Wind-forced variability of the zonal overturning circulation

Alternative Title
Date Created
Location
DOI
10.1175/jpo-d-21-0174.1
Related Materials
Replaces
Replaced By
Keywords
Ekman pumping/transport
Mass fluxes/transport
Planetary waves
Rossby waves
Abstract
The mechanisms of wind-forced variability of the zonal overturning circulation (ZOC) are explored using an idealized shallow water numerical model, quasigeostrophic theory, and simple analytic conceptual models. Two wind-forcing scenarios are considered: midlatitude variability in the subtropical/subpolar gyres and large-scale variability spanning the equator. It is shown that the midlatitude ZOC exchanges water with the western boundary current and attains maximum amplitude on the same order of magnitude as the Ekman transport at a forcing period close to the basin-crossing time scale for baroclinic Rossby waves. Near the equator, large-scale wind variations force a ZOC that increases in amplitude with decreasing forcing period such that wind stress variability on annual time scales forces a ZOC of O(50) Sv (1 Sv ≡ 106 m3 s−1). For both midlatitude and low-latitude variability the ZOC and its related heat transport are comparable to those of the meridional overturning circulation. The underlying physics of the ZOC relies on the influences of the variation of the Coriolis parameter with latitude on both the geostrophic flow and the baroclinic Rossby wave phase speed as the fluid adjusts to time-varying winds.
Description
Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(5),(2022): 65-979, https://doi.org/10.1175/jpo-d-21-0174.1.
Embargo Date
Citation
Spall, M. (2022). Wind-forced variability of the zonal overturning circulation. Journal of Physical Oceanography, 52(5), 965-979.
Cruises
Cruise ID
Cruise DOI
Vessel Name