Skip to main content

Advertisement

Log in

Observations on the mode of uptake of thorium dioxide particles by osteoclasts in fracture callus

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The ruffled border of osteoclasts in the fracture callus of rat consists of complex infoldings of the plasma membrane forming narrow channels. Absorption of an exogenous, electron-dense compound, thorium dioxide, has been shown to take place via these channels, apparently through “membrane flow”. The contents of the channels are transferred to lysosomes (“specific granules”) located subjacent to the ruffled border. In “transitional regions” adjacent to the ruffled border, uptake of thorium dioxide particles appeared to occur through “membrane vesiculation” (conventional endocytosis).

Résumé

La bordure en brosse des ostéoclastes de cals de fractures de rats présente des plissements complexes de la membrane cytoplasmique formant des canaux étroits. L'absorption d'un produit exogène opaque aux électrons (des macromolécules de dioxyde de thorium) s'effectue par l'intermédiaire de ces canaux, par un «courant» membranaire. Les contenus des canaux sont transférés à des lysosomes («granules spécifiques»), situés sous la bordure en brosse. Dans des «régions de transition», adjacentes à cette dernière, l'absorption de dioxyde de thorium se fait par «vésiculation membranaire» (endocytose classique).

Zusammenfassung

Der gekrauste Rand der Osteoklasten im Frakturcallus von Ratten besteht aus komplexen Einstülpungen der Plasmamembran, die enge Kanälchen bildet. Die Absorption einer exogenen, elektronisch dichten Verbindung, Thoriumdioxyd, erfolgt durch diese Kanäle, offenbar durch einen „Membranfluß”. Der Inhalt der Kanäle wird zu den Lysosomen („spezifische Granula”) geführt, welche unter dem gekrausten Rand liegen. In „Übergangsgebieten”, welche sich neben dem gekrausten Rand befinden, scheint die Aufnahme der Thoriumdioxydpartikel durch „Bläschenbildung in der Membran” (konventionelle Endocytose) stattzufinden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, H. W.: The concepts of membrane flow and membrane vesiculation as mechanisms for active transport and ion pumping. J. biophys. biochem. Cytol.2 (Suppl.), 99–103 (1956).

    PubMed  Google Scholar 

  2. Cameron, D. A.: The fine structure of bone cells. The biological basis of medicine (E. E. Bittar and N. Bittar, eds.), vol. 3, p. 391–423. London-New York: Academic Press 1969.

    Google Scholar 

  3. Cameron, D. A., Robinson, R. A.: The presence of crystals in the cytoplasm of large cells adjacent to sites of bone absorption. J. Bone Jt Surg.40, 414–418 (1958).

    Google Scholar 

  4. Daems, W. T., Wisse, E., Brederoo, P.: Electron microscopy of the vacuolar apparatus. Lysosomes in biology and pathology (J. T. Dingle and H. B. Fell, eds.), vol. 1, p. 64–114. Amsterdam-London: North-Holland Publ. Co. 1969.

    Google Scholar 

  5. Duve, C. de, Wattiaux, R.: Functions of lysosomes. Ann. Rev. Physiol.28, 435–492 (1966).

    Article  Google Scholar 

  6. Ericsson, J. L. E.: Absorption and decomposition of homologous hemoglobin in renal proximal tubular cells. An experimental light and electron microscopic study. Acta path. microbiol. scand., Suppl.168, 1–121 (1964).

    Google Scholar 

  7. Gonzales, F., Karnovsky, M.: Electron microscopy of osteoclasts in healing fractures of rat bone. J. biophys. biochem. Cytol.9, 299–316 (1961).

    PubMed  Google Scholar 

  8. Göthlin, G., Ericsson, J. L. E.: Unpublished observations (1970).

  9. Hancox, N.: The osteoclast. The biochemistry and physiology of bone (G. H. Bourne, ed.), p. 213–250. New York: Academic Press 1956.

    Google Scholar 

  10. Hancox, N. M., Boothroyd, B.: Ultrastructure of bone formation and resorption. Modern trends in orthopaedics, vol. 4, p. 26–52 (J. M. P. Clark) London: Butterworths 1964.

    Google Scholar 

  11. Russell, R. G. G., Fleisch, H.: Inorganic pyrophosphate and pyrophosphatases in calcification and calcium homeostasis. Clin. Orthop. Rel. Res.69, 101–117 (1970).

    Google Scholar 

  12. Scott, B. L.: The occurrence of specific cytoplasmic granules in the osteoclast. J. Ultrastruct. Res.19, 417–431 (1967).

    Article  PubMed  Google Scholar 

  13. Scott, B. L., Pease, D. C.: Electron microscopy of the epiphysal apparatus. Anat. Rec.126, 465–495 (1956).

    Article  PubMed  Google Scholar 

  14. Vatassery, G. T., Singer, L., Armstrong, W. D.: Hydrolysis of pyrophosphate and ester phosphates by bone extracts. Calc. Tiss. Res.5, 189–195 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göthlin, G., Ericsson, J.L.E. Observations on the mode of uptake of thorium dioxide particles by osteoclasts in fracture callus. Calc. Tis Res. 10, 216–222 (1972). https://doi.org/10.1007/BF02012551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02012551

Key words

Navigation