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ABSTRACT: Symbols are a universal way to convey complex information in technical drawings since they can 
represent a wide range of elements, including components, materials, or relationships, in a concise and space-
saving manner. Therefore, to enable a digital and automatic interpretation of pixel-based drawings, accurate 
detection of symbols is a crucial step. To enhance the efficiency of the digitization process, current research focuses 
on automating this symbol detection using deep learning models. However, the ever-increasing repertoire of model 
architectures poses a challenge for researchers and practitioners alike in retaining an overview of the latest 
advancements and selecting the most suitable model architecture for their respective use cases. To provide 
guidance, this contribution conducts a comparative study of prevalent and state-of-the-art model architectures for 
the task of symbol detection in pixel-based construction drawings. Therefore, this study evaluates six different 
object detection model architectures, including YOLOv5, YOLOv7, YOLOv8, Swin-Transformer, ConvNeXt, and 
Faster-RCNN. These models are trained and tested on two distinct datasets from the bridge and residential 
building domains, both representing substantial sub-sectors of the construction industry. Furthermore, the models 
are evaluated based on five criteria, i.e., detection accuracy, robustness to data scarcity, training time, inference 
time, and model size. In summary, our comparative study highlights the performance and capabilities of different 
deep learning models for symbol detection in construction drawings. Through the comprehensive evaluation and 
practical insights, this research facilitates the advancement of automated symbol detection by showing the 
strengths and weaknesses of the model architectures, thus providing users with valuable guidance in choosing the 
most appropriate model for their real-world applications. 
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1. INTRODUCTION 

Symbols pose an efficient and space-saving way of conveying complex information, enabling understanding across 
languages due to their standardized appearance. They find application in diverse contexts, such as street signs 
(Gudigar et al., 2016), maps (Huang et al., 2023), or technical drawings (Elyan et al., 2020b). For instance, in 
construction drawings symbols can represent architectural components, plumbing fixtures, elevation markings, 
and more, making accurate identification of the symbols essential for understanding the entire drawing. The 
importance of precise symbol detection becomes even more apparent when algorithms are used to understand the 
technical drawings automatically, e.g., for their digitization. Therefore, research has focused on developing 
effective and accurate algorithms for locating and classifying symbols in technical drawings. Ah-Soon (1998) 
proposed to adapt Messmer's algorithm for symbol recognition in architectural drawings using graph matching. 
The drawing is first vectorized, followed by the extraction and merging of geometric features for each symbol, 
and clustering similar symbols by type. In a separate work, Adam et al. (2000) developed an orientation and scale 
invariant method for recognizing symbols in technical documents. Their algorithm is based on the Fourier-Mellin 
transform, which extracts features used to label the symbols through a classifier.  

Most of this research focuses on traditional image analysis techniques, such as vectorization and feature 
engineering. However, with the advent of efficient deep learning approaches, such as convolutional neural 
networks (CNN), the research community's interest has shifted to use such models for localizing and classifying 
symbols in technical drawings. Ziran and Marinai (2018) leverages the object detection networks Faster R-CNN 
and Single Shot Detector (SSD) to detect symbols representing objects such as furniture, doors, and windows in 
architectural floor plans. In the context of piping and instrumentation diagrams (P&IDs), Mani et al. (2020) 
develops a custom CNN to classify components in the P&IDs. The proposed network is trained to classify patches 
cropped from the overall drawing into three classes: tag symbol, component symbol, or no symbol. When the 
network detects a symbol within a patch, the corresponding detection is projected back onto the original drawing. 
In a different approach for P&IDs, Elyan et al. (2020a) employs the YOLO architecture for symbol detection. 
Additionally, the authors propose a method based on generative adversarial networks to mitigate the issue of class 
imbalance in technical drawings. Class imbalance occurs when the number of instances per symbol class shows 
significant variation. A novel approach to enhance symbol detection by inferring the symbol orientation is 
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introduced by Faltin et al. (2023b). The authors leverage human pose detection networks, specifically Mask R-
CNN and YOLOv7Pose, to achieve accurate symbol pose estimation in construction drawings.  

