Skip to main content
Log in

Permeation characteristics of isolated cuticles of Citrus aurantium L. for monoterpenes

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

Permeation parameters of isolated cuticular membranes of Citrus aurantium L. for gaseous monoterpenes were determined by an isostatic system. For α-pinene and d-limonene permeability coefficients range from 4.3 × 10−11 m−2 s−1 to 7.3 × 10−11 m−2 s−1. These values can be compared to that measured for benzene gas at the cuticle of Citrus. The permeability coefficients of the two monoterpenes did not differ significantly, in contrast to their diffusioin coefficients. The diffusion coefficient values are 3.7 × 10−15 m−2 s−1 for limonene and 15.5 × 10−15 m−2 s−1 for α-pinene. The reason for this difference is still unclear. A dependence of the permeation parameters on the direction of the monoterpene transport could not be observed. Moreover, there are some indications that, in spite of its heterogeneous character, the cuticular membrane of Citrus is homogeneous in respect to the transport of small gaseous molecules. An exposure to environmentally relevant ozone concentrations for 6 months did not change the permeation characteristics of the membrane. Due to the high variability of the samples only a tendency towards higher permeability coefficients of cuticles treated with 80 ppb ozone was observed. This may be attributed to a reduced tension of the membrane caused by chain fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson R, Aschmann SM, Arey J (1990) Rate constants for the gas-phase reactions of OH and NO3 radicals and O3 with sabinene and camphene at 296±2K. Atmos Environ 24A: 2647–2654

    Google Scholar 

  • Becker KH, Brockmann KJ, Bechara J (1990) Production of hydrogen peroxide in forest air by reaction of ozone with terpenes. Nature 346: 256–258

    Google Scholar 

  • Becker M (1987) Permeabilität der pflanzlichen Kutikula. Bestimmung und Analyse der Transportparameter für lipophile organische Ver bindungen. Ph. D. thesis, Technische Universität, München

    Google Scholar 

  • Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1: 54–60

    CAS  Google Scholar 

  • Bischoff M (1984) Gaschromatographische und gravimetrische Untersuchung des Diffusions- und Permeationsverhaltens von Gasen und Dämpfen in Kunststoffen. Ph. D. thesis, Technische Hochschule, Stuttgart

    Google Scholar 

  • Corchnoy SB, Atkinson R (1990) Kinetics of the gas-phase reactions of OH and NO3 radicals with 2-carene, 1,8-cineole, p-cymene, and terpinolene. Environ Sci Technol 24: 1497–1502

    Google Scholar 

  • DeLassus PT (1985) Transport of unusual molecules in polymer films. Proceedings of the polymers, laminations and coatings conference. TAPPI 2: 445–450

    Google Scholar 

  • Felder RM, Huvard GS (1980) Permeation, diffusion, and sorption of gases and vapors. In: Marton L, Marton C (eds) Methods of experimental physics. Polymers, Physical properties, vol. 16 C. Academic Press, New York, pp 315–377

    Google Scholar 

  • Felder RM, Spence RD, Ferrell JK (1975) A method for the dynamic measurement of diffusivities of gases in polymers. J Appl Polym Sci 19: 3193–3200

    Google Scholar 

  • Gäb S, Hellpointner E, Turner WV, Korte F (1985) Hydroxymethyl hydroperoxide and bis(hydroxymethyl) peroxide from gas-phase ozonolysis of naturally occurring alkenes. Nature 316: 535–536

    Google Scholar 

  • Geyer U, Schönherr J (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticle. I. Water permeability of isolated cuticular membranes. Planta 180: 147–153

    Google Scholar 

  • Graedel TE (1979) Terpenoids in the atmosphere. Rev Geophys Space Phys 15: 937–947

    Google Scholar 

  • Hanover J (1972) Factors affecting the release of volatile chemicals by forest trees. Mitt Forstl Bundes-Versuchsanst Wien 97: 625–644

    Google Scholar 

  • Hernandez RJ, Giacin JR, Baner AL (1986) The evaluation of the aroma barrier properties of polymer films. J Plastic Film Sheeting 2: 187–211

    Google Scholar 

  • Hewitt CN, Kok GL (1991) Formation and occurrence of organic hydroperoxides in the troposphere: laboratory and field observations. J Atmos Chem 12: 181–194

    Google Scholar 

  • Jeffree CE, Johnson RPC, Jarvis PG (1971) Epicuticular wax in the stomatal antechamber of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98: 1–10

