Skip to main content
Log in

Modeling of the evolution of bacterial densities in an eutrophic ecosystem (sewage lagoons)

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The process of wastewater treatment was studied by modeling the relationships between physical, chemical, and biological (bacteria, phytoplankton, zooplankton) components of the sewage treatment lagoons of an urban wastewater center, based upon a two-year sampling program. The models of interactions between variables were tested by path analysis. The path coefficients were computed from the results of ridge regression, instead of linear multiple regression. The results show that fecal coliforms were effectively controlled by the environmental variables included in the model, which have a cyclic seasonal behavior. This control grew stronger with distance from the input (R 2=0.71) to the output (R 2=0.88) of the treatment plant, resulting in effective elimination of most enteric bacteria. Simultaneously, the ecosystem's community of aerobic heterotrophic bacteria became more independent from the model's predictive variables, with increased distance from the sewage input, thus demonstrating its maturation as an autonomous community in the lagoon ecosystem. Consequences of modeling are discussed, with respect to the understanding of biological wastewater treatment mechanisms and ecosystem dynamics and to plant management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Public Health Association (1981) Standard methods for the examination of water and wastewater. 15th ed. The Association, Washington, DC

    Google Scholar 

  2. Angeli N (1976) Influence de la pollution des eaux sur les éléments du plancton. In: La pollution des eaux continentales: incidences sur les biocénoses aquatiques. Gauthier-Villars, Paris, PP 97–133

    Google Scholar 

  3. Asher HB (1976) Causal modeling. Sage University paper series on quantitative applications in the social sciences, series no. 07-003. Sage Publications, Beverly Hills, California, p 80

    Google Scholar 

  4. Baleux B, Troussellier M (1983) Evolution des bactéries témoins de contamination fécale et dePseudomonas aeruginosa etAeromonas hydrophyla dans un ouvrage d'épuration des eaux usées par lagunage (Mèze). Tech Sci Munic 7:33–42

    Google Scholar 

  5. Bölter M, Meyer-Reil LA, Dawson R, Liebezeit G, Wolter K, Szwerinski H (1981) Structure analysis of shallow water ecosystems: interaction of microbiological, chemical and physical characteristics measured in the overlying waters of sandy beach sediments. Estuar Coast Mar Sci 13:579–589

    Google Scholar 

  6. Buhr HO, Miller SB (1983) A dynamic model of the high-rate algal-bacterial wastewater treatment pond. Water Res 17:29–37

    Google Scholar 

  7. Calkins J, Buckles JD, Moeller JR (1976) The role of solar ultraviolet radiation in “natural” water purification. Photochem Photobiol 24:49–57

    PubMed  Google Scholar 

  8. Clesceri LS, Bloomfield JA (1977) General model of microbial growth and decomposition in aquatic ecosystems. Appl Environ Microbiol 33:1047–1058

    Google Scholar 

  9. Davidson FF (1961) Antibacterial activity ofOscillatoria formosa Bory extract. Water & Sewage Works 108:417–420

    Google Scholar 

  10. Davis EM, Floyna EF (1972) Bacterial dieoff in ponds. San Engng Div, Proc Am Soc Civil Engrs 98:59–69

    Google Scholar 

  11. Dixon WJ (ed) (1981) BMDP statistical software 1981. University of California Press, Berkeley

    Google Scholar 

  12. Fujioka RS, Hashimoto HH, Siwak EB, Young, RHF (1981) Effect of sunlight on survival of indicator bacteria in seawater. Appl Environ Microbiol 41:690–696

    PubMed  Google Scholar 

  13. Gifi A (1984) Nonlinear multivariate analysis. DSWO Press, Leiden

    Google Scholar 

  14. Gold HJ (1977) Mathematical modelling of biological systems: an introductory guidebook. John Wiley & Sons, New York

    Google Scholar 

  15. Gravel AC, Fruh EG, Davis EM (1969) Limnological investigations of Texas impoundments for water quality management purposes: the distribution of coliform bacteria in stratified impoundments. Technical Report 38, Center for Research in Water Resources, University of Texas, Austin

