57/1989 -- "Die Expedition ANTARKTIS V mit FS ,Polarstern' 1986/87" Bericht von den Fahrtabschnitten ANT V/4-5 von H. Miller und H. Oerter Heft Nr. 58/1989 - "Die Expedition ANTARKTIS VI mit FS "Polarstern" 1987/88" von D. K. Fütterer Heft Nr. 59/1989 - "Die Expedition ARKTIS V/1a, 1b und 2 mit FS ,Polarstern' 1988" von M. Spindler Heft Nr. 60/1989 - "Ein zweidimensionales Modell zur thermohalinen Zirkulation unter dem Schelfeis" von H. H. Hellmer Heft Nr. 61/1989 – "Die Vulkanite im westlichen und mittleren Neuschwabenland, Vestfjella und Ahlmannryggen, Antarktika" von M. Peters Heft Nr. 62/1989 - "The Expedition ANTARKTIS VII/1 and 2 (EPOS I) of RV 'Polarstern' in 1988/89", by I. Hempel Heft Nr. 63/1989 – "Die Eisalgenflora des Weddellmeeres (Antarktis): Artenzusammensetzung und Biomasse sowie Ökophysiologie ausgewählter Arten" von Annette Bartsch Heft Nr. 64/1989 - "Meteorological Data of the G.-v.-Neumayer-Station (Antarctica)" by L. Helmes Heft Nr. 65/1989 - "Expedition Antarktis VII/3 in 1988/89" by I. Hempel, P. H. Schalk, V. Smetacek Heft Nr. 66/1989 – "Geomorphologisch-glaziologische Detailkartierung des arid-hochpolaren Borgmassivet, Neuschwabenland, Antarktika" von Karsten Brunk Heft Nr. 67/1990 - "Identification key and catalogue of larval Antarctic fishes", edited by Adolf Kellermann Heft Nr. 68/1990 - "The Expedition Antarktis VII/4 (Epos leg 3) and VII/5 of RV 'Polarstern' in 1989", edited by W. Arntz, W. Ernst, I. Hempel Heft Nr. 69/1990 - "Abhängigkeiten elastischer und rheologischer Eigenschaften des Meereises vom Eisgefüge", von Harald Hellmann Heft Nr. 70/1990 – "Die beschalten benthischen Mollusken (Gastropoda und Bivalvia) des Weddellmeeres, Antarktis", von Stefan Hain Heft Nr. 71/1990 – "Sedimentologie und Paläomagnetik an Sedimenten der Maudkuppe (Nordöstliches Weddellmeer)", von Dieter Cordes Weddelimeer/, von Dieter Cordes Heft Nr. 72/1990 – "Distribution and abundance of planktonic copepods (Crustacea) in the Weddell Sea in summer 1980/81", by F. Kurbjeweit and S. Ali-Khan Heft Nr. 73/1990 – "Zur Frühdiagenese von organischem Kohlenstoff und Opal in Sedimenten des südlichen und östlichen Weddellmeeres", von M. Schlüter Heft Nr. 74/1990 – "Expeditionen ANTARKTIS-VIII/3 und VIII/4 mit FS "Polarstern" 1989" von Rainer Gersonde und Gotthilf Hempel Heft Nr. 75/1991 – "Quartäre Sedimentationsprozesse am Kontinentalhang des Süd-Orkey-Plateaus im nordwestlichen Weddellmeer (Antarktis)", von Sigrun Grünig Heft Nr. 76/1990 – "Ergebnisse der faunistischen Arbeiten im Benthal von King George Island (Südshetlandinseln, Antarktis)", von Martin Rauschert Heft Nr. 77/1990 – "Verteilung von Mikroplankton-Organismen nordwestlich der Antarktischen Halbinsel unter dem Einfluß sich ändernder Umweltbedingungen im Herbst", von Heinz Klöser Heft Nr. 78/1991 – "Hochauflösende Magnetostratigraphie spätquartärer Sedimente arktischer Meeresgebiete", von Norbert R. Nowaczyk Meeresgebiete", von Norbert R. Nowaczyk Heft Nr. 79/1991 – "Ökophysiologische Untersuchungen zur Salinitäts- und Temperaturtoleranz antarktischer Grünalgen unter besonderer Berücksichtigung des β-Dimethylsulfoniumpropionat (DMSP) - Stoffwechsels", von Ulf Karsten Heft Nr. 80/1991 – "Die Expedition ARKTIS VII/1 mit FŠ, Polarstern' 1990", herausgegeben von Jörn Thiede und Gotthilf Hempel Heft Nr. 81/1991 – "Paläoglaziologie und Paläozeanographie im Spätquartär am Kontinentalrand des südlichen Weddelmeeres, Antarktis", von Martin Melles Heft Nr. 82/1991 – "Quantifizierung von Chlorophyll- und Salzgehaltsverteilungen", von Hajo Eicken Heft Nr. 83/1991 – "Das Fließen von Schelfeisen - numerische Simulationen Heft Nr. 83/1991 – "Das Fließen von Schelfeisen - numerische Simulationen mit der Metholde der finiten Differenzen", von Jürgen Determann mit der Metholde der finiten Differenzen", von Jürgen Determann Heft Nr. 84/1991 – "Die Expedition ANTARKTIS-VIII/1-2, 1989 mit der Winter Weddell Gyre Study der Forschungsschifte "Polarstern" und "Akademik Fedorov", von Ernst Augstein, Nikolai Bagriantsev und Hans Werner Schenke Heft Nr. 85/1991 – "Zur Entstehung von Unterwassereis und das Wachstum und die Energiebilanz des Meereises in der Atka Bucht, Antarktis", von Josef Kipfstuhl Heft Nr. 86/1991 – "Die Expedition ANTARKTIS-VIII mit FS, Polarstern' 1989/90. Bericht vom Fahrtabschnitt ANT-VIII/5", von Heinz Miller und Hans Oerter Heft Nr. 87/1991 – "Scientific cruise reports of Arctic expeditions ARK VI/1-4 of RV 'Polarstern' in 1989", edited by G. Krause, J. Meincke & H. J. Schwarz Heft Nr. 88/1991 – Zur Lebensneschichte dominanter Copepodenarten (*Calanus finmarchicus*.

