Skip to main content
Log in

Inactivation of the rabbit parotid Na/K/Cl cotransporter by N-ethylmaleimide

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The inactivation of the rabbit parotid Na/K/Cl cotransporter by the irreversible sulfhydryl reagent N-ethylmaleimide (NEM) is studied by monitoring its effect on high affinity bumetanide binding to the carrier. NEM reduces the number of bumetanide binding sites with no significant change in the affinity of those remaining. NEM also reduces KCl-dependent22Na flux via the cotransporter by the same factor as the reduction in bumetanide binding sites. Both bumetanide and its analogue furosemide can protect against the effect of NEM. The concentration range over which this protection occurs is in good agreement with affinities of these two compounds for the high affinity bumetanide binding site (2.6 and 85 μm, respectively), indicating an association of this site with the site of action of NEM. Also consistent with this hypothesis are the observations that (i) sodium and potassium, both of which are required for high affinity bumetanide binding, increase the rate of inactivation of binding by NEM and (ii) chloride, at concentrations previously shown to competitively inhibit bumetanide binding, protects the cotransporter against NEM. The effects of NEM on bumetanide binding are mimicked by another highly specific sulfhydryl reagent, methyl methanethiolsulfonate. The apparent rate constant for inactivation of high affinity bumetanide binding by NEM is a hyperbolic function of NEM concentration consistent with a model in which the inactivation reaction is first order in [NEM] and proceeds through an intermediate adsorptive complex. The data indicate that the presence of a reduced sulfhydryl group at or closely related to the bumetanide binding site is essential for the operation of the parotid Na/K/Cl cotransporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brewer, C.F., Riehm, J.P. 1967. Evidence for possible nonspecific reactions between N-ethylmaleimide and proteins.Anal. Biochem. 18:248–255

    Google Scholar 

  2. Brocklehurst, K. 1979. The equilibrium assumption is valid for the kinetic treatment of most time-dependent protein modification reactions.Biochem. J. 181:775–778

    Google Scholar 

  3. Brown, C.D.A., Murer, H. 1985. Characterization of a Na∶K∶2Cl cotransport system in the apical membrane of a renal epithelial cell line (LLC-PK1).J. Membrane Biol. 87:131–139

    Google Scholar 

  4. Burnham, C., Karlish, S.J.D., Jorgensen, P.L. 1985. Identification and reconstitution of a Na/K/Cl cotransporter and K channel from luminal membranes of renal outer medulla.Biochim. Biophys. Acta 821:461–469

    Google Scholar 

  5. Elferink, M.G.L., Hellingwerf, K.J., Van Dijl, J.M., Robillard, G.T., Poolman, P., Konings, W.N. 1985.Ann. N.Y. Acad. Sci. 456:361–374

    Google Scholar 

  6. Feit, P.W., Hoffmann, E.K., Schiodt, M., Kristensen, P., Jessen, F., Dunham, P.B. 1988. Purification of proteins of the Na/Cl cotransporter from membranes of Ehrlich ascites cells using a bumetanide-sepharose affinity column.J. Membrane Biol. 103:135–147

    Google Scholar 

  7. Geck, P., Heinz, E. 1986. The Na-t-K−2Cl cotransport system.J. Membrane Biol. 91:97–105

    Google Scholar 

  8. Haas, M., McManus, T.J. 1983. Bumetanide inhibits (Na+K+2Cl) co-transport at a chloride site.Am. J. Physiol. 245:C235-C240

    Google Scholar 

  9. Hass, M., Forbush, B. 1987. Na, K, Cl-cotransport system: Characterization by bumetanide binding and photolabelling.Kidney Int. 32:S134-S140

    Google Scholar 

  10. Jorgensen, P.L., Petersen, J., Rees, W.D. 1984. Identification of a Na, K, Cl cotransport protein ofM r 34,000 from kidney by photolabeling with [3H]-bumetanide.Biochim. Biophys. Acta 775:105–110

    Google Scholar 

  11. Kinne, R., Hannafin, J.A., Konig, B. 1985. Role of the NaCl−KCl cotransport system in active chloride absorption and secretion. Ann. N.Y. Acad. Sci.456:198–206