    Google Scholar 

  16. Hazen TC (1983) A model for the density ofAeromonas hydrophila in Albemarle Sound, North Carolina. Microb Ecol 9:137–153

    Google Scholar 

  17. Hocking RR (1976) The analysis and selection of variables in linear regression. Biometrics 32:1–49

    Google Scholar 

  18. Hossell JC, Baker JH (1979) Epiphytic bacteria of the freshwater plantRanunculus penicillatus: enumeration, distribution and identification. Arch Hydrobiol 86:322–337

    Google Scholar 

  19. Jones JG (1971) Studies on freshwater bacteria: factors which influence the population and its activity. J Ecol 59:593–613

    Google Scholar 

  20. Jones JG (1977) The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biol 7:67–91

    Google Scholar 

  21. Kenny DA (1979) Correlation causality. John Wiley & Sons, New York

    Google Scholar 

  22. Legendre L, Legendre P (1984) Ecologie numérique, 2e éd. Tome 2: La structure des données écologiques. Collection d'Ecologie, No. 13. Masson, Paris et les Presses de l'Université du Québec

  23. Legendre P, Baleux B, Troussellier M (1984) Dynamics of pollution-indicator and heterotrophic bacteria in sewage treatment lagoons. Appl Environ Microbiol 48:586–593

    PubMed  Google Scholar 

  24. Legendre P, Troussellier M, Baleux B (1984) Indices descriptifs pour l'étude de l'évolution des communautés bactériennes. In: Bianchi A. (ed) Bactériologie marine: colloque international no. 331. Editions du CNRS, Paris, pp 71–84

    Google Scholar 

  25. Legendre P, Dallot S, Legendre L (1985) Succession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. Am Nat 125:257–288

    Google Scholar 

  26. Lilliefors HW (1967) The Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Ass 62:399–402

    Google Scholar 

  27. Mahloch JL (1974) Comparative analysis of modeling techniques for coliform organisms in streams. Appl Microbiol 27:340–345

    PubMed  Google Scholar 

  28. Martin YP, Bianchi MA (1980) Structure, diversity and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton. Microb Ecol 5:265–279

    Google Scholar 

  29. Martin YP, Lelong PP (1981) Modélisation de la dynamique des communautés bactériennes d'un écosystème planctonique marin expérimental. Oceanol Acta 4:433–443

    Google Scholar 

  30. McCambridge J, McMeekin TA (1981) Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria. Appl Environ Microbiol 41:1083–1087

    PubMed  Google Scholar 

  31. Meyer-Reil L, Dawson AR, Liebezeit G, Tiedge H (1978) Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar Biol (Berl) 48:161–171

    Google Scholar 

  32. Mills AL, Wassel RA (1980) Aspects of diversity measurement for microbial communities. Appl Environ Microbiol 40:578–586

    Google Scholar 

  33. Miyoshi H, Nakamoto K (1975) Factors influencing bacterial distribution in the sea of Hiuchi-Nada area. Bull Japan Soc Sci Fisheries 41:645–652

    Google Scholar 

  34. Moeller JR, Calkins J (1980) Bactericidal agents in wastewater lagoons and lagoon design. J Water Poll Control Fed 52:2442–2451

    Google Scholar 

  35. Mortimer CH (1956) The oxygen content of air-saturated fresh waters, and aids in calculating percentage saturation. Mitt Int Ver Theor Angew Limnol 6:1–20

    Google Scholar 

  36. Nie NH, Hull CH, Jenkins JG, Steinbrenner K, Bent DH (1975) SPSS—statistical package for the social sciences. 2nd ed. McGraw-Hill, New York

    Google Scholar 

  37. Niewolak S (1971) The influence of alcohol extracts of some algae (Chlorella andScenedesmus) on aquatic microorganisms. Polskie Arch Hydrobiol 18:31–42