Heft Nr. 88/1991 - "Zur Lebensgeschichte dominanter Copepodenarten (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa) in der Framstraße", von Sabine Diel

Heft Nr. 89/1991 – "Detaillierte seismische Untersuchungen am östlichen Kontinentalrand des Weddell-Meeres vor Kapp Norvegia, Antarktis", von Norbert E. Kaul Heft Nr. 90/1991 – "Die Expedition ANTARKTIS-VIII mit FS "Polarstern' 1989/90. Bericht von den Fahrtabschnitten ANT-VIII/6-7", herausgegeben von Dieter Karl Fütterer vor den Schware. und Otto Schrems Heft Nr. 91/1991 – "Blood physiology and ecological consequences in Weddell Sea fishes (Antarctica)", by Andreas Kunzmann by Andreas Kunzmann Heft Nr. 92/1991 – "Zur sommerlichen Verteilung des Mesozooplanktons im Nansen-Becken, Nordpolarmeer", von Nicolai Mumm Heft Nr. 93/1991 – "Die Expedition ARKTIS VII mit FS "Polarstern", 1990. Bericht vom Fahrtabschnitt ARK VII/2", herausgegeben von Gunther Krause Heft Nr. 94/1991 – "Die Entwicklung des Phytoplanktons im östlichen Weddellmeer (Antarktis) beim Übergang vom Spätwinter zum Frühjahr", von Renate Scharek Heft Nr. 95/1991 – "Radioisotopenstratigraphie, Sedimentologie und Geochemie jungquartärer Sedimente des östlichen Arktischen Ozeans", von Horst Bohrmann Neth Nr. 96/1991 Heft Nr. 96/1991 - "Holozäne Sedimentationsentwicklung im Scoresby Sund, Ost-Grönland", von Peter Marienfeld Von Peter Marienieio Heft Nr. 97/1991 – "Strukturelle Entwicklung und Abkühlungsgeschichte von Heimefrontfjella (Westliches Dronning Maud Land/Antarktika)", von Joachim Jacobs Heft Nr. 98/1991 – "Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca)", von Angelika Brandt Heft Nr. 99/1992 – "The Antarctic ice sheet and environmental change: a three-dimensional Heft Nr. 99/1992 – "The Antarctic ice sheet and environmental change: a three-dimensional modelling study", by Philippe Huybrechts Heft Nr. 100/1992 – "Die Expeditionen ANTARKTIS IX/1-4 des Forschungsschiffes "Polarstern" 1990/91" herausgegeben von Ulrich Bathmann, Meinhard Schulz-Baldes, Eberhard Fahrbach, Victor Smetacek und Hans-Wolfgang Hubberten Heft Nr. 101/1992 – "Wechselbeziehungen zwischen Schwermetaltkonzentrationen (Cd, Cu, Pb, Zn) im Meerwasser und in Zooptanktonorganismen (Copepoda) der Arktis und des Atlantiks", von Christa Pohl Heft Nr. 102/1992 – Physiologie und Ultrastruktur der antarktischen Grünzing Arktis und des Atlantiks", von Christa Pohl Heft Nr. 102/1992 – "Physiologie und Ultrastruktur der antarktischen Grünalge Prasiola crispa ssp. antarctica unter osmotischem Streß und Austrocknung", von Andreas Jacob Heft Nr. 103/1992 – "Zur Ökologie der Fische im Weddellmeer", von Gerd Hubold Heft Nr. 104/1992 – "Mehrkanalige adaptive Filter für die Unterdrückung von multiplen Reflexionen in Verbindung mit der freien Oberläche in marinen Seismogrammen", von Andreas Rosenberger Heft Nr. 105/1992 – "Radiation and Eddy Flux Experiment 1991 (*REFLEX I)*", von Jörg Hartmann, Christoph Kottmeier und Christian Wamser Heft Nr. 105/1992 – "Ostracoden im Epipelagial vor der Antarktischen Halbinsel - ein Beitrag zur Systematik sowie zur Verbreitung und Populationsstruktur unter Berücksichtigung der Saisonalität", von Rüdiger Kock Heft Nr. 107/1992 – ARCTIC '91. Die Expedition ABK-VIII/3 mit ES. Polaretarer' 1991" Vol Hudiger Nock Heft Nr. 107/1992 – "ARCTIC '91: Die Expedition ARK-VIII/3 mit FS "Polarstern' 1991", von Dieter K. Fütterer Heft Nr. 108/1992 – "Dehnungsbeben an einer Störungszone im Ekström-Schelfeis nördlich der Georg-von-Neumayer-Station, Antarktis. – Eine Untersuchung mit seismologischen und geodätischen Methoden", von Uwe Nixdorf. Heft Nr. 109/1992 – "Spätquartäre Sedimentation am Kontinentalrand des südöstlichen Weddellmeeres, Antarktis", von Michael Weber. Heft Nr. 110/1992 – "Sedimentfazies und Bodenwasserstrom am Kontinentalhang des norwestlichen Weddellmeeres", von Isa Brehme. Heft Nr. 111/1992 - "Die Lebensbedingungen in den Solekanälchen des antarktischen Meereises", Von Jürgen Weissenberger. Heft Nr. 112/1992 – "Zur Taxonomie von rezenten benthischen Foraminiferen aus dem Nansen Becken, Arktischer Ozean", von Jutta Wollenburg. Heft Nr. 113/1992 – "Die Expedition ARKTIS VIII/1 mit FS "Polarstern" 1991", herausgegeben von Gerhard Kattner. Heft Nr. 114/1992 – "Die Gründungsphase deutscher Polarforschung, 1865 - 1875", von Reinhard A. Krause. von Reinhard A. Krause.
Heft Nr. 115/1992 – "Scientific Cruise Report of the 1991 Arctic Expedition ARK VIII/2 of RV 'Polarstern' (EPOS II)", by Eike Rachor.
Heft Nr. 115/1992 – "The Meteorological Data of the Georg-von-Neumayer-Station (Antarctica) for 1988, 1989, 1990 and 1991", by Gert König-Langlo.
Heft Nr. 117/1992 – "Petrogenese des metamorphen Grundgebirges der zentralen Heimefrontfjella (westliches Dronning Maud Land / Antarktils)", von Peter Schulze.
Heft Nr. 118/1993 – "Die mafischen Gänge der Shackleton Range / Antarktika: Petrographie, Geochemie, Isotopengeochemie und Paläomagnetik", von Rüdiger Hotten.
Heft Nr. 119/1993 – "East Siberian Arctic Region Expedition '92: The Laptev Sea - its Significance for Arctic Sea-Ice Formation and Transpolar Sediment Flux", by D. Dethleff, D. Nürnberg, E. Reimnitz, M. Saarso and Y. P. Sacchenko. – "Expedition to Novaja Zemlja and Franz Josef Land with RV. 'Dalnie Zelentsy", by D. Nürnberg and E. Groth.

