Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of ion permeation through calcium channels

Abstract

Calcium channels carry out vital functions in a wide variety of excitable cells1–4 but they also face special challenges. In the medium outside the channel, Ca2+ ions are vastly outnumbered by other ions. Thus, the calcium channel must be extremely selective if it is to allow Ca2+ influx rather than a general cation influx. In fact, calcium channels show a much greater selectivity for Ca2+ than sodium channels do for Na+ (refs 5–9) despite the high flux that open Ca channels can support3–4. Relatively little is known about the mechanism of ion permeation through Ca channels. Earlier models assumed ion independence5 or single-ion occupancy10–16. Here we present evidence for a novel hypothesis of ion movement through Ca channels, based on measurements of Ca channel activity at the level of single cells or single channels. Our results indicate that under physiological conditions, the channel is occupied almost continually by one or more Ca2+ ions which, by electrostatic repulsion, guard the channel against permeation by other ions. On the other hand, repulsion between Ca2+ ions allows high throughput rates and tends to prevent saturation with calcium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  2. Kostyuk, P. G. Biochem. biophys. Acta 650, 128–150 (1981).

    CAS  PubMed  Google Scholar 

  3. Tsien, R. W. A. Rev. Physiol. 45, 341–358 (1983).

    Article  CAS  Google Scholar 

  4. Reuter, H. Nature 301, 569–574 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Reuter, H. & Scholz, H. J. Physiol., Lond. 264, 17–47 (1977).

    Article  CAS  Google Scholar 

  6. Lee, K. S. & Tsien, R. W. Nature 497, 498–501 (1982).

    Article  ADS  Google Scholar 

  7. Isenberg, G. Z. Naturf. 370, 502–512 (1982).

    Article  Google Scholar 

  8. Matsuda, H., Noma, A. & Irisawa, H. Proc. int. Un. physiol. Sci. 15, 50 (1983).

    Google Scholar 

  9. Lee, K. S. & Tsien, R. W. J. Physiol., Lond. (submitted).

  10. Vereecke, J. & Carmeliet, E. E. Pflügers Arch. ges. Physiol. 322, 73–82 (1971).

    Article  CAS  Google Scholar 

  11. Hagiwara, S., Fukuda, J. & Eaton, D. C. J. gen. Physiol. 63, 564–578 (1974).

    Article  CAS  Google Scholar 

  12. Akaike, N., Lee, K. S. & Brown, A. M. J. gen. Physiol. 71, 509–531 (1978).

    Article  CAS  Google Scholar 

  13. Edwards, C. Neuroscience 7, 1335–1366 (1981).

    Article  Google Scholar 

  14. Kostyuk, P. G., Mironov, S. L. & Doroshenko, P. A. J. Membrane Biol. 70, 181–189 (1982).

    Article  CAS  Google Scholar 

  15. Ashcroft, F. M. & Stanfield, P. R. J. Physiol., Lond. 323, 93–115 (1982).

    Article  CAS  Google Scholar 

  16. Kostyuk, P. G., Mironov, S. L. & Shuba, Ya. M. J. Membrane Biol. 76, 83–93 (1983).

    Article  Google Scholar 

  17. Kao, R. L. et al. Archs Biochem. Biophys. 203, 587–599 (1980).

    Article  CAS  Google Scholar 

  18. Lee, K. S., Akaike, N. & Brown, A. M. J. Neurosci. Meth. 2, 51–78 (1980).

    Article  CAS  Google Scholar 

  19. Garnier, D., Rougier, O., Gargouil, Y. M. & Coraboeuf, E. Pflügers Arch. ges. Physiol. 313, 321–342 (1969).

    Article  CAS  Google Scholar 

  20. Almers, W., McCleskey, E. W. & Palade, P. T. J. Physiol., Lord. 332, 52–53P (1982).

    Google Scholar 

  21. Andersen, O. S. Abstr. 5th int. Biophys. Congr., 112 (1975).

  22. Neher, E. Biochim. biophys. Acta 401, 540–544 (1975).

    Article  CAS  Google Scholar 

  23. Hagiwara, S., Miyazaki, S., Krasne, S. & Ciani, S. J. gen. Physiol. 70, 269–281 (1977).

    Article  CAS  Google Scholar 

  24. Takeuchi, A. & Takeuchi, N. J. Physiol., Lond. 212, 337–351 (1971).

    Article  CAS  Google Scholar 

  25. Hagiwara, S. & Takahashi, K. J. Physiol., Lond. 238, 109–127 (1974).

    Article  CAS  Google Scholar 

  26. Eisenman, G., Sandblom, J. P. & Walker, J. L. Jr, Science 155, 965–974 (1967).

    Article  ADS  CAS  Google Scholar 

  27. Urban, B. W., Hladky, S. B. & Haydon, D. A. Fedn Proc. 37, 2628–2632 (1978).

    CAS  Google Scholar 

  28. Hille, B. & Schwarz, W. J. gen. Physiol. 72, 409–442 (1978).

    Article  CAS  Google Scholar 

  29. Sigworth, F. J. J. Physiol., Lond. 307, 97–129 (1980).

    Article  CAS  Google Scholar 

  30. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  31. Bean, B. P., Nowycky, M. C. & Tsien, R. W. Nature 307, 371–375 (1984).

    Article  ADS  CAS  Google Scholar 

  32. Begenisich, T. B. & Cahalan, M. D. J. Physiol., Lond. 307, 217–242 (1980).

    Article  CAS  Google Scholar 

  33. Levitt, D. G. Biophys. J. 22, 209–219 (1978).

    Article  ADS  CAS  Google Scholar 

  34. Hille, B. J. gen. Physiol. 66, 535–560 (1975).

    Article  CAS  Google Scholar 

  35. Hess, P. & Tsien, R. W. Soc. Neurosci. Abstr. 9, 509 (1983).

    Google Scholar 

  36. Tsien, R. W., Bean, B. P., Hess, P. & Nowycky, M. C. Cold Spring Harb. Symp. quart. Biol. 48, 201–212 (1983).

    Article  CAS  Google Scholar 

  37. Almers, W. & McCleskey, E. W. J. Physiol., Lond. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, P., Tsien, R. Mechanism of ion permeation through calcium channels. Nature 309, 453–456 (1984). https://doi.org/10.1038/309453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing