Skip to main content

Advertisement

Log in

Studies on dentinogenesis in the rat

The interaction between lead-pyrophosphate solutions and dentinal globules

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Three-day-old rats were fixed by perfusion with glutaraldehyde and thin slices were cut of the first molar germs. The slices were treated with EDTA and “activated” with buffered solutions containing Mg2+, Ca2+ or Zn2+. Incubation was carried out in buffered solutions (pH 8.5) containing inorganic pyrophosphate and Pb2+. In the Mg2+-activated specimens incubation products were localized to the plasma membranes in the stratum intermedium and the subodontoblastic area. Lead deposits were found on the periphery of the dentinal globules. Incubation products were more randomly distributed in Ca2+-activated specimens whereas those activated with Zn2+ displayed a deposition of lead precipitates mainly corresponding to that seen after activation with Mg2+. The findings are discussed in reference to the localization of alkaline phosphatase in the dentin-producing tissues and it is proposed that the results are indicative of the presence of an inorganic pyrophosphatase in these tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agus, S. G., Cox, R. P., Griffin, M. J.: Inhibition of alkaline phosphatase by cysteine and its analogues. Biochim. biophys. Acta (Amst.)118, 363–370 (1966)

    Google Scholar 

  • Alcock, N. W., Shils, M. D.: Association of inorganic pyrophosphatase activity with normal calcification of rat costal cartilagein vitro. Biochem. J.112, 505–510 (1969)

    PubMed  Google Scholar 

  • Ali, S. Y., Sajdera, S. W., Anderson, H. C.: Isolation and characterisation of calcifying vesicles from epiphyseal cartilage. Proc. nat. Acad. Sci. (Wash.)67, 1513–1520 (1970)

    Google Scholar 

  • Anderson, H. C.: Calcium-accumulating vesicles in the intercellular matrix of bone. In: Hard tissue growth, repair and remineralization (Ciba Foundation Symposium 11), p. 213–246. Amsterdam: Associated Scientific Publishers 1973

    Google Scholar 

  • Bernard, G. W.: Ultrastructural observations of initial calcification in dentine and enamel. J. Ultrastruct. Res.41, 1–17 (1972)

    Article  PubMed  Google Scholar 

  • Butler, L. G.: Yeast and other inorganic pyrophosphatases. In: The enzymes (Boyer, P. D., ed.), vol. IV, p. 529–541. New York and London: Academic Press 1971

    Google Scholar 

  • Butterworth, P. J.: The pyrophosphatase activity of pig kidney alkaline phosphatase and its inhibition by magnesium ions and excess of pyrophosphate. Biochem. J.110, 671–675 (1968)

    PubMed  Google Scholar 

  • Conyers, R. A. J., Burkett, D. J., Neale, F. C., Posen, S., Brudenell-Woods, J.: The action of EDTA on human alkaline phosphatases. Biochim. biophys. Acta (Amst.)139, 361–371 (1967)

    Google Scholar 

  • Cox, R. P., Gilbert, P., Griffin, M. J.: Alkaline inorganic pyrophosphatase activity of mammalian cell alkaline phosphatase. Biochem. J.105, 155–161 (1967)

    PubMed  Google Scholar 

  • Cox, R. P., Griffin, M. J.: Pyrophosphatase activity of mammalian alkaline phosphatase. Lancet 1018–1019 (1965)

  • Eaton, R. H., Moss, D. W.: Inhibition of the inorganic pyrophosphatase associated with alkaline phosphatase in human tissue extracts. Proc. Biochem. Soc.100, 45 (1966)

    Google Scholar 

  • Eaton, R. H., Moss, D. W.: Partial purification and some properties of human bone alkaline phosphatase. Enzymologia35, 31–39 (1968)

    PubMed  Google Scholar 

  • Eisenmann, D. R., Glick, P. L.: Ultrastructure of initial crystal formation in dentin. J. Ultrastruct. Res.41, 18–28 (1972)

    Article  PubMed  Google Scholar 

  • Fernley, H. N., Walter, P. G.: Studies on alkaline phosphatase. Inhibition by phosphate derivatives and the substrate specificity. Biochem. J.104, 1011–1018 (1967)

    PubMed  Google Scholar 

  • Forssmann, W. G., Siegrist, G., Orci, L., Girardier, L., Pictet, R., Rouiller, C.: Fixation par perfusion pour la microscopie electronique. J. Microscopie6, 279–304 (1967)

    Google Scholar 

  • Göthlin, G., Ericsson, J. L. E.: Fine structural localization of alkaline phosphomonoesterase in the fracture callus of the rat. Israel J. med. Sci.7, 488–490 (1971)

    PubMed  Google Scholar 

  • Hekkelman, J. W.: Studies on the alkaline phosphatase activity of the surface of living bone cells. Calcif. Tiss. Res.4, 73–74 (1970)

    Google Scholar 

  • Jibril, A. O.: Phosphates and phosphatases in preosseous cartilage. Biochim. biophys. Acta (Amst.)141, 605–613 (1967)

    Google Scholar 

  • Kuhlman, R. E.: Phosphatases in epiphyseal cartilage. J. Bone Jt Surg. A47, 545–550 (1965)

    Google Scholar 

  • Larsson, Å.: Ultrastructural observations on early dentin formation with special reference to “dentinal globules” and alkaline phosphatase activity. Z. Anat. Entwickl.-Gesch.142, 103–115 (1973)