 Heft Nr. 121/1993 – "Die Expedition ANTARKTIS X/3 mit FS "Polarstern' 1992", herausgegeben von Michael Spindler, Gerhard Dieckmann und David Thomas
 Heft Nr. 122/1993 – "Die Beschreibung der Korngestalt mit Hilfe der Fourier-Analyse: Parametrisierung der morphologischen Eigenschaften von Sedimentpartikeln", von Michael Diepenbroek.
 Heft Nr. 123/1993 – "Zerstörungsfreie hochauflösende Dichteuntersuchungen mariner Sedimente", von Schwatzen und Sedimenter", von Sedimenter ("Sedimenter") von Sebastian Gerland. Heft Nr. 124/1993 – "Umsatz und Verteilung von Lipiden in arktischen marinen Organismen unter besonderer Berücksichtigung unterer trophischer Stufen", von Martin Graeve. Heft Nr. 125/1993 – "Ökologie und Respiration ausgewählter arktischer Bodenfischarten", von Christian F. von Dorrien. Neft Nr. 127/1993 – "Quantitative Bestimmung von Paläoumweltparametern des Antarktischen Oberllächenwassers im Spätquartier anhand von Transferfunktionen mit Diatomeen", von Ulrich Zielinski Heft Nr. 127/1993 – "Sedimenttransport durch das arktische Meereis: Die rezente lithogene und biogene Materialfracht", von Ingo Wollenburg. Heft Nr. 128/1993 – "Cruise ANTARKTIS X/3 of RV 'Polarstern': CTD-Report", von Marek Zwierz. Heft Nr. 129/1993 – "Reproduktion und Lebenszyklen dominanter Copepodenarten aus dem Weddellmeer, Antarktis", von Frank Kurbjeweit Wedueinneel, Antarias, Voi Frank Kubgeveit Heft Nr. 190/1993 – "Untersuchungen zu Temperaturregime und Massenhaushalt des Filchner-Ronne-Schelfeises, Antarktis, unter besonderer Berücksichtigung von Anfrier- und Abschmelzprozessen", von Klaus Grosfeld Heft Nr. 131/1993 – "Die Expedition ANTARKTIS X/5 mit FS "Polarstern" 1992", herausgegeben von Rainer Gersonde Heft Nr. 132/1993 – "Bildung und Abgabe kurzkettiger halogenierter Kohlenwasserstoffe durch Makroalgen der Polarregionen", von Frank Laturnus Heft Nr. 133/1994 – "Radiation and Eddy Flux Experiment 1993 (*REFLEX II*)", by Christoph Kottmeier, Jörg Hartmann, Christian Wamser, Axel Bochert, Christof Lüpkes, Dietmar Freese and Wolfgang Cohrs Heft Nr. 134/1994 - "The Expedition ARKTIS-IX/1", edited by Hajo Eicken and Jens Meincke Hert Nr. 13/1994 – "The Expedition ARK ITS-IX/1", edited by Hajo Ecken and Jens Meincke Heft Nr. 135/1994 – "Die Expeditionen ANTARKTIS X/6-8", herausgegeben von Ulrich Bathmann, Victor Smetacek, Hein de Baar, Eberhard Fahrbach und Gunter Krause Heft Nr. 136/1994 – "Untersuchungen zur Ernährungsökologie von Kaiserpinguinen (Apteriodytes forsteri) und Königspinguinen (Apteriodytes patagonicus)", von Klemens Pütz Heft Nr. 137/1994 – "Die Känozoische Vereisungsgeschichte der Antarktis", von Werner U. Ehrmann Neth Nr. 137/1994 – "Litersuchungen etnehembergeschichte der Antarktis", von Werner U. Ehrmann Heft Nr. 138/1994 – "Untersuchungen stratosphärischer Aerosole vulkanischen Ursprungs und polarer stratosphärischer Wolken mit einem Mehrwellenlängen-Lidar auf Spitzbergen (79° N, 12° E)", von Georg Beyerle Voli Georg Beyerie Heft Nr. 139/1994 – "Charakterisierung der Isopodenfauna (Crustacea, Malacostraca) des Scotia-Bogens aus biogeographischer Sicht: Ein multivariater Ansatz", von Holger Winkler. Heft Nr. 140/1994 – "Die Expedition ANTARKTIS X/4 mit FS "Polarstern" 1992", herausgegeben von Peter Lemke Heft Nr. 141/1994 – "Satellitenaltimetrie über Eis – Anwendung des GEOSAT-Altimeters über dem Hert Nr. 14/1994 – "Joalemientalmente due" Lis – Anwendung des GEOGRAfahmeters due dem Ekströmisen, Antarktis", von Clemens Heidland Heft Nr. 142/1994 – "The 1993 Northeast Water Expedition. Scientific cruise report of RV 'Polartstern' Arctic cruises ARK IX/2 and 3, USCG 'Polar Bear' cruise NEWP and the NEWLand expedition", edited by Hans-Jürgen Hirche and Gerhard Kattner Heft Nr. 143/1994 - "Detaillierte refraktionsseismische Untersuchungen im inneren Scoresby Sund Ost-Grönland", von Notker Fechner Heft Nr. 144/1994 - "Russian-German Cooperation in the Siberian Shelf Seas: Geo-System Laptev Sea", edited by Heidemarie Kassens, Hans-Wolfgang Hubberten, Sergey M. Pryamikov and Rüdiger Stein Heft Nr. 145/1994 – "The 1993 Northeast Water Expedition. Data Report of RV ,Polarstern' Arctic Cruises IX/2 and 3", edited by Gerhard Kattner and Hans-Jürgen Hirche. Heft Nr. 146/1994 – "Radiation Measurements at the German Antarctic Station Neumayer Heft Nr. 146/1994 – "Hadiation Measurements at the German Antarctic Station Neumayer 1982 - 1992", by Torsten Schmidt and Gerd König-Langlo.
Heft Nr. 147/1994 – "Krustenstrukturen und Verlauf des Kontinentalrandes im Weddell-Meer / Antarktis", von Christian Hübscher.
Heft Nr. 148/1994 – "The expeditions NORILSK/TAYMYR 1993 and BUNGER OASIS 1993/94 of the AWI Research Unit Potsdam", edited by Martin Melles.
** Heft Nr. 149/1994 – "Die Expedition ARCTIC '93. Der Fahrtabschnitt ARK-IX/4 mit FS, Polarstern' 1993", herausgegeben von Dieter K. Fütterer.
Heft 150/1994 – Der Everlahedard der Purgszeils-Pirguine: eine Sunnse" von Boris M. Heft Nr. 150/1994 – "Der Energiebedarl der Pygoscells-Pinguine: eine Synopse", von Boris M. Culik. Heft Nr. 151/1994 – "Russian-German Cooperation: The Transdrift I Expedition to the Laptev Sea", edited by Heidemarie Kassens and Valeriy Y. Karpiy. Heft Nr. 152/1994 – Die Expedition ANTAR/TIS-X mit FS "Polarstern' 1992. Bericht von den Fahrtabschnitten / ANT-X / 1a und 2", herausgegeben von Heinz Miller. Heft Nr. 153/1994 – "Aminosäuren und Huminstoffe im Stickstoffkreislauf polarer Meere", von Ulrike Hubberten. Heft Nr. 154/1994 – "Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea", by Claudio Richter.

Heft Nr. 155/1995 - "Benthos in polaren Gewässern", herausgegeben von Christian Wiencke und Wolf Arntz. Heft Nr. 156/1995 – "An adjoint model for the determination of the mean oceanic circulation, air-sea fluxes and mixing coefficients", by Reiner Schlitzer. Heft Nr. 157/1995 - "Biochemische Untersuchungen zum Lipidstoffwechsel antarktischer Copepoden", von Kirsten Fahl. Heft Nr. 158/1995 - "Die Deutsche Polarforschung seit der Jahrhundertwende und der Einfluß Erich von Drygalskis", Cornelia Lüdecke Heft Nr. 159/1995 - "The distribution of ∂"O in the Arctic Ocean: Implications for the freshwater balance of the halocline and the sources of deep and bottom waters", by Dorothea Bauch. Heft Nr. 160/1995 – "Rekonstruktion der spätquartären Tiefenwasserzirkulation und Produktivität im östlichen Südatlantik anhand von benthischen Foraminiferenvergesellschaftungen", von Gerhard Schmiedl. Heft Nr. 161/1995 – "Der Einfluß von Salinität und Lichtintensität auf die Osmolytkonzentrationen, die Zellvolumina Heft Nr. 161/1995 – "Der Einfluß von Salinität und Lichtintensität auf die Osmolytkonzentrationen, die Zellvolumina und die Wachstumsraten der antarktischen Eisdiatomeen Chaetoceros sp. und Navicula sp. unter besonderer Berücksichtigung der Aminosäure Prolin", von Jürgen Nothnagel. Heft Nr. 162/1995 – "Meereistransportiertes lithogenes Feinmaterial in spätquartären Tiefseesedimenten des zentralen östlichen Arktischen Ozeans und der Framstraße", von Thomas Letzig. Heft Nr. 163/1995 – "Die Expedition ANTARKTIS-XI/2 mit FS "Polarstern" 1993/94", herausgegeben von Rainer Gersonde. Heft Nr. 163/1995 – "Regionale und altersabhängige Variation gesteinsmagnetischer Parameter in marinen Sedimenten der Arktis", von Thomas Frederichs. Heft Nr. 165/1995 – "Vorkommen, Verteilung und Umsatz biogener organischer Spurenstoffe: Sterole in antarktischen Gewässern", von Georg Hanke. Gewässern", von Georg Hanke. Heft Nr. 166/1995 – "Vergleichende Untersuchungen eines optimierten dynamisch-thermodynamischen Meereismodells mit Beobachtungen im Weddellmeer", von Holger Fischer. Heft Nr. 167/1995 – "Rekonstruktionen von Paläo-Umweltparametern anhand von stabilen Isotopen und Faunen-Vergesellschaftungen planktischer Foraminiferen im Südatlantik", von Hans-Stefan Niebler Heft Nr. 168/1995 – "Die Expedition ANTARTIS XII mit FS. Polarstern" 1993/94. Bericht von den Fahrtabschnitten ANT XII/1 und 2", herausgegeben von Gerhard Kattner und Dieter Karl Fütterer Heft Nr. 169/1995 – "Medizinische Untersuchung zur Circadianrhythmik und zum Verhalten bei Überwinterern auf einer antarktischen Forschungsstation", von Hans Wortmann Heft-Nr. 170/1995 – DFG-Kollooujum: Terrestrische Geowissenschaften – Geologie und Geophysik der Antarktis. Heft-Nr. 170/1995 - DFG-Kolloquium: Terrestrische Geowissenschaften - Geologie und Geophysik der Antarktis. Heft Nr. 171/1995 - "Strukturentwicklung und Petrogenese des metamorphen Grundgebirges der nördlichen Heimfrontfjella (westliches Dronning Maud Land/Antarktika)", von Wilfried Bauer. Hert Nr. 172/1995 – "Die Strukturg der Erdkruste im Bereich des Scoresby Sund, Ostgrönland: Ergebnisse refraktionsseismischer und gravimetrischer Untersuchungen", von Holger Mandlei Heft Nr. 173/1995 – "Palaozoische Akkretion am palaopazifischen Kontinentalrand der Antarktis in Nordvictorialand – P-T-D-Geschichte und Deformationsmechanismen im Bowers Terrane", von Stefan Matzer. Heft Nr. 173/1995 – "The Expedition ARKTIS-X/2 of RV 'Polarstern' in 1994", edited by Hans-W. Hubberten Heft Nr. 175/1995 – "Russian-German Cooperation: The Expedition TAYMYR 1994", edited by Christine Siegert and Gmitry Bolshiyanov. Heft Nr. 176/1995 - "Russian-German Cooperation: Laptev Sea System", edited by Heidemarie Kassens, Dieter Piepenburg, Jörn Thiede, Leonid Timokhov, Hans-Wolfgang Hubberten and Sergey M. Priamikov. Heft Nr. 177/1995 – "Organischer Kohlenstoff in spätquartären Sedimenten des Arktischen Ozeans: Terrigener Eintrag und marine Produktivität", von Carsten J. Schubert Heft Nr. 178/1995 – "Cruise ANTARKTIS XII/4 of RV 'Polarstern' in 1995: CTD-Report", by Júri Sildam. Heft Nr. 179/1995 – "Benthische Foraminiferenfaunen als Wassermassen-, Produktions- und Eisdriftanzeiger im Arkti-schen Ozean", von Jutta Wollenburg. Heft Nr. 180/1995 – "Biogenopal und biogenes Barium als Indikatoren für spätquartäre Produktivitätsänderungen am antarktischen Kontinentalhang, atlantischer Sektor", von Wolfgang J. Bonn. Heft Nr. 181/1995 - "Die Expedition ARKTIS X/1 des Forschungsschilfes "Polarstern' 1994", herausgegeben von Eberhard Fahrbach. Hert Nr. 182/1995 – "Lantev Sea System: Expeditions in 1994", edited by Heidemarie Kassens. Heft Nr. 183/1996 – "Interpretation digitaler Parasound Echolotaufzeichnungen im östlichen Arktischen Ozean auf der Grundlage physikalischer Sedimenteigenschaften", von Uwe Bergmann. Heft Nr. 184/1996 – "Distribution and dynamics of inorganic nitrogen compounds in the troposphere of continental, coastal, marine and Arctic areas", by Maria Dolores Andrés Hernández. Hett Nr. 185/1996 – ""Verbreitung und Lebensweise der Aphroditen und Polynoiden (Polychaeta) im östlichen Weddell-meer und im Lazarevmeer (Antarktis)", von Michael Stiller. Hett Nr. 186/1996 – "Reconstruction of Late Quaternary environmental conditions applying the natural radionuclides "arth, "Be,"Pa and "article article a Heft Nr. 187/1996 - "The Meteorological Data of the Neumayer Station (Antarctica) for 1992, 1993 and 1994", by Gert König-Langlo and Andreas Herber.

Heft Nr. 188/1996 – "Die Expedition ANTARKTIS-XI/3 mit FS "Polarstern' 1994", herausgegeben von Heinz Miller und Hannes Grobe.