    Google Scholar 

  12. Kinne, R., Kinne-Saffran, E., Scholermann, B., Schutz, H. 1986. The anion specificity of the sodium-potassium-chloride cotransporter in rabbit kidney outer medulla: Studies on medullary plasma membranes.Pfluegers Arch. 407:S168-S173

    Google Scholar 

  13. Kitz, R., Wilson, I.B. 1962. Esters of methanesulfonic acid as irreversible inhibitors of acethylcholinesterase.J. Biol. Chem. 237:3245–3247

    Google Scholar 

  14. Konings, W.N., Robillard, G.T. 1981. Physical mechanism for regulation of proton solute symport inEscherichia coli.Proc. Natl. Acad. Sci. USA 79:5480–5484

    Google Scholar 

  15. Malcolm, A.D.B., Radda, G.K. 1970. The reaction of glutamate dehydrogenase with 4-iodoacetamido salicylic acid.Eur. J. Biochem. 15:555–561

    Google Scholar 

  16. Martinez, J.R. 1987. Ion transport and water movement.J. Dent. Res. 66:638–647

    Google Scholar 

  17. Melvin, J.E., Kawaguchi, M., Baum, B.J., Turner, R.J. 1987. A muscarinic agonist-stimulated chloride efflux pathway is associated with fluid secretion in rat parotid acinar acid.Biochem. Biophys. Res. Commun. 145:754–759

    Google Scholar 

  18. Nauntofte, B., Poulsen, J.H. 1986. Effects of Ca2+ and furosemide on Cl transport and O2 uptake in rat parotid acini.Am. J. Physiol. 251:C175-C185

    Google Scholar 

  19. Novak, I., Young, J.A. 1986. Two independent anion transport systems in rabbit mandibular salivary glands.Pfluegers Arch. 407:649–656

    Google Scholar 

  20. O'Grady, S.M., Palfrey, H.C., Field, M. 1987. Characteristics and functions of Na−K−Cl cotransport in epithelial tissues.Am. J. Physiol. 253:C177-C192

    Google Scholar 

  21. Palfrey, H.C., Rao, M.C. 1983. Na/K/Cl cotransport and its regulation.J. Exp. Biol. 106:43–54

    Google Scholar 

  22. Pirani, D., Evans, A.R., Cook, D.I., Young, J.A. 1987. Intracellular pH in the rat mandibular salivary gland: The role of Na−H and Cl−HCO3 anitports in secretion.Pfluegers Arch. 408:178–184

    Google Scholar 

  23. Smith, D.J., Maggio, E.T., Kenyon, G.L. 1975. Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes.Biochemistry 14:766–771

    Google Scholar 

  24. Smyth, D.G., Blumenfeld, O.O., Konigsberg, W. 1964. Reactions of N-ethylmaleimide with peptides and amino acids.Biochem. J. 91:589–595

    Google Scholar 

  25. Turner, R.J., George, J.N. 1984. Characterization of an essential disulfide bond associated with the active site of the renal brush-border membraned-glucose transporter.Biochim. Biophys. Acta 769:23–32

    Google Scholar 

  26. Turner, R.J., George, J.N. 1988. Ionic dependence of bumetanide binding to the rabbit parotid Na/K/Cl cotransporter.J. Membrane Biol. 102:71–77

    Google Scholar 

  27. Turner, R.J., George, J.N., Baum, B.J. 1986. Evidence for a Na+/K+/Cl cotransport system in basolateral membrane vesicles from the rabbit parotid.J. Membrane Biol. 94:143–152

    Google Scholar 

  28. Young, J.A., Cook, D.I., van Lennep, E.W., Roberts, M.L. 1987. Secreation by the major salivary glands.In: Physiology of the Gastrointestinal Tract. (2nd ed.) L. Johnson et al., editors. Raven, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, J.N., Turner, R.J. Inactivation of the rabbit parotid Na/K/Cl cotransporter by N-ethylmaleimide. J. Membrain Biol. 112, 51–58 (1989). https://doi.org/10.1007/BF01871163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871163

Key Words

Navigation