Skip to main content
Log in

Mineralization during the molt cycle inLirceus brachyurus (Isopoda: Crustacea)

I. Chemistry and light microscopy

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

During the unusual molt sequence of the fresh-water isopod,Lirceus brachyrus (Harger), the posterior half of the exoskeleton is shed 24 hours before the anterior half. At the half-molt stage, occurs in the posterior part while the anterior portion is in a pre-molt condition. The percentage difference in calcium in the two halves at half-molt and full-molt is22 (p<0.01) and33 (p<0.01) respectively, an indication that calcium is sequestered during The rapidity of remineralization is illustrated by the fact that the total mineral content doubles in the posterior part between half and full molt and in the anterior half between the end of molt and one day after ecdysis. Calcium carbonate in the calcite cystalline form was demonstrated by electron diffraction of thin sections of the integument.

Résumé

Au cours de la phase inhabituelle de mue d'un isopode d'eau courante,Lirceuts brachyrus, la moitié postérieure de l'exosquelette est éliminée 24 heures avant la moitié antérieure. A ce stade, une reminéralisation se développe dans la partie postérieure alors que la partie antérieure est dans un stade de pré-mue. Le pourcentage de différence en calcium dans les deux moitiés à mi-mue et mue complète est respectivement de 22% (p<0.01) et 33% (p<0.01), indiquant une complexation du calcium pendant la mue. La rapidité de la reminéralisation est illustrée par le fait que le contenu minéral total double dans la partie postérieure entre la mi-mue et la mue totale et dans la partie antérieure entre la fin de la mue et un jour après. Le carbonate de calcium, sous forme de calcite, a pu être identifié par diffraction électronique de coupes fines des téguments.

Zusammenfassung

Während der ungewöhnlichen Häutungssequenz des Frischwasser-IsopodenLirceus brachyurus (Harger) wird die hintere Hälfte des äußeren Skeletts 24 Std vor der vorderen Hälfte abgestoßen. In der halbgehäuteten Phase erfolgt Remineralisation im hinteren Teil, während der vordere Teil in einem Vorhäutungszustand ist. Der prozentuale Unterschied des Calciums in den zwei Hälften bei Halb- und Vollhäutungszustand ist 22% (p<0,01) bzw. 33% (p<0,01), was andeutet, daß Calcium während der Häutung abgesondert wird. Die Geschwindigkeit der Remineralisation erhellt aus der Tatsache, daß sich der Gesamtmineralgehalt im hinteren Teil zwischen Halt- und Vollhäutung, in der vorderen Hälfte jedoch zwischen Endhäutung und einem Tag nach der Häutung verdoppelt. Calciumcarbonat in kristalliner Calcitform wurde mittels Elektronendiffraktion von dünnen Hautschnitten nachgewiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dedek, J.: Le carbonate de chaux. 351 pp. Louvain: Librarie Universitaire 1966.

    Google Scholar 

  • Eanes, E. D., Posner, A. S.: Structure and chemistry of bone mineral. In: Biological calcification (Schraer, H., ed.), p. 1–26. New York: Appleton-Century-Crofts 1970.

    Google Scholar 

  • Glimcher, M. J., Krane, S. M.: The organization and structure of bone and the mechanism of calcification. In: A treatise on collagen, vol. II. B: Biology of collagen (Ramachandran G. N., Gould, B. S., eds.), p. 68–251. New York: Academic Press 1968.

    Google Scholar 

  • Graf, F.: Preuve expérimentale de la sécrétion de concrétions calcaires et de leur dissolution par les caecums posterieurs d'Orchestia (Crustace, Amphipode). Hypothése de resorption. C. R. Acad. Sci. (D) (Paris)263D, 173–176 (1966).

    Google Scholar 

  • Hecht, S.: Note on the absorption of calcium during the molting of blue crab,Callinectes sapidus. Science39, 108 (1914).

    Google Scholar 

  • Humason, G. L.: Animal tissue techniques, p. 236. San Francisco: W. H. Freeman & Co. 1962.

    Google Scholar 

  • Kleinholz, L. H.: Molting and calcium deposition in decapod crustaceans. J. cell. comp. Physiol.18, 101–108 (1941).

    Google Scholar 

  • Markus, H. C.: Studies on the morphology and life history of the isopodMancasellus macrourus. Trans. Amer. micr. Soc.49, 220–237 (1930).

    Google Scholar 

  • McWhinnie, M. A.: Gastrolith growth and calcium shifts in the fresh-water crayfish,Orconectes virilis. Comp. Biochem. Physiol.7, 1–14 (1962).

    PubMed  Google Scholar 

  • McWhinnie, M. A., Cahoon, M. O., Johanneck, R.: Hormonal effects of calcium metabolism in Crustacea. Amer. Zool.9, 841–835 (1969).

    Google Scholar 

  • Molnar, Z.: Additional observations on bone crystal dimensions. Clin. Orthop.17, 38 (1960).

    Google Scholar 

  • Needham, A. E.: Ecdysis and growth in Crustacea. Nature158, 667–668 (1946).

    Google Scholar 

  • Numanoi, H.: Migration of calcium through the bloodLigia exotica during its molting. Jap. J. Zool.8, 241–249 (1937).

    Google Scholar 

  • Numanoi, H.: Calcium in the blood ofLigia exotica during non-molting and molting phases. J. Fac. Sci. Imp. Univ. Tokyo, Sec. IV,3, 351–358 (1943a).

    Google Scholar 

  • Numanoi, H.: Calcium contents of the carapace and other organs ofLigia exotica during non-molting and molting phases. J. Fac. Sci. Imp. Univ. Tokyo, Sec. IV,3, 359–364 (1934b).

    Google Scholar 

  • Parkes, G. P.: Mellor's modern inorganic chemistry. 1024 pp. Great Britain: Longmans, Green & Co. 1961.

    Google Scholar 

  • Paul, J. H., Sharp, J. S.: Studies on calcium metabolism. I. The deposition of lime salts in the integument of decapod Crustacea. J. Physiol.50, 183–192 (1916).

    Google Scholar 

  • Pautard, F.: Calcification in unicellular organisms, p. 105–201. In: Biological calcification (Schraer, H., ed.), New York: Appleton-Century-Crofts 1970.

    Google Scholar 

  • Reid, D. M.: Occurrence of crystals in the skin of Amphipoda. Nature151, 504–505 (1943).

    Google Scholar 

  • Reimer, L.: Irradiation changes in organic and inorganic objects. Lab. Invest.14 (6, II), 1082–1097 (1965).

    PubMed  Google Scholar 

  • Richards, A. G.: Studies on arthropod cuticle. XII. Ash analyses and microincineration. J. Histochem. Cytochem.4, 140–152 (1956).

    PubMed  Google Scholar 

  • Robertson, J. D.: Some features of the calcium metabolism of the shore crab (Carcinus maenas Pennant). Proc. roy. Soc. B.124, 162–182 (1937).

    Google Scholar 

  • Robertson, J. D.: The function and metabolism of calcium in the invertebrate. Biol. Rev.16, 106–133 (1941).

    Google Scholar 

  • Russell-Hunter, W. D.: A biology of higher invertebrates, p. 46–47. London: The Macmillan Co. 1969.

    Google Scholar 

  • Schöbl, J.: Über die Fortpflanzung isopoder Crustaceen. Arch. mikr. Anat.17, 125–140 (1880).

    Google Scholar 

  • Siewing, R.: Untersuchungen zur Morphologie der Malacostracea (Crustacea). Zool. Jb., Abt. Anat. u. Ontog.75, 39–176 (1956).

    Google Scholar 

  • Simpson, G. G., Roe, A., Lewontin, R. C.: Quantitative zoology, p. 180. New York: Harcourt, Brace & Co. 1960.

    Google Scholar 

  • Tait, J.: Experiments and observations on Crustacea, Part II. Moulting of isopods. Proc. roy. Soc. Edinb.37, 59–68 (1917).

    Google Scholar 

  • Thomas, R. S.: Microincineration techniques for electron microscopic localization of biological materials. Adv. Opt. Elect. Microsc.3, 99–150 (1969).

    Google Scholar 

  • Travis, D. F.: The molting of the spiny lobster,Panulirus argus Latreille. III. Physiological changes which occur in the blood and urine during the normal molting cycle. Biol. Bull.109, 484–503 (1955).

    Google Scholar 

  • Travis, D. F.: The molting of the spiny lobster,Panulirus argus Latreille. IV. Postecdysial histological and histochemical changes in the hepatopancreas and integumental tissues. Biol. Bull.113, 451–479 (1957).

    Google Scholar 

  • Travis, D. F.: The deposition of skeletal structures in the Crustacea. 3. The histochemical changes associated with the development of the mineralized gastrolith of the crayfish,Orconectes virilis Hagen. Acta histochem. (Jena)15, 269–284 (1963a).

    Google Scholar 

  • Travis, D. F.: The deposition of skeletal structures in the Crustacea. 6. Microradiographic studies of the exoskeleton of the crayfishOrconectes virilis Hagen. J. Ultrastruct. Res.9, 285–301 (1963b).

    Google Scholar 

  • Travis, D. F.: Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea. Ann. N. Y. Acad. Sci.109, 177–245 (1963c).

    PubMed  Google Scholar 

  • Travis, D. F.: The comparative ultrastructure and organization of five calcified tissues. In: Biological calcification (Schraer, H., ed.), p. 203–311. New York: Appleton-Century-Crofts 1970.

    Google Scholar 

  • Wilbur, K. M., Watabe, N.: Experimental studies on calcification in molluscs and the algaCoccolithus huxleyi. Ann. N. Y. Acad. Sci.109, 82–112 (1963).

    PubMed  Google Scholar 

  • Zipkin, I.: The inorganic composition of bones and teeth. In: Biological calcification (Schraer, H., ed.), p. 69–104. New York: Appleton-Century Crofts 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkes, J.W., Schraer, H. Mineralization during the molt cycle inLirceus brachyurus (Isopoda: Crustacea). Calc. Tis Res. 12, 125–136 (1973). https://doi.org/10.1007/BF02013728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02013728

Key words

Navigation