Skip to main content
Log in

Dynamics of a two-frequency parametrically driven duffing oscillator

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We investigate the transition from two-frequency quasiperiodicity to chaotic behavior in a model for a quasiperiodically driven magnetoelastic ribbon. The model system is a two-frequency parametrically driven Duffing oscillator. As a driving parameter is increased, the route to chaos takes place in four distinct stages. The first stage is a torus-doubling bifurcation. The second stage is a transition from the doubled torus to a strange nonchaotic attractor. The third stage is a transition from the strange nonchaotic attractor to a geometrically similar chaotic attractor. The final stage is a hard transition to a much larger chaotic attractor. This latter transition arises as the result of acrisis, the characterization of which is one of our primary concerns. Numerical evidence is given to indicate that the crisis arises from the collision of the chaotic attractor with the stable manifold of a saddle torus. Intermittent bursting behavior is present after the crisis with the mean time between bursts scaling as a power law in the distance from the critical control parameter; τ ∼ (A-Ac). The critical exponent is computed numerically, yielding the value α=1.03±0.01. Theoretical justification is given for the computed critical exponent. Finally, a Melnikov analysis is performed, yielding an expression for transverse crossings of the stable and unstable manifolds of the crisis-initiating saddle torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Strange Attractors that are not Chaotic, Physica13D, 261 (1984).

    MathSciNet  Google Scholar 

  2. A. Bondeson, E. Ott, and T. M. Antonsen, Quasiperiodically Forced Damped Pendula and Schrödinger Equations with Quasiperiodic Potentials: Implications of their Equivalence, Phys. Rev. Lett.55, 2103 (1985).

    Article  MathSciNet  Google Scholar 

  3. F. J. Romeiras, A. Bondeson, E. Ott, T. M. Antonsen, and C. Grebogi, Quasiperiodically Forced Dynamical Systems with Strange Nonchaotic Attractors, Physica26D, 277 (1987).

    MathSciNet  Google Scholar 

  4. F. J. Romeiras and E. Ott, Strange Nonchaotic Attractors of the Damped Pendulum with Quasiperiodic Forcing, Phys. Rev. A35, 4404 (1987).

    Article  MathSciNet  Google Scholar 

  5. M. Ding, C. Gregbogi, and E. Ott, Evolution of Attractors in Quasiperiodically Forced Systems: From Quasiperiodic to Strange Nonchaotic to Chaotic, Phys. Rev. A39, 2593 (1989).

    Article  Google Scholar 

  6. M. Ding, C. Grebogi, and E. Ott, Dimensions of Strange Nonchaotic Attractors, Phys. Lett. A137, 167 (1989).

    Article  MathSciNet  Google Scholar 

  7. W. L. Ditto, M. L. Spano, H. T. Savage, S. N. Rauseo, J. Heagy, and E. Ott, Experimental Observation of a Strange Nonchaotic Attractor, Phys. Rev. Lett.65, 533 (1990).

    Article  Google Scholar 

  8. W. L. Ditto, S. Rauseo, R. Cawley, C. Grebogi, G. H. Hsu, E. Kostelich, E. Ott, H. T. Savage, R. Segnan, M. L. Spano, and J. A. Yorke, Experimental Observation of Crisis Induced Itermittency and its Critical Exponent, Phys. Rev. Lett,63, 923 (1989).

    Article  Google Scholar 

  9. H. T. Savage, W. L. Ditto, P. A. Braza, M. L. Spano, S. N. Rauseo, and W. C. Spring III, Crisis Induced Intermittency in a Parametrically Driven, Gravitationally Buckled Magnetoelastic Amorphous Ribbon Experiment, J. Appl. Phys.67, 5619 (1990).

    Article  Google Scholar 

  10. H. T. Savage and M. L. Spano, Theory and Applications of Highly Magnetoelastic Metglas 26055C, J. Appl. Phys.53, 8002 (1982).

    Article  Google Scholar 

  11. H. T. Savage and C. Adler, Magnetoelastic Bifurcation in an Amorphous Ribbon, J. Magn. Mater.58, 320 (1986).

    Article  Google Scholar 

  12. C. Grebogi, E. Ott, and J. A. Yorke, Chaotic Attractors in Crisis, Phys. Rev. Lett.48 1507 (1982).

    Article  MathSciNet  Google Scholar 

  13. C. Grebogi, E. Ott, and J. A. Yorke, Crises, Sudden Changes in Chaotic Attractors and Transient Chaos, Physica7D, 181 (1983).

    MathSciNet  Google Scholar 

  14. C. Grebogi, E. Ott, and J. A. Yorke, Fractal Basin Boundaries, Long-Lived Chaotic Transients, and Unstable-Unstable Pair Bifurcation, Phys. Rev. Lett.50, 935 (1983).

    Article  MathSciNet  Google Scholar 

  15. E. G. Gwinn and R. M. Westervelt, Fractal Basin Boundaries and Intermittency in the Driven Damped Pendulum, Phys. Rev. A33, 4143 (1986).

    Article  Google Scholar 

  16. C. Gregobi, E. Ott, F. J. Romeiras, and J. A. Yorke, Critical Exponents for Crisis Induced Intermittency, Phys. Rev. A36, 5365 (1987).

    Article  MathSciNet  Google Scholar 

  17. Wiggins, Chaos in the Quasiperiodically Forced Duffing Oscillator, Phys. Lett. A124, 138 (1987).

    Article  MathSciNet  Google Scholar 

  18. S. Wiggins,Global Bifurcations and Chaos, Analytical Methods (Springer, New York, 1988).

    Book  MATH  Google Scholar 

  19. F. C. Moon and W. T. Holmes, Double Poincaré Sections of a Quasiperiodically Forced, Chaotic Attractor, Phys. Lett. A111, 157 (1985).

    Article  MathSciNet  Google Scholar 

  20. K. Yagasaki, Second-Order Averaging and Chaos in Quasiperiodically Forced Weakly Nonlinear Oscillators, Physica44D, 445–458 (1990).

    MathSciNet  Google Scholar 

  21. J. Kaplan and J. A. Yorke, inFunctional Differential Equations and Approximation of Fixed Points, edited by H. O. Peitgenet al., Springer Lecture Notes in Mathematics Vol. 730 (Springer-Verlag, Berlin, 1979), p. 228.

    Google Scholar 

  22. J. D. Farmer, E. Ott, and J. A. Yorke, The Dimension of Chaotic Attractors, Physica7D, 153 (1983).

    MathSciNet  Google Scholar 

  23. V. I. Arnol'd,Mathematical Methods of Classical Mechanics (Springer, New York, 1978).

    Google Scholar 

  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, The Art of Scientific Computing (Cambridge, New York, 1986).

    MATH  Google Scholar 

  25. A. Arneodo, P. H. Coullet, and E. A. Spiegel, Cascade of Period Doublings of Tori, Phys. Lett. A94, 1 (1983).

    Article  MathSciNet  Google Scholar 

  26. W. L. Ditto, unpublished.

  27. This was suggested by E. Ott, cf., also ref. 7.

  28. J. Heagy, in preparation.

  29. J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983).

    MATH  Google Scholar 

  30. S. Wiggins,Introduction to Applied Nonlinear Dynamical Systems and Chaos, (Springer, New York, 1990).

    Book  MATH  Google Scholar 

  31. V. K. Melnikov, On the Stability of the Center for Time-Periodic Perturbations, Trans. Moscow Math.,12, 1 (1963).

    Google Scholar 

  32. R. W. Rollins and E. R. Hunt, Intermittent Transient Chaos at Interior Crises in the Diode Laser, Phys. Rev. A29, 3327 (1984).

    Article  Google Scholar 

  33. T. L. Carroll, L. M. Pecora, and F. J. Rachford, Chaotic Transients and Multiple Attractors in Spin-Wave Experiments, Phys. Rev. Lett.59, 2891 (1981).

    Article  Google Scholar 

  34. J. C. Sommerer, W. L. Ditto, C. Grebogi, E. Ott, and M. L. Spano, Experimental Confirmation of the Theory for Critical Exponents of Crises, to appear Phys. Lett. A.

  35. Y. Pomeau and P. Manneville, Intermittent Transition to Turbulence in Dissipative Dynamical Systems, Comm. Math. Phys.,74, 189 (1980).

    Article  MathSciNet  Google Scholar 

  36. H. B. Dwight,Tables of Integrals and other Mathematical Data (Macmillan, New York, 1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Stephen Wiggins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heagy, J., Ditto, W.L. Dynamics of a two-frequency parametrically driven duffing oscillator. J Nonlinear Sci 1, 423–455 (1991). https://doi.org/10.1007/BF02429848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429848

Key words

Navigation