    Google Scholar 

  • Kerler F, Schönherr J (1988) Permeation of lipophilic chemicals across plant cuticles: prediction from partition coefficients and molar volumes. Arch Environ Contam Toxicol 17: 7–12

    Google Scholar 

  • Kerstiens G, Lendzian KJ (1989) Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytol 112: 13–19

    Google Scholar 

  • Lamb B, Guenther A, David G, Westberg H (1987) A national inventory of biogenic hydrocarbon emissions. Atmos Environ 21: 1695–1705

    Google Scholar 

  • Lendzian KJ (1982) Gas permeability of plant cuticles. Oxygen permeability. Planta 155: 310–315

    Google Scholar 

  • Lendzian KJ (1984) Permeability of plant cuticles to gaseous air pollutants. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 77–81

    Google Scholar 

  • Lendzian KJ, Kerstiens G (1988) Interactions between plant cuticles and gaseous air pollutants. Aspects Appl Biol 17: 97–104

    Google Scholar 

  • Lendzian KJ, Kerstiens G (1991) Sorption and transport of gases and vapors in plant cuticles. Rev Environ Contam Toxicol 121: 65–128

    CAS  Google Scholar 

  • Michelozzi M, Squillace AE, White TL (1990) Monoterpene composition and fusiform rust resistance in slash pine. For Sci 36: 470–475

    Google Scholar 

  • Mohney SM, Hernandez RJ, Giacin JR, Harte BR, Miltz J (1988) Permeability and solubility of d-limonene vapor in cereal package liners. J Food Sci 53

  • Pasternak RA, Schimscheimer JF, Heller J (1970) A dynamic approach to diffusion and permeation measurements. J Polym Sci 8: 467–479

    Google Scholar 

  • Payer HD, Bosch Chr, Blank LW, Eisenmann T, Runkel KH (1986) Beschreibung der Expositionskammern und der Versuchsbedingungen bei der Belastung von Pflanzen mit Luftschadstoffen und Klimastreß. Forstwiss Centralbl 105: 207–218

    Google Scholar 

  • Raffa KF, Berryman AA, Simasko J, Teal W, Wong BL (1985) Effects of grand fir monoterpenes on the fir engraver. Scolytus ventralis (Coleoptera: Scolytidae) and its symbiotic fungus. Environ Entomol 14: 552–556

    Google Scholar 

  • Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  • Schmid C (1991) Sorptions- und Permeationseigenschaften der pflanzlichen Cuticula für Monoterpene. Ph. D. thesis, Technische Universität, München

    Google Scholar 

  • Schmid C, Steinbrecher R, Ziegler H (1991) Partition coefficients of plant cuticles for monoterpenes. Trees (in press)

  • Schönherr J (1976) Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water. Planta 131: 159–164

    Google Scholar 

  • Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. Springer, Berlin Heidelberg New York, pp 153–179

    Google Scholar 

  • Schönherr J, Riederer M (1986) Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ 9: 459–466

    Google Scholar 

  • Schönherr J, Riederer M (1988) Desorption of chemicals from plant cuticles: evidence for asymmetry. Arch Environ Contam Toxicol 17: 13–19

    Google Scholar 

  • Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam Toxicol 18: 1–70

    Google Scholar 

  • Schreiber L, Schönherr J (1990) Phase transition and thermal expansion coefficients of plant cuticles. The effects of temperature on structure and function. Planta 182: 186–193

    Google Scholar 

  • Steinbrecher R (1989) Gehalt und Emission von Monoterpenen in oberirdischen Organen von Picea abies (L.) Karst. Ph. D. thesis, Technische Universität, München

    Google Scholar 

  • Tyree MT, Scherbatskoy TD, Tabor CA (1990) Leaf cuticles behave as asymmetric membranes. Evidence from the measurement of diffusion potentials. Plant Physiol 92: 103–109

    Google Scholar 

  • Ziegel KD, Frensdorff HK, Blair DE (1969) Measurement of hydrogen isotope transport in poly(vinyl fluoride) films by the permeation-rate method. J Polym Sci 7: 809–819

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Dr. Otto Härtl, Graz, on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, C., Ziegler, H. Permeation characteristics of isolated cuticles of Citrus aurantium L. for monoterpenes. Trees 6, 172–177 (1992). https://doi.org/10.1007/BF00202433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202433

Key words

Navigation