    Article  Google Scholar 

  • Larsson, Å., Bloom, G. D.: Fine structure of developing odontoblasts and predentin in relation to the mineralization process. Z. Anat. Entwickl.-Gesch.139, 227–246 (1973)

    Article  Google Scholar 

  • Larsson, Å., Helander, H. F.: Light, electron microscopic and histochemical studies on the interaction between lead pyrophosphate solutions and the dentin producing tissues. Calcif. Tiss. Res.14, 87–104 (1974)

    Google Scholar 

  • Leonard, E. P., Provenza, D. V.: Alkaline phosphatase activity in sequential mouse molar tooth development. Histochemie34, 343–354 (1973)

    Article  PubMed  Google Scholar 

  • Lindenhayn, K., Wellmitz, G., Hirthe, D.: Ein Beitrag zur Bestimmung der Pyrophosphataseaktivität im Knochen. Acta biol. med. germ.28, 201–207 (1972)

    PubMed  Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol.9, 409–414 (1961)

    PubMed  Google Scholar 

  • Medveczky, N., Rosenberg, H.: The phosphate-binding protein ofEscherichia coli. Biochim. biophys. Acta (Amst.)211, 158–168 (1970)

    Google Scholar 

  • Moe, O. A., Butler, L. G.: Yeast inorganic pyrophosphatase. II. Kinetics of Mg2+ activation. J. biol. Chem.247, 7308–7314 (1972)

    PubMed  Google Scholar 

  • Nayudu, P. R. V., Miles, P. L.: Inhibition of pyrophosphatase activity of mouse duodenal alkaline phosphatase by Mg ions. Biochem. J.115, 29–35 (1969)

    PubMed  Google Scholar 

  • Novikoff, A. B.: The validity of histochemical phosphatase methods on the intracellular level. Science113, 320–325 (1951)

    PubMed  Google Scholar 

  • Nuki, K., Bonting, S. L.: Quantitative histochemistry of the developing hamster tooth: alkaline phosphatase and lactic dehydrogenase. J. Histochem. Cytochem.9, 117–125 (1961)

    PubMed  Google Scholar 

  • Ohata, M., Orimo, H., Fujita, T., Yoshikawa, M.: Properties of rat bone inorganic pyrophosphatase studied by means of32P-radioassay. J. Biochem.70, 1003–1010 (1971)

    PubMed  Google Scholar 

  • Plocke, D. J., Levinthal, C., Vallee, B. L.: Alkaline phosphatase ofEscherichia coli: A zinc metalloenzyme. Biochemistry (Wash.)1 (3), 373–378 (1962)

    Google Scholar 

  • Reith, E. J., Butcher, E. O.: Microanatomy and histochemistry of amelogenesis. In: Structural and chemical organization of teeth (A. E. W. Miles, ed.) vol. 1, p. 371–398. New York and London: Academic Press 1967

    Google Scholar 

  • Reynolds, J. A., Schlesinger, M. J.: Alterations in the structure and function ofEscherichia coli alkaline phosphatase due to Zn2+ binding. Biochemistry (Wash.)8, 588–593 (1969)

    Google Scholar 

  • Rosenthal, A. S., Moses, H. L., Beaver, D. L., Schuffman, S. S.: Lead ion and phosphatase histochemistry. I. Non-enzymatic hydrolysis of nucleoside phosphates by lead ion. J. Histochem. Cytochem.14, 698–701 (1966)

    PubMed  Google Scholar 

  • Russell, R. G. G., Fleisch, H.: Inorganic pyrophosphate and pyrophosphatases in calcification and calcium homeostasis. Clin. Orthop.69, 101–117 (1970)

    PubMed  Google Scholar 

  • Sisca, R. F., Provenza, D. V.: Initial dentin formation in human deciduous teeth. Calcif. Tiss. Res.9, 1–16 (1972)

    Google Scholar 

  • Slavkin, H. C.: Intercellular communication during dentinogenesis. In: Developmental aspects of oral biology (Slavkin, H. C., Bavetta, L. A., eds.), p. 165–199. New York and London: Academic Press 1973

    Google Scholar 

  • Vallee, B. L., Coombs, T. L., Hoch, F. L.: The “active site” of bovine pancreatic carboxypeptidase A. J. biol. Chem.235, PC45-PC47 (1960)

    PubMed  Google Scholar 

  • Wöltgens, J. H. M., Bonting, S. L.: Inorganic pyrophosphatase in mineralizing hamster molars. II. Effects of pH and bivalent cations. Calcif. Tiss. Res.13, 143–150 (1973)

    Article  Google Scholar 

  • Wöltgens, J. H. M., Bonting, S. L., Bijvoet, C. L. M.: Relationship of inorganic pyrophosphatase and alkaline phosphatase in hamster molars. Calcif. Tiss. Res.5, 333–343 (1970)

    Article  Google Scholar 

  • Yoshiki, S., Kurahashi, Y.: A light and electron microscopic study of alkaline phosphatase activity in the early stage of dentinogenesis in the young rat. Arch. oral Biol.16, 1143–1154 (1971)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, Å. Studies on dentinogenesis in the rat. Calc. Tis Res. 16, 93–107 (1974). https://doi.org/10.1007/BF02008216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02008216

Key words

Navigation