Skip to main content
Log in

Stomatal conductance and transpiration of the two faces of Acacia phyllodes

  • Published:
Trees Aims and scope Submit manuscript

Summary

The daily course of stomatal conductance and transpiration was monitored on each separate face of vertical phyllodes of various acacias. The selected phyllodes had a north-south orientation so that one side faced eastwards and the other westwards. The principal measurements were made on Acacia longifolia and A. melanoxylon in Portugal in late summer and autumn, and additional measurements were made on A. ligulata and A. melanoxylon in Australia. In Portugal, irrespective of soil moisture status, conductance showed on early morning maximum with a subsequent gradual decline and sometimes a subsidiary peak in the late afternoon. Maximum conductances appeared to be a function of soil moisture status, whereas the decline in conductance in the late morning and afternoon was correlated with changes in phyllode-to-air vapour pressure deficits rather than changes in phyllode water status. The relationship of transpiration to phyllode water potential did not appear to be influenced by soil moisture status, although transpiration was less in drier soils and in the afternoons, this latter factor contributing to a marked hysteresis in the relationship. The opposing faces of the phyllodes exhibited a high degree of synchrony, showing parallel stomatal opening and closing, despite their large differences in irradiance. Stomatal conductance tended to be higher on the eastern faces in the morning and lower in the afternoon. In A. longifolia the daily average of relative conductance was much the same for both faces, but in A. melanoxylon that of the eastern face was higher and was retained even when the normal orientation of the phyllodes was reversed by turning them through 180°. Synchrony must be achieved by the stomata of both sides responding to common environmental or endogenous signals which are perceived by both surfaces with equal sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beadle NLW (1981) The vegetation of Australia. Fischer, Stuttgart New York

    Google Scholar 

  • Bertsch A, Domes W (1969a) CO2-Gaswechsel amphistomatischer Blätter, 1. Der Einfluß unterschiedlicher Stomataverteilung der beiden Blattepidermen auf den CO2-Transport. Planta 85: 183–193

    Google Scholar 

  • Bertsch A, Domes W (1969b) CO2-Gaswechsel amphistomatischer Blätter. 3. Das unterschiedliche Zeitverhalten der Stomata beider Blattseiten in Abhängigkeit von der vorausgegangenen Dunkelzeit. Planta 89: 47–55

    Google Scholar 

  • Beyschlag W (1984) Photosynthese und Wasserhaushalt von Arbutus unedo L. im Jahreslauf am Freilandstandort in Portugal. Gaswechselmessungen unter natürlichen Bedingungen und experimentelle Faktorenanalyse. Thesis, Würzburg

  • Beyschlag W, Lange OL, Tenhunen JD (1986) Photosynthese und Wasserhaushalt der mediterranen Hartlaubpflanze Arbutus unedo L. im Jahreslauf am Freilandstandort in Portugal. I. Tagesläufe von CO2-Gaswechsel und Transpiration unter natürlichen Bedingungen. Flora (Jena) 178: 409–444

    Google Scholar 

  • Darwin FD (1897) Observations on stomata by a new method. Proc Cambridge Philos Soc 9: 303–308

    Google Scholar 

  • Driessche van den R, Connor DJ, Tunstall BR (1971) Photosynthetic response of brigalow to irradiance, temperature and water potential. Photosynthetlca 5: 210–217

    Google Scholar 

  • Fuchsig H (1914) Untersuchungen über die Transpiration und den anatomischen Bau der Fiederblätter und Phyllodien einiger Acacia-Arten. Bot Jahrb 51: 472–500

    Google Scholar 

  • Gifford RM, Musgrave RB (1973) Stomatal role in the variability of net CO2 exchange rates by two maize inbreds. Aust J Biol Sci 26: 35–44

    Google Scholar 

  • Hall AE, Schulze E-D, Lange OL (1976) Current perspectives of steady-state stomatal responses to environment. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecol Stud 19: 169–188

  • Hellmuth EO (1969) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia. II. Field physiology of Acacia craspedocarpa F. Muell. J Ecol 57: 613–634

    Google Scholar 

  • Hellmuth EO (1971a) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia. III. Comparative studies on photosynthesis, respiration and water relations of ten and zone and two semi-arid zone plants under winter and late summer climatic conditions. J Ecol 59: 225–259

    Google Scholar 

  • Hellmuth EO (1971b) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia. IV. Comparison of the field physiology of the host, Acacia grasbyi and its hemiparasite, Amyema nestor under optimal and water stress conditions. J Ecol 59: 351–363

    Google Scholar 

  • Kaplan DR (1980) Heteroblastic leaf development in Acacia. Morphological and morphogenetic implications. Cellule 73: 137–203

    Google Scholar 

  • Körner C, Cochrane P (1985) Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia (Berlin) 66: 443–455

    Google Scholar 

  • Kowalik PJ, Turner NC (1983) Diurnal changes in the water relations and transpiration of a soybean crop simulated during the development of water deficits. Irrig Sci 4: 225–238

    Google Scholar 

  • Küppers M, Wheeler AM, Küppers BIL, Kirschbaum MUF, Farquhar GD (1986) Carbon fixation in eucalypts in the field. Analysis of diurnal variations in photosynthetic capacity. Oecologia (Berlin) 70: 273–282

    Google Scholar 

  • Lange OL, Koch W, Schulze E-D (1969) CO2-Gaswechsel und Wasserhaushalt von Pflanzen in der Negev Wüste am Ende der Trockenzeit. Ber Dtsch Bot Ges 82: 39–61

    Google Scholar 

  • Lange OL, Lösch R, Schulze E-D, Kappen L (1971) Responses of stomata to changes in air humidity. Planta 100: 76–86

    Google Scholar 

  • Lange OL, Tenhunen JD, Braun M (1982) Midday stomatal closure in mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. I. Comparison of the behaviour of various European mediterranean species. Flora (Jena) 172: 563–579

    Google Scholar 

  • Leick E (1927) Untersuchungen über den Einfluß des Lichtes auf die Öffnungsweite unterseitiger und oberseitiger Stomata desselben Blattes. I. Jahrb Wiss Bot 67: 771–848

    Google Scholar 

  • Lemesle R (1963) Contribution a l'étude histologique des phyllodes chez les Acacia Australiens. Rev Gen Bot 70: 235–257

    Google Scholar 

  • Lösch R (1979) Stomatal responses to changes in air humidity. In: Sen DN (ed) Structure, function and ecology of stomata. Bishen Singh Mahendra Pal Singh, Dehra Dun (India), pp 189–116

    Google Scholar 

  • Mott KA, O'Leary JW (1984) Stomatal behavior and CO2 exchange characteristics in amphistomatous leaves. Plant Physiol 74: 47–51

    Google Scholar 

  • Mott KA, Gibson AC, O'Leary JW (1982) The adaptive significance of amphistomatous leaves. Plant Cell Environ 5: 455–460

    Google Scholar 

  • Parkhurst DF (1978) The adaptive significance of stomatal occurrence on one or both surfaces of leaves. J Ecol 66: 367–383

    Google Scholar 

  • Pereira JS, Tenhunen JD, Lange OL, Beyschlag W, