Skip to main content
Log in

Determination of pulmonary mean transit time and cardiac output using a one-dimensional model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work, we show that a one-dimensional model of the blood flow across the lungs can reproduce the evolution of a bolus versus the time. Solving the differential equation governing the bolus concentration in the framework of this model, we determine the solution which fulfills Gaussian initial boundary conditions. An effective parameter related to the ratio of a diffusion coefficient to the square of the mean speed of the flow is defined. The determination of its numerical values following a semi-empirical approach enables us to know accurately the mean transit time and the cardiac output. The results have been compared to other methods, and were found in good agreement. Such an approach could be of interest in all studies where the knowledge of flow—including micro-circulation—is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R., G. J. Hine and C. D. Zimmerman. 1978. Dead time measurements in scintillation cameras under scatter conditions simulating quantitative nuclear cardiography.J. Nucl. Med. 19, 538–544.

    Google Scholar 

  • Audi, S. H., J. H. Linehan, G. S. Krenz, C. A. Dawson, S. B. Ahlf and D. L. Roerig. 1995. Estimation of the pulmonary capillary transport function in isolated rabbit lungs.J. Appl. Physiol. 78, 1004–1014.

    Article  Google Scholar 

  • Bassingthwaighte, J. B., F. H. Ackerman and E. H. Wood. 1966. Applications of the lagged normal density curve as a model for arterial dilution curves.Circ. Res. 18, 398–415.

    Google Scholar 

  • Bassingthwaighte, J. B., I. S. Chan and A. A. Goldstein. 1988. An efficient method for smoothing indicator-dilution and other unimodal curves.Comput. Biomed. Res. 21, 192–202.

    Article  Google Scholar 

  • Beyer, R. P. 1992. Fitting smooth curves to noisy indicator-dilution and other unimodal data.Comput. Biomed. Res. 25, 144–152.

    Article  Google Scholar 

  • Dawson, C. A., T. A. Bronikowski, J. H. Linehan and T. S. Hakim. 1983. Influence of pulmonary vasoconstriction on lung water and perfusion heterogeneity.J. Appl. Physiol. 54, 654–660.

    Google Scholar 

  • Fouad-Tarazi, F. M. and W. J. MacIntyre. 1990. Radionuclide methods for cardiac ouptut determination.Eur. Heart J. 11, 33–40.

    Google Scholar 

  • Gott, F. S., T. W. Moir, W. J. MacIntyre and W. H. Pritchard. 1961. A mathematical model of dilution curves for flow study.Circ. Res. 9, 607–613.

    Google Scholar 

  • Hogg, J. C., T. McLean, B. A. Martin and B. Wiggs. 1988. Erythrocyte and neutrophil concentration in the dog lung.J. Appl. Physiol. 65, 1217–1225.

    Google Scholar 

  • Kelback, H., O. J. Hartling, K. Skagen, O. Munk, O. Henriksen and J. Godtfredsen. 1987. First-class radionuclide determination of cardiac output: an improved gamma camera method.J. Nucl. Med. 28, 1330–1334.

    Google Scholar 

  • King, R. B., A. Deussen, G. M. Raymond and J. B. Bassingthwaighte. 1993. A vascular transport operator.Am. J. Physiol. 265 (Heart Circ. Physiol. 34), H2196–H2208.

    Google Scholar 

  • Knopp, T. J. and J. B. Bassingthwaighte. 1969. Effect of flow on transpulmonary circulatory transport functions.J. Appl. Physiol. 27, 36–43.

    Google Scholar 

  • Lessen, N. A. and W. Perl. 1979.Tracer Kinetic Methods in Medical Physiology. New York: Raven Press.

    Google Scholar 

  • Lewis, M. L., R. De Caterina and C. Giuntini. 1994. Distribution function of transit times in the human pulmonary circulation.J. Appl. Physiol. 76, 1363–1371.

    Article  Google Scholar 

  • Margenau, H. and G. M. Murphy. 1976.The Mathematics of Physics and Chemistry, pp. 238–396. New York: R. E. Krieger.

    Google Scholar 

  • Maseri, A., P. Caldini, S. Permutt and K. L. Zierler. 1970. Frequency function of transit times through dog pulmonary circulation.Circ. Res. 26, 527–543.

    Google Scholar 

  • Norwich, K. H. and S. Zelin, 1970. The dispersion of indicator in the cardio-pulmonary system.Bull. Math. Biophys. 32, 25–43.

    Google Scholar 

  • Presson, R. G., C. C. Hanger, Jr., P. S. Godbey, J. A. Graham, T. C. Lloyd, Jr. and W. W. Wagner, Jr. 1994. Effect of increasing flow on distribution of pulmonary capillary transit times.J. Appl. Physiol. 76, 1701–1711.

    Article  Google Scholar 

  • Snedecor, G. W. and W. G. Cochran. 1980.Statistical Methods, 7th ed. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Taylor, Sir G. 1954. The dispersion of matter in turbulent flow through a pipe.Proc. Roy. Soc. (London) A 223, 446–448.

    Article  Google Scholar 

  • Thompson, H. K., C. F. Starmer, R. E. Whalen and H. D. McIntosh. 1964. Indicator transit time considered as a gamma variate.Circ. Res. 14, 502–515.

    Google Scholar 

  • Zambo, K. and K. Toth. 1993. Influence of blood viscosity on circulatory parameters determined by first-pass radionuclide angiocardiography in cor pulmonale.Nucl. Med. 32, 288–291.

    Google Scholar 

  • Zierler, K. L. 1962. Theoretical basis of indicator-dilution methods for measuring flow and volume.Circ. Res. 10, 393–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Le Sech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Sech, C., Capderou, A. Determination of pulmonary mean transit time and cardiac output using a one-dimensional model. Bltn Mathcal Biology 58, 1155–1170 (1996). https://doi.org/10.1007/BF02458387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458387

Keywords

Navigation