Heft Nr. 189/1996 - "Die Expedition ARKTIS-VII/3 mit FS ,Polarstern' 1990", herausgegeben von Heinz Miller und Hannes Grobe

Heft Nr. 191/1996 - "Leitfähigkeits- und Dichtemessung an Eisbohrkernen", von Frank Wilhelms. Heft Nr. 192/1996 - "Photosynthese-Charakteristika und Lebensstrategie antarktischer Makroalgen", von Gabriele Weykam. Heft Nr. 193/1996 – "Heterogene Reaktionen von N₂O₅ und Hbr und ihr Einfluß auf den Ozonabbau in der polaren Stratosphäre", von Sabine Seisel. Heft Nr. 194/1996 - "Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata)" von Corinna Dahm Heft Nr. 195/1996 - "Die planktische Foraminifere Neogloboguadrina pachyderma (Ehrenberg) im Weddellmeer, Antarktis", von Doris Berberich. Heft Nr. 196/1996 – "Untersuchungen zum Beitrag chemischer und dynamischer Prozesse zur Variabilität des stratosphärischen Ozons über der Arktis", von Birgit Heese Heft Nr. 197/1996 – "The Expedition ARKTIS-XI/2 of 'Polarstern' in 1995", edited by Gunther Krause. Heft Nr. 198/1996 - "Geodynamik des Westantarktischen Riftsystems basierend auf Apatit-Spaltspuranalysen", von Frank Lisker Hert Nr. 199/1996 – "The 1993 Northeast Water Expedition. Data Report on CTD Measurements of RV 'Polarstern' Cruises ARKTIS IX/2 and 3", by Gerion Budéus and Wolfgang Schneider. Heft Nr. 200/1996 - "Stability of the Thermohaline Circulation in analytical and numerical models", by Gerrit Lohmann. Heft Nr. 201/1996 – Trophische Beziehungen zwischen Makroalgen und Herbivoren in der Potter Cove (King George-Insel, Antarktis)", von Katrin Iken. Heft Nr. 202/1996 – "Zur Verbreitung und Respiration ökologisch wichtiger Bodentiere in den Gewässern um Svalbard (Arktis)", von Michael K. Schmid. Heft Nr. 203/1996 – "Dynamik, Rauhigkeit und Alter des Meereises in der Arktis – Numerische Untersuchungen mit einem großskaligen Modell", von Markus Harder. Heft Nr. 204/1996 – "Zur Parametrisierung der stabilen atmosphärischen Grenzschicht über einem antarktischen Schelfeis", von Dörthe Handorf. Heft Nr. 205/1996 - "Textures and fabrics in the GRIP ice core, in relation to climate history and ice deformation", by Thorsteinn Thorsteinsson. Professional involuent soon.
Heft Nr. 206/1996 – "Der Ozean als Teil des gekoppelten Klimasystems: Versuch der Rekonstruktion der glazialen Zirkulation mit verschieden komplexen Atmosphärenkomponenten", von Kerstin Fieg. Heft Nr. 207/1996 – "Lebensstrategien dominanter antarktischer Olthonidae (Cyclopoida, Copepoda) und Oncaeidae (Poecilostomatoida, Copepoda) im Bellingshausenmeer", von Cornelia Metz. Heft Nr. 208/1996 – "Atmosphäreneinfluß bei der Fernerkundung von Meereis mit passiven Mikrowellenradiometern", von Christoph Oelke.

Heft Nr. 190/1996 - "Cruise report of the Joint Chilean-German-Italian Magellan ,Victor Hensen' Campaign in 1994", edited by Wolf Arntz and Matthias Gorny.

Heft Nr. 209/1996 - Klassifikation von Radarsatellitendaten zur Meereiserkennung mit Hilfe von Line-Scanner-Messungen", von Axel Bochert.

Heft Nr. 210/1996 – "Die mit ausgewählten Schwämmen (Hexactinellida und Demospongiae) aus dem Weddellmeer, Antarktis, vergesellschaftete Fauna", von Kathrin Kunzmann.

Heft Nr. 211/1996 - "Russian-German Cooperation: The Expedition TAYMYR 1995 and the Expedition KOLYMA 1995", by Dima Yu. Bolshiyanov and Hans-W. Hubberten.

Heft Nr, 212/1996 - "Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin", by Ruediger Stein, Gennadij I. Ivanov, Michael A. Levitan, and Kirsten Fahl. Heft Nr. 213/1996 – "Gonadenentwicklung und Eiproduktion dreier Calanus-Arten (Copepoda): Freilandbeobachtungen, Histologie und Experimente", von Barbara Niehoff

Heft Nr. 214/1996 - "Numerische Modellierung der Übergangszone zwischen Eisschild und Eisschelf", von Christoph Maver

Heft Nr. 215/1996 - "Arbeiten der AWI-Forschungsstelle Potsdam in Antarktika, 1994/95", herausgegeben von Ulrich Wand,

Heft_Nr. 216/1996 – "Rekonstruktion quartärer Klimaänderungen im atlantischen Sektor des Südpolarmeeres anhand von Radiolarien", von Uta Brathauer.

Von Hadiolarien", von Uta Brainauer. Heft Nr. 217/1996 – "Adaptive Semi-Lagrange-Finite-Elemente-Methode zur Lösung der Flachwassergleichungen: Implementerung und Parallelisierung", von Jörn Behrens. Heft Nr. 218/1997 – "Radiation and Eddy Flux Experiment 1995 (REFLEX III)", by Jörg Hartmann, Axel Bochert, Dietmar Freese, Christoph Kottmeier, Dagmar Nagel and Andreas Reuter.

Heft Nr. 219/1997 - "Die Expedition ANTARKTIS-XII mit FS "Polarstern" 1995. Bericht vom Fahrtabschnitt ANT-XII/3, herausgegeben von Wilfried Jokat und Hans Oerter.

Heft Nr. 220/1997 – "Ein Beitrag zum Schwerefeld im Bereich des Weddellmeeres, Antarktis. Nutzung von Altimetermessungen des GEOSAT und ERS-1", von Tilo Schöne.

Heft Nr. 221/1997 – "Die Expeditionen ANTARKTIS-XIII/1-2 des Forschungsschiffes ,Polarstern' 1995/96", herausgegeben von Ülrich Bathmann, Mike Lukas und Victor Smetacek.

Heft Nr. 222/1997 - "Tectonic Structures and Glaciomarine Sedimentation in the South-Eastern Weddell Sea from Seismic Reflection Data", by László Oszkó.

Heft Nr. 223/1997 - "Bestimmung der Meereisdicke mit seismischen und elektromagnetisch-induktiven Verfahren", von Christian Haas

Heft Nr. 224/1997 - "Troposphärische Ozonvariationen in Polarregionen", von Silke Wessel

Heft Nr. 225/1997 - "Biologische und ökologische Untersuchungen zur kryopelagischen Amphipodenfauna des arktischen Meereises", von Michael Poltermann.

Heft Nr. 226/1997 - "Scientific Cruise Report of the Arctic Expedition ARK-XI/1 of RV 'Polarstern' in 1995" edited by Eike Bachor

Heft Nr. 227/1997 – "Der Einfluß kompatibler Substanzen und Kryoprotektoren auf die Enzyme Malatdehydrogenase (MDH) und Glucose-6-phosphat-Dehydrogenase (G6P-DH) aus Acrosiphonia arcta (Chlorophyta) der Arktis", von Katharina Kück,

Heft Nr. 228/1997 - "Die Verbreitung epibenthischer Mollusken im chilenischen Beagle-Kanal", von Katrin Linse. Heft Nr. 229/1997 - Das Mesozooplankton im Laptevmeer und östlichen Nansen-Becken - Verteilung und Gemeinschaftsstrukturen im Spätsommer", von Hinrich Hanssen

Heft Nr. 230/1997 - "Modell eines adaptierbaren, rechnergestützten, wissenschaftlichen Arbeitsplatzes am Alfred-Wegener-Institut für Polar- und Meeresforschung", von Lutz-Peter Kurdelski

Heft Nr. 231/1997 – "Zur Ökologie arktischer und antarktischer Fische: Aktivität, Sinnesleistungen und Verhalten", von Christopher Zimmermann

Heft Nr. 232/1997 - "Persistente chlororganische Verbindungen in hochantarktischen Fischen", von Stephan Zimmermann

Von Stephan Zinitriermanni Heft Nr. 233/1997 – "Zur Ökologie des Dimethylsulfoniumpropionat (DMSP)-Gehaltes temperierter und polarer Phytoplanktongemeinschaften im Vergleich mit Laborkulturen der Coccolithophoride *Emiliania huxleyi* und der antarkti-schen Diatomee Nitzschia lecointel", von Doris Meyerdierks. Heft Nr. 234/1997 – "Die Expedition ARCTIC '96 des FS "Polarstern" (ARK XIII) mit der Arctic Climate System Study (ACC/CVI) und Erzer Underschieden und State S

(ACSYS)", von Ernst Augstein und den Fahrtteilnehmern.

Heft Nr. 235/1997 – "Polonium-210 und Blei-219 im Südpolarmeer: Natürliche Tracer für biologische und hydrographische Prozesse im Oberflächenwasser des Antarktischen Zirkumpolarstroms und des Weddellmeeres", von Jana Friedrich

Heft Nr. 236/1997 – "Determination of atmospheric trace gas amounts and corresponding natural isotopic ratios by means of ground-based FTIR spectroscopy in the high Arctic", by Arndt Meier.

Heft Nr. 237/1997 – "Flussian-German Cooperation: The Expedition TAYMYR/SEVERNAYA ZEMLYA 1996", edited by Martin Melles, Birgit Hagedorn and Dmitri Yu. Bolshiyanov

Heft Nr. 238/1997 - "Life strategy and ecophysiology of Antarctic macroalgae", by Iván M. Gómez.

Heft Nr. 239/1997 – "Die Expedition ANTARKTIS XIII/4-5 des Forschungsschiffes "Polarstern' 1996", herausgegeben von Eberhard Fahrbach und Dieter Gerdes.

Heft Nr. 240/1997 - "Untersuchungen zur Chrom-Speziation in Meerwasser, Meereis und Schnee aus ausgewählten Gebieten der Arktis", von Heide Giese. Hert Nr. 24/11/997 - "Late Quaternary glacial history and paleoceanographic reconstructions along the East Greenland continental margin: Evidence from high-resolution records of stable isotopes and ice-rafted debris", by Seung-II Nam.

Heft Nr. 242/1997 - "Thermal, hydrological and geochemical dynamics of the active layer at a continuous permafrost site,

Taymyr Peninsula, Siberia", by Julia Boike. Heft Nr. 243/1997 - "Zur Paläoozeanographie hoher Breiten: Stellvertreterdaten aus Foraminiferen",

ndreas Mackensen.

Heft Nr. 244/1997 – "The Geophysical Observatory at Neumayer Station, Antarctica, Geomagnetic and seismological observations in 1995 and 1996", by Alfons Eckstaller, Thomas Schmidt, Viola Graw, Christian Müller and Johannes Rogenhagen.

Heft Nr. 245/1997 - "Temperaturbedarf und Biogeographie mariner Makroalgen - Anpassung mariner Makroalgen an tiefe Temperaturen, von Bettina Bischoff-Bäsmann.

Heft Nr. 246/1997 - "Ökologische Untersuchungen zur Fauna des arktischen Meereises", von Christine Friedrich.

Heft Nr. 247/1997 - "Entstehung und Modifizierung von marinen gelösten organischen Substanzen", von Berit Kirchhoff.

Heft Nr. 248/1997 – "Laptev Sea System: Expeditions in 1995", edited by Heidemarie Kassens. Heft Nr. 249/1997 – "The Expedition ANTARKTIS XIII/3 (EASIZ I) of RV 'Polarstern' to the eastern Weddell Sea in 1996", edited by Wolf Arntz and Julian Gutt.

Heft Nr. 250/1997 – "Vergleichende Untersuchungen zur Ökologie und Biodiversität des Mega-Epibenthos der Arktis und Antarktis", von Adreas Starmans.

Heft Nr. 251/1997 – "Zeitliche und räumliche Verteilung von Mineralvergesellschaftungen in spätquartären Sedimenten des Arktischen Ozeans und ihre Nützlichkeit als Klimaindikatoren während der Glazial/Interglazial-Wechsel", von Christoph Vogt.

Heft Nr. 252/1997 - "Solitäre Ascidien in der Potter Cove (King George Island, Antarktis). Ihre ökologische Bedeutung und Populationsdynamik", von Stephan Kühne.

Heft Nr. 253/1997 - "Distribution and role of microprotozoa in the Southern Ocean", by Christine Klaas.

Heft Nr. 254/1997 - "Die spätquartäre Klima- und Umweltgeschichte der Bunger-Oase, Ostantarktis", von Thomas Kulbe

Heft Nr. 255/1997 - "Scientific Cruise Report of the Arctic Expedition ARK-XIII/2 of RV 'Polarstern' in 1997", edited by Ruediger Stein and Kirsten Fahl. Heft Nr. 256/1998 - Das Radionuklid Tritium im Ozean: Meßverfahren und Verteilung von Tritium im Südatlantik und im Weddellmeer", von Jürgen Sültenfuß. Heft Nr. 257/1998 - "Untersuchungen der Saisonalität von atmosphärischem Dimethylsulfid in der Arktis und Antarktis", von Christoph Kleefeld Heft Nr. 258/1998 - "Bellingshausen- und Amundsenmeer: Entwicklung eines Sedimentationsmodells", von Frank-Oliver Nitsche. Heft Nr. 259/1998 - "The Expedition ANTARKTIS-XIV/4 of RV 'Polarstern' in 1997", by Dieter K. Fütterer. Heft Nr. 260/1998 - "Die Diatomeen der Laptevsee (Arktischer Ozean): Taxonomie und biogeographische Verbreitung", von Holger Cremer Heft Nr. 261/1998 – "Die Krustenstruktur und Sedimentdecke des Eurasischen Beckens, Arktischer Ozean: Resultate aus seismischen und gravimetrischen Untersuchungen", von Estella Weigelt. Heft Nr. 262/1998 - "The Expedition ARKTIS-XIII/3 of RV 'Polarstern' in 1997", by Gunther Krause. Heft Nr. 263/1998 – "Thermo-tektonische Entwicklung von Oates Land und der Shackleton Range (Antarktis) basierend auf Spallspuranalysen", von Thorsten Schäfer. Heft Nr. 264/1998 – "Messungen der stratosphärischen Spurengase CIO, HCI, O₃, N₂O, H₂O und OH mittels flugzeugge-tragener Submillimeterweilen Radiometrie", von Joachim Urban. Heft Nr. 265/1998 – "Untersuchungen zu Massenhaushalt und Dynamik des Ronne Ice Shelfs, Antarktis", von Astrid Lambrecht. Heft Nr. 266/1998 – "Scientific Cruise Report of the Kara Sea Expedition of RV 'Akademic Boris Petrov' in 1997", edited by Jens Matthiessen and Oleg Stepanets. Heft Nr. 267/1998 – "Die Expedition ANTARKTIS-XIV mit FS ,Polarstern' 1997. Bericht vom Fahrtabschnitt ANT-XIV/3", herausgegeben von Wilfried Jokat und Hans Oerter. Heft Nr. 268/1998 – "Numerische Modellierung der Wechselwirkung zwischen Atmosphäre und Meereis in der arktischen Eisrandzone", von Gerit Birnbaum. Heft Nr. 269/1998 - "Katabatic wind and Boundary Layer Front Experiment around Greenland (KABEG '97)", by Günther Heinemann. Heft Nr. 270/1998 - "Architecture and evolution of the continental crust of East Greenland from integrated geophysical studies", by Vera Schlindwein. Heft Nr. 271/1998 – "Winter Expedition to the Southwestern Kara Sea - Investigations on Formation and Transport of Turbid Sea-Ice", by Dirk Dethleff, Per Loewe, Dominik Weiel, Hartmut Nies, Gesa Kuhlmann, Christian Bahe and Gennady Tarasov. Heft Nr. 272/1998 - "FTIR-Emissionsspektroskopische Untersuchungen der arktischen Atmosphäre", von Edo Becker. Heft Nr. 273/1998 – "Sedimentation und Tektonik im Gebiet des Agulhas Rückens und des Agulhas Plateaus ("SETA-RAP")", von Gabriele Uenzelmann-Neben. Heft Nr. 274/1998 - "The Expedition ANTARKTIS XIV/2", by Gerhard Kattner. Heft Nr. 275/1998 – "Die Auswirkung der NorthEastWater-Polynya auf die Sedimentation von NO-Grönland und Untersuchungen zur Paläo-Ozeanographie seit dem Mittelweichsel", von Hanne Notholt. Omersuchungen zur Palao-Ozeanographie seit dem Mitterweichsei", von Hanne Notholt. Heft Nr. 276/1998 – "Interpretation und Analyse von Potentialfelddaten im Weddellmeer, Antarktis: der Zerfall des Superkontinents Gondwana", von Michael Studinger. Heft Nr. 277/1998 – "Koordiniertes Programm Antarktisforschung". Berichtskolloquium im Rahmen des Koordinierten Programms "Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten", herausgegeben von Hubert Miller. Heft Nr. 278/1998 – "Messung stratosphärischer Spurengase über Ny-Ålesund, Spitzbergen, mit Hilfe eines bodengebundenen Mikrowellen-Radiometers", von Uwe Raffalski. Heft Nr. 279/1998 – "Arctic Paleo-River Discharge (APARD). A New Research Programme of the Arctic Ocean Science Board (AOSB)", edited by Ruediger Stein. Heft Nr. 280/1998 - "Fernerkundungs- und GIS-Studien in Nordostgrönland" von Friedrich Jung-Rothenhäusler. Heft Nr. 281/1998 – "Rekonstruktion der Oberllächenwassermassen der östlichen Laptevsee im Holozän anhand von aquatischen Palynomorphen", von Martina Kunz-Pirrung. Heft Nr. 282/1998 – "Scavenging of ²⁰¹Pa and ²⁰¹Th in the South Atlantic: Implications for the use of the ²⁰¹Pa/²⁰¹Th ratio as a paleoproductivity proxy", by Hans-Jürgen Walter. Heft Nr. 283/1998 - "Sedimente im arktischen Meereis - Eintrag, Charakterisierung und Quantifizierung", von Frank Lindemann. Heft Nr. 284/1998 - "Langzeitanalyse der antarktischen Meereisbedeckung aus passiven Mikrowellendaten", von Christian H. Thomas Heft Nr. 285/1998 - "Mechanismen und Grenzen der Temperaturanpassung beim Pierwurm Arenicola marina (L.)", on Angela Sommer

. Heft Nr. 286/1998 - "Energieumsätze benthischer Filtrierer der Potter Cove (King George Island, Antarktis)", von Jens Kowalke.

Heft Nr. 287/1998 - "Scientific Cooperation in the Russian Arctic: Research from the Barents Sea up to the Laptev Sea", edited by Eike Rachor.

Heft Nr. 288/1998 - "Alfred Wegener. Kommentiertes Verzeichnis der schriftlichen Dokumente seines Lebens und Wirkens", von Ulrich Wutzke

Heft Nr. 289/1998 - "Retrieval of Atmospheric Water Vapor Content in Polar Regions Using Spaceborne Microwave Radiometry", by Jungang Miao.

Heft Nr. 290/1998 – "Strukturelle Entwicklung und Petrogenese des nördlichen Kristallingürtels der Shackleton Range, Antarktis: Proterozoische und Ross-orogene Krustendynamik am Rand des Ostantarktischen Kratons", von Axel Brommer.

Heft Nr. 291/1998 - "Dynamik des arktischen Meereises - Validierung verschiedener Rheologieansätze für die Anwendung in Klimamodellen", von Martin Kreyscher.

Heft Nr. 292/1998 - "Anthropogene organische Spurenstoffe im Arktischen Ozean, Untersuchungen chlorierter Biphenyle und Pestizide in der Laptevsee, technische und methodische Entwicklungen zur Probenahme in der Arktis und zur Spurenstoffanalyse", von Sven Utschakowski.

Heft Nr. 293/1998 - "Rekonstruktion der spätquartären Klima- und Umweltgeschichte der Schirmacher Oase und des Wohlthat Massivs (Ostantarktika)", von Markus Julius Schwab.