While the proposed approaches already utilize several different detection models, the overall field of object 
detection has experienced rapid growth, leading to the emergence of numerous model architectures (Zaidi et al., 
2022). Researchers and industry practitioners alike face the difficult task of selecting the most appropriate 
architecture for their specific applications. This becomes especially difficult when other critical requirements such 
as training time, inference time, or model size must be considered in addition to detection accuracy. For instance, 
in real-time applications, faster inference time may be prioritized, while in resource-constrained environments, 
smaller model sizes may be important. Therefore, researchers and practitioners need to conduct thorough 
evaluations of the various object detection models to make an informed decision.  

Previous research has compared different model architectures for different applications to aid in model selection. 
However, to the best of the authors' knowledge, there is no study that directly compares detection models for 
symbol detection in pixel-based drawings. Nevertheless, related publications have conducted comparison studies 
in various other domains. For instance, Brößner et al. (2022) compares nnUNet with the transformer-based Swin-
UNet for bone segmentation in ultrasound images, finding that both networks are similarly applicable to the task. 
In another study, Wang et al. (2023) conducts a comparison for different backbones such as ResNet, Swin, and 
ViTAEv2, by pre-training them on a large dataset of satellite images to later test them on different down-stream 
tasks, such as image segmentation or object detection. The authors discover that the transformer-based models 
show competitive results compared with the CNN models. In particular, ViTAEv2 achieves the highest 
performance on the different tasks. Moutik et al. (2023) compares several models based on CNNs, transformers, 
and hybrid approaches, to recognize human actions in video data. This study concludes that the CNN- and 
transformer-based models perform similarly, both with their strengths and weaknesses, but overall, the hybrid 
methods achieve the best results.  

Our research contributes to this broad research area by providing a comprehensive analysis of state-of-the-art 
object detection models and evaluating them based on several criteria for symbol detection in construction 
drawings. The remainder of the paper is structured as follows: Section 2 presents the methodological design of the 
comparative study conducted and details of the datasets used. Subsequently, in Section 3, we present and discuss 
the results of our comparative study, shedding light on the performance of different detection models. Finally, 
Section 4 summarizes the results and provides possible directions for further research in this area.  

2. METHODOLOGY 

Fig. 1: Overview of the methodology used in the comparative study. 

The structure of this comparative study is shown in Fig. 1. Real data is collected and annotated to train and test the 
selected models. In addition, synthetic data is generated to extend the dataset. The models are trained with a 
combination of real and synthetic data, while only real data is used for testing. Section 2.1 provides a detailed 
description of the datasets. The comparison includes six different network architectures: YOLOv5 (Jocher et al., 
2022), YOLOv7 (Wang et al., 2022), YOLOv8 (Jocher et al., 2023), and Faster R-CNN (Ren et al., 2017) with 
three different backbones namely ResNet (He et al., 2016), Swin (Liu et al., 2021), and ConvNeXt (Liu et al., 
2022). A brief introduction to the compared network architectures is presented in Section 2.2. In order to 
comprehensively assess the models, they are evaluated with respect to five criteria, i.e., accuracy, robustness, 
training time, inference time, and model size, which are explained in detail in Section 2.3.  
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2.1 Datasets 

To obtain a meaningful comparison, the models are trained and tested on two distinct datasets representing different 
sub-sectors of the construction industry: bridge construction drawings and floor plans. The bridge-dataset 
comprises 15 real construction drawings with approximately 10.000 x 6.000 pixels dimensions. To make the large 
dimensions of the drawings manageable for the models, tiling is used to divide the drawings into patches. The 
drawings contain three types of symbols: section symbols, elevation markers, and dimension symbols (cf. Fig. 2). 
The size of these symbols varies from 20 to 300 pixels, which is relatively small compared to the overall size of 
the drawing. Consequently, the models must be able to produce meaningful feature representations even for small 
objects. To investigate this, the study explores different patch sizes to examine the influence of the symbol-to-
image size ratio. Therefore, three patch sizes are considered: 256 pixels, 512 pixels, and 1024 pixels. This results 
in three data subsets named bridge_256, bridge_512, and bridge_1024, containing 2120, 1185, and 543 patches, 
respectively. 

Fig. 2: Example illustration of some representative symbols selected from the datasets. 

Since the number of patches is still quite limited, additional synthetic data is generated based on the procedure 
introduced by Faltin et al. (2022a). Lastly, to investigate the influence of the quantity of training data on the model's 
performance for the bridge-dataset, a reduced data subset called bridge_1024_red is created, which comprises only 
10% of the original data subset bridge_1024. Table 1 gives an overview of the composition of all datasets. 

Table 1: Overview of the composition of the data subsets. Synthetic data is only used for training and validation. 

 No. training images 
No. synthetic 

training images 
No. validation 

images 
No. synthetic 

validation images 
No. testing 

images 

bridge_256 5611 1500 993 250 316 

bridge_512 3179 1500 544 250 192 

bridge_1024 1477 1500 250 250 94 

bridge_1024_red 130 170 25 25 94 

floorplan_1024 10294 0 1800 0 750 

On the other hand, the floorplan-dataset consists of 5000 fully annotated floor plans of residential buildings 
sourced from the CubiCasa-dataset (Kalervo et al., 2019). The majority of the drawings in this dataset are similarly 
sized ranging between 500 and 2000 pixels, therefore they are resized uniformly to 1024 pixels (floorplan_1024). 
The drawings distinguish eight different symbol classes: window, door, electrical appliance, toilet, sink, sauna 
bench, fireplace, and bathtub. Fig. 2 illustrates the high intra-class variation among these symbols, which requires 
effective generalization of the object detection models to handle the diverse styles. 

2.2 Object Detection Models 

In this study three single-stage detection models, namely YOLOv5, YOLOv7, and YOLOv8 are compared with 
three two-stage detection models. Each two-stage model modifies the Faster R-CNN architecture by replacing the 
backbone while keeping the region proposal network and detection head unaltered. The selected backbones are 
ResNet, ConvNeXt, and Swin. In this section, a short overview of the different architectures is given. 
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The YOLO model series is known for its high detection performance and fast inference speed. Both YOLOv7 and 
YOLOv8 are extensions of YOLOv5 but incorporate different ideas such as anchorless detection and different 
convolutional blocks to enhance the base model’s performance.  

In comparison, ResNet is a well-established CNN-based image classification network commonly used as the 
backbone architecture for Faster R-CNN. On the other hand, the Swin backbone is a transformer-based architecture, 
building upon the concept of the visual transformer introduced by Dosovitskiy et al. (2020). Swin addresses the 
challenges of adapting transformers to the image domain by employing a hierarchical architecture with shifting 
attention windows. Lastly, ConvNeXt progressively modernizes the basic ResNet architecture by incorporating 
key components of visual transformers into the CNN-based architecture. 

For each of the chosen model architectures, the base size and the smallest version, referred to as tiny, are compared. 
This investigates whether equivalent results can be obtained with smaller model sizes. In general, larger models 
can extract more meaningful features due to their increased complexity, allowing them to handle challenging tasks 
while, in contrast, making them prone to overfit. The smallest versions are ResNet-50, Swin-Tiny, ConvNeXt-
Tiny, YOLOv5n, YOLOv7-tiny, and YOLOv8n, while the base-versions are ResNet-101, Swin-Base, ConvNeXt-
Base, YOLOv5m, YOLOv7, and YOLOv8m. 

2.3 Evaluation 

To provide a comprehensive overview of the strengths and weaknesses of each model, they are evaluated based 
on five criteria: accuracy, robustness, training time, inference time, and model size. A detailed explanation of each 
criterium is given in the remainder of this section: 

2.3.1 Accuracy 

Accuracy measures the model’s ability to correctly locate and classify the symbols within the drawing. To assess 
the accuracy the standard metric of mean average precision (mAP) as defined by Padilla et al. (2021) is utilized, 
as it considers the precision and recall, evaluated at certain levels of intersection over union (IoU). While the 
precision indicates the proportion of accurate predictions made by the model among all the predictions, the recall 
denotes the proportion of correct predictions compared to the total number of ground-truth boxes available. Lastly, 
the IoU quantifies the overlap between a prediction and the ground-truth bounding box, measuring the model's 
localization accuracy.  