    Google Scholar 

  38. Niewolak S (1971) The influence of living and dead cells ofChlorella vulgaris andScenedesmus obliquus on aquatic microorganisms. Polskie Arch Hydrobiol 18:43–54

    Google Scholar 

  39. Obenchain RL (1977) Classical F-tests and confidence regions for ridge regression. Technometrics 19:429–439

    Google Scholar 

  40. Oswald WJ, Gotaas HB (1955) Photosynthesis in sewage treatment. J San Engng Div, Proc Am Soc Civil Engrs 81: separate n. 686. 27 p

  41. Palumbo AV, Ferguson RL (1978) Distribution of suspended bacteria in the Newport River estuary, North Carolina. Estuar Coast Mar Sci 7:521–529

    Google Scholar 

  42. Parhad NM, Rao NU (1974) Effect of pH on survival ofEscherichia coli. J Water Poll Control Fed 48:980–986

    Google Scholar 

  43. Pourriot R (1977) Food and feeding habits of the rotifera. Arch Hydrobiol Beih Erbegn Limnol 8:243–260

    Google Scholar 

  44. Pratt R, Daniels TC, Eiler JJ, Gunnison, JB, Kumler WD, Oneto JF, Strait LA, Spoehr HA, Hardin GJ, Milner HW, Smith JHC, Strain HH (1944) Chlorellin, an antibacterial substance fromChlorella. Science (Wash DC) 99:351–352

    Google Scholar 

  45. Rieper M (1976) Investigations on the relationships between algal blooms and bacterial populations in the Schlei Fjord (western Baltic Sea). Helgol Wiss Meeresunters 28:1–18

    Google Scholar 

  46. Rodier J (1978) L'analyse de l'eau, eaux naturelles, eaux résiduaires, eau de mer: chimie, physico-chimie, bactériologie, biologie. 6ième éd. Dunod, Paris

    Google Scholar 

  47. Schwinghamer P (1983) Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Mar Ecol Prog Ser 13:151–166

    Google Scholar 

  48. Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biologial research. 2nd ed. WH Freeman and Co, San Francisco

    Google Scholar 

  49. Spencer MJ (1978) Microbial activity and biomass relationships in 26 oligotrophic to mesotrophic lakes in South Island, New Zealand. Verh Int Verein Limnol 20:1175–1181

    Google Scholar 

  50. Spencer MJ, Ramsay AJ (1978) Bacterial populations, heterotrophic potentials, and water quality in three New Zealand rivers. NZ J Mar Freshwat Res 12:415–427

    Google Scholar 

  51. Troussellier M, Baleux B (1981) Approche méthodologique pour l'analyse des peuplements bactériens hétérotrophes des étangs littoraux. Acta Oecologica Oecol Gen 2:63–74

    Google Scholar 

  52. Troussellier M, Legendre P (1981) A functional evenness index for microbial ecology. Microb Ecol 7:283–296

    Google Scholar 

  53. Väätänen P (1980) Relations of selected types of micro-organisms with the vernal phytoplankton bloom in the Tvärminne area, southern coast of Finland. J Appl Bacteriol 49:463–469

    Google Scholar 

  54. Väätänen P (1982) Effects of freshwater outflows on microbial populations in the Tvärminne archipelago, southern Finland. Holarct Ecol 5:61–66

    Google Scholar 

  55. Vela GR, Guerra CN (1966) On the nature of mixed cultures ofChlorella pyrenoidosa TX 71105 and various bacteria. J Gen Microbiol 42:123–131

    PubMed  Google Scholar 

  56. Wright S (1921) Correlation and causation. J Agric Res 20:557–565

    Google Scholar 

  57. Wright S (1960) Path coefficients and path regressions: alternative or complementary concepts? Biometrics 16:189–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troussellier, M., Legendre, P. & Baleux, B. Modeling of the evolution of bacterial densities in an eutrophic ecosystem (sewage lagoons). Microb Ecol 12, 355–379 (1986). https://doi.org/10.1007/BF02098576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02098576

Keywords

Navigation