Heft Nr. 294/1998 - "Besiedlungsmuster der benthischen Makrofauna auf dem ostgrönländischen Kontinentalhang", von Klaus Schnack.

Heft Nr. 295/1998 – "Gehäuseuntersuchungen an planktischen Foraminiferen hoher Breiten: Hinweise auf Umweltveränderungen während der letzten 140.000 Jahre", von Harald Hommers.
 Heft Nr. 296/1998 – "Scientific Cruise Report of the Arctic Expedition ARK-XIII/1 of RV 'Polarstern' in 1997", edited by Michael Spindler, Wilhelm Hagen and Dorothea Stübing.

Heft Nr. 297/1998 - "Radiometrische Messungen im arktischen Ozean - Vergleich von Theorie und Experiment",

von Klaus-Peter Johnsen.

Heft Nr. 28/1998 – "Patterns and Controls of CO₂ Fluxes in Wet Tundra Types of the Taimyr Peninsula, Siberia -the Contribution of Soils and Mosses", by Martin Sommerkorn.

Heft Nr. 299/1998 – "The Potter Cove coastal ecosystem, Antarctica. Synopsis of research performed within the frame of the Argentinean-German Cooperation at the Dallmann Laboratory and Jubany Station (Kind George Island, Antarctica, 1991 - 1997)", by Christian Wiencke, Gustavo Ferreyra, Wolf Arntz & Carlos Rinaldi.

Heft Nr. 300/1999 - "The Kara Sea Expedition of RV Akademik Boris Petrov' 1997; First Results of a Joint Russian-German Pilot Study", edited by Jens Matthiessen, Oleg V. Stepanets, Ruediger Stein, Dieter K. Fütterer, and Eric M. Galimov.

Heft Nr. 301/1999 - "The Expedition ANTARKTIS XV/3 (EASIZ II)", edited by Wolf E. Arntz and Julian Gutt.

Heft Nr. 302/1999 – "Sterole im herbstlichen Weddellmeer (Antarktis): Großräumige Verteilung, Vorkommen und Um-satz", von Anneke Mühlebach.

Heft Nr. 303/1999 - "Polare stratosphärische Wolken: Lidar-Beobachtungen, Charakterisierung von Entstehung und Entwicklung", von Jens Biele.

Heft Nr. 304/1999 – "Spätquartäre Paläoumweltbedingungen am nördlichen Kontinentalrand der Barents- und Kara-See. Eine Multi-Parameter-Analyse", von Jochen Knies.

Heft Nr. 305/1999 – "Arctic Radiation and Turbulence Interaction Study (ARTIST)", by Jörg Hartmann, Frank Albers, Stefania Argentini, Axel Bochert, Ubaldo Bonaté, Wolfgang Cohrs, Alessandro Conidi, Dietmar Freese, Teodoro Geor-giadis, Alessandro Ippoliti, Lars Kaleschke, Christof Lüpkes, Uwe Maixner, Giangiuseppe Mastrantonio, Fabrizio Ravegnani, Andreas Reuter, Giuliano Trivellone and Angelo Viola. Heft Nr. 306/1999 - "German-Russian Cooperation: Biogeographic and biostratigraphic investigations on selected

sediment cores from the Eurasian continental margin and marginal seas to analyze the Late Quaternary climatic variability", edited by Robert R. Spielhagen, Max S. Barash, Gennady I. Ivanov, and Jörn Thiede.

Heft Nr. 307/1999 - "Struktur und Kohlenstoffbedarf des Makrobenthos am Kontinentalhang Ostgrönlands", von Dan Seiler

Heft Nr. 308/1999 - "ARCTIC '98: The Expedition ARK-XIV/1a of RV 'Polarstern' in 1998", edited by Wilfried Jokat. Heft Nr. 309/1999 – "Variabilität der arktischen Ozonschicht: Analyse und Interpretation bodengebundener Millimeterwellenmessungen", von Björn-Martin Sinnhuber.

Heft Nr. 310/1999 – "Rekonstruktion von Meereisdrift und terrigenem Sedimenteintrag im Spätquartär: Schwermineral-assoziationen in Sedimenten des Laptev-See-Kontinentalrandes und des zentralen Arktischen Özeans", von Marion Behrends.

Heft Nr. 311/1999 - "Parameterisierung atmosphärischer Grenzschichtprozesse in einem regionalen Klimamodell der Arktis", von Christoph Abegg.

Heft Nr. 312/1999 – "Solare und terrestrische Strahlungswechselwirkung zwischen arktischen Eisflächen und Wolken", von Dietmar Freese.

Heft Nr. 313/1999 - "Snow accumulation on Ekströmisen, Antarctica", by Elisabeth Schlosser, Hans Oerter nd Wolfgang Graf.

Heft Nr. 314/1999 - "Die Expedition ANTARKTIS XV/4 des Forschungsschiffes "Polarstern' 1998", herausgegeben von Eberhard Fahrbach.

Heft Nr. 315/1999 - "Expeditions in Siberia in 1998", edited by Volker Rachold.

Heft Nr. 316/1999 – "Die postglaziale Sedimentationsgeschichte der Laptewsee: schwermineralogische und sedimentpetrographische Untersuchungen", von Bernhard Peregovich.

Heft-Nr. 317/1999 - "Adaption an niedrige Temperaturen: Lipide in Eisdiatomeen", von Heidi Lehmal.

Heft-Nr. 318/1999 – "Effiziente parallele Lösungsverlahren für elliptische partielle Differentialgleichungen in der numerischen Ozeanmodellierung", von Natalja Rakowsky.

Heft-Nr. 319/1999 – "The Ecology of Arctic Deep-Sea Copepods (Euchaetidae and Aetideidae). Aspects of their Distribution, Trophodynamics and Effect on the Carbon Flux", by Holger Auel.
Heft-Nr. 320/1999 – "Modelistudien zur arktischen stratosphärischen Chemie im Vergleich mit Meßdaten", von Veronika Eyring.
Heft-Nr. 321/1999 – "Analyse der optischen Eigenschaften des arktischen Aerosols", von Dagmar Nagel.
Heft-Nr. 322/1999 – "Messungen des arktischen stratosphärischen Ozons: Vergleich der Ozonmessungen in Ny-Ålesund, Spitzbergen, 1997 und 1998", von Jens Langer
Heft-Nr. 324/1999 – "Untersuchung struktureller Elemente des südöstlichen Weddellmeeres / Antarktis auf der Basis mariner Potentialfeldaten", von Uwe F. Meyer.
Heft-Nr. 324/1999 – "Geochemische Verwilterungstrends eines basaltischen Ausgangsgesteins nach dem spätpleistozänen Gletscherrückzug auf der Taimyrhalbinsel (Zentralsibirien) - Rekonstruktion an einer sedimentären Abfolge des Lama Sees", von Stefanie K. Harwart.

vergriffer/out of print.
 nur noch beim Autor/only from the outhor.