2.3.2 Robustness 

Obtaining and annotating extensive training data is time-consuming, resulting in data scarcity in many cases. 
Hence, it is highly desirable to have a robust object detection network, which means it performs reasonably well 
even with limited training data. The model is trained with 90% reduced training data to evaluate robustness. After 
training, the network's performance is tested with the full test dataset using the mAP metric. This enables an 
estimate of the accuracy decrease when training data is significantly limited. 

2.3.3 Training time 

Training time measures the physical time required for the model to reach a plateau, indicating that no further 
improvement is expected. This is particularly important in applications with limited computational resources or 
where the model is regularly retrained. While the training time may vary depending on the hardware used, in this 
study all models are trained on the same GPU to ensure comparability. 

2.3.4 Inference Time 

The inference time quantifies how long it takes for the model to make a single prediction, making it a vital metric 
for real-time applications. 

2.3.5 Model size 

Model size describes the memory requirements of the model and is a crucial factor that directly affects various 
aspects of model performance. Smaller models usually have a smaller number of parameters, leading to shorter 
inference times. However, extremely small models may not have the necessary complexity to handle the given 
task effectively. Therefore, it is important to carefully select the appropriate model size to achieve optimal 
performance. 
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3. RESULTS & DISCUSSION 

To perform the comparative study, the models are trained by running three Nvidia A100-SXM4-40GB GPUs. The 
two-level networks are available pre-trained solely on the ImageNet-1K dataset, which is a subset of the larger 
ImageNet dataset (Deng et al., 2009). Conversely, the YOLO models are available pre-trained exclusively on the 
MS COCO dataset (Lin et al., 2014). The AdamW (Loshchilov & Hutter, 2017) optimizer is employed with a batch 
size of 64 and an initial learning rate of 0.0001 for backpropagation. The maximum number of epochs is set to 400, 
but early stopping is utilized to prevent overfitting. In order to increase the overall quantity and diversity of the 
training data, data augmentation techniques such as flipping, rotation, scale, or translation are utilized for all data 
subsets. The results are presented and discussed in the following sections based on the different evaluation criteria. 

3.1 Results for Accuracy 

Table 2 shows the results of the comparative study focusing on symbol recognition accuracy. To evaluate the 
symbol detection performance with the mAP metric, an IoU threshold of 0.5 (mAP@0.50) is appropriate for most 
use cases. Nevertheless, the more stringent mAP@0.50:0.95 is also used in this study to evaluate the models more 
comprehensively. For the bridge dataset, ConvNeXt-B achieves the highest mAP@0.50 score of 0.996 on 512 x 
512 pixel patches, closely followed by ResNet-101, Swin-T, and Swin-B, all obtaining a score of 0.992 on 1024 x 
1024 pixel patches. This suggests that the symbol-to-image size ratio is not critical, as the models accurately detect 
smaller symbols even on larger patches. But on the contrary, performance generally declines with smaller patch 
sizes, with the lowest results observed on 256 x 256 pixel patches. This demonstrates the importance of context, 
as the models must consider each symbol’s surrounding space to locate and classify it properly. This is consistent 
with the observations of Lim et al. (2019), who similarly emphasized the importance of context when dealing with 
small objects. 

Table 2: Performance results of the detection models on the bridge- and floorplan-dataset. The bold fonts indicate 
the best results for the respective data subset, while the asterisk indicates the best results for the specific dataset. 

 Bridge-dataset Floorplan-dataset 

 256 x 256 Pixel 512 x 512 Pixel 1024 x 1024 Pixel 1024 x 1024 Pixel 

 𝑚𝑚𝑚𝑚𝑚𝑚�.�����  𝑚𝑚𝑚𝑚𝑚𝑚�.��:�.�����  𝑚𝑚𝑚𝑚𝑚𝑚�.�����  𝑚𝑚𝑚𝑚𝑚𝑚�.��:�.�����  𝑚𝑚𝑚𝑚𝑚𝑚�.�����  𝑚𝑚𝑚𝑚𝑚𝑚�.��:�.�����  𝑚𝑚𝑚𝑚𝑚𝑚�.�����  𝑚𝑚𝑚𝑚𝑚𝑚�.��:�.�����  

ResNet-50 0.912 0.739 0.973 0.815 0.986 0.833 0.771 0.492 

ResNet-101 0.927 0.743 0.980 0.827 0.992 0.830 0.776 0.485 

Swin-T 0.945 0.769 0.961 0.801 0.992 0.846 0.789 0.517 

Swin-B 0.950 0.742 0.978 0.834 0.992 0.847 0.799 0.518 

ConvNeXt-T 0.934 0.763 0.992 0.862 0.991 0.855 0.795 0.527 

ConvNeXt-B 0.934 0.786 *0.996 0.864 0.991 0.862 0.806 0.524 

YOLOv5n 0.884 0.578 0.868 0.615 0.912 0.645 0.649 0.379 

YOLOv5m 0.886 0.704 0.951 0.799 0.973 0.838 0.761 0.510 

YOLOv7-tiny 0.884 0.648 0.924 0.675 0.949 0.686 0.763 0.474 

YOLOv7 0.934 0.705 0.956 0.786 0.967 0.748 *0.816 0.551 

YOLOv8n 0.921 0.715 0.890 0.705 0.965 0.794 0.717 0.454 

YOLOv8m 0.938 0.814 0.965 0.854 0.982 0.891 0.805 0.570 

Regarding mAP@0.50:0.95, ConvNeXt-B still achieves the best results with 0.864. Conversely, YOLOv5n is the 
weakest performer in both mAP@0.50 and mAP@0.50:0.95, likely due to its lower model complexity affecting 
its ability to handle the complex symbol detection task. 
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For the floorplan-dataset, YOLOv7 leads by a significant margin (0.816), followed by ConvNeXt-B (0.806) and 
YOLOv8m (0.805). However, when considering mAP@0.50:0.95, YOLOv8m outperforms YOLOv7 with a 
notable gap. The general accuracy on the floor plans is lower compared to that of the bridge drawings. This 
discrepancy may be due to a larger number of symbol classes or a wider variety of symbol styles in the floorplan-
dataset. 

Fig. 3: Predictions of the base models of Swin (left), ConvNeXt (center), and YOLOv8 (right) on a patch from 
the bridge-dataset (top) and the floorplan-dataset (bottom). 

Overall, larger and newer models perform better when accuracy matters. However, no significant difference in 
detection accuracy is seen between transformer-based and modern CNN-based networks. Despite that, the YOLO 
models tend to achieve lower mAP values than the two-stage models. This might be due to the YOLO model’s 
smaller size. One exception is the YOLOv8m model, which achieves the highest values of all YOLO models and 
sometimes even outperforms the two-stage models. 

3.2 Results for Robustness 

The results for the reduced training dataset are presented in Table 3. While ConvNeXt-B shows the highest mAP 
score on the full training dataset, its performance declined by 25% when trained on the reduced dataset. It is also 
noteworthy that YOLOv5n, which already performed the worst, showed the largest decrease with 51%. On the 
other hand, YOLOv7 is quite robust to reduced training data, showing an 18% drop with mAP@0.50:0.95 score 
of 0.614. It is followed by the second most robust network ResNet-101 with a decrease of 26%. 

3.3 Results for Training Time, Inference Time & Model Size 

Table 3 shows the training time, inference time, and model size of the compared object recognition networks. 
Among them, YOLOv8n has the shortest training time with 0.51 hours on average, while still achieving promising 
results, as shown in Table 2. On the other hand, the transformer-based Swin-B network requires the longest training 
time. This is probably due to the computationally intensive attention mechanism used by the Swin network. In 
terms of inference time, the YOLO models demonstrate superior performance compared with the two-stage models. 
Specifically, YOLOv7-tiny achieves the fastest inference time, averaging 1.6 milliseconds per image, followed by 
YOLOv7 with 6.4 milliseconds per image. Surprisingly, despite its smaller network size, YOLOv5n does not 
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display the fastest inference time. It is worth noting that even the largest network, ConvNeXt-B, has a relatively 
small memory requirement of 400 MB. 

Table 3: Performance results on the reduced bridge-dataset as well as training time, inference time, and model size. 
The bold fonts indicate the best results for the respective column. 

 bridge_1024_red    

 𝑚𝑚𝑚𝑚𝑚𝑚�.����� 
Performance 

decrease 
Training time in hrs. 

averaged  
Inference in ms/img on 

1024 x 1024 pixels 
Model size in MB 

 

ResNet-50 0.590 -31% 2.58 52.9 157.97 

ResNet-101 0.611 -26% 3.21 55.3 230.62 

Swin-T 0.635 -25% 5.19 70.4 170.95 

Swin-B 0.602 -29% 7.52 109.9 397.56 

ConvNeXt-T 0.633 -26% 4.20 64.5 171.88 

ConvNeXt-B 0.645 -25% 5.51 104.2 400.27 

YOLOv5n 0.319 -51% 0.82 12.9 7.12 

YOLOv5m 0.541 -35% 2.67 17.8 80.77 

YOLOv7-tiny 0.491 -28% 1.12 1.6 22.94 

YOLOv7 0.614 -18% 3.15 6.4 139.21 

YOLOv8n 0.570 -28% 0.51 12.9 11.49 

YOLOv8m 0.672 -25% 2.49 18.3 98.65 

In summary, it is important to find a balance between model size and accuracy. Smaller models may perform worse 
and models that are too large may overfit on the training data. Therefore, when choosing an appropriate model 
size, an optimal trade-off between model complexity and performance must be made based on the specific 
requirements of the application. 

4. CONCLUSION 

This paper provides a comprehensive comparison of six object detection models employed for the task of symbol 
detection in pixel-based construction drawings. The evaluated models include YOLOv5, YOLOv7, YOLOv8, and 
Faster R-CNN, equipped with three different backbones, i.e., ResNet, Swin, and ConvNeXt. For each architecture 
the smallest and baseline model size are employed, resulting in a total of twelve compared models. The evaluation 
is conducted along five key criteria, namely accuracy, robustness, training time, inference time, and model size. 
This offers valuable insights to guide the selection of appropriate models for diverse use cases and their specific 
requirements. The models are trained and tested on bridge construction drawings as well as floor plans representing 
two common sub-sectors of the construction industry.  

Among the evaluated models, ConvNeXt shows the highest accuracy in the bridge-dataset, which makes it the 
best choice for detecting small symbols with low variance. On the other hand, when a high variance of symbol 
style is present, YOLOv7 or YOLOv8 are more suitable choices. Notably, YOLOv7 also proves robust when 
trained with reduced data, therefore making it superior to YOLOv8. Overall, the YOLO models generally have 
lower training and inference times, which can be directly linked to their smaller model size. Overall, the more 
recent models, including YOLOv8, Swin, and ConvNeXt, show comparably high accuracy, suggesting that 
significant improvements in the future will be limited. Nevertheless, promising research directions such as self-
supervised learning (Jaiswal et al., 2021) and active learning (Schmidt et al., 2020) are expected to advance training 
efficiency by reducing the amount of training data required or the manual annotation effort. Moreover, expanding 
upon the proposal by Elyan et al. (2020a) for generating synthetic data through deep learning models, employing 
new methods such as stable diffusion (Rombach et al., 2022), could improve detection results even more, 
mitigating the scarcity of real data. 

The results of our study provide valuable insights for the future development of symbol detection research, 
enabling further exploration of model performance on other technical drawing types, such as P&IDs. Investigating 
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hybrid models that combine transformer- and CNN-based architectures represents another promising direction for 
future research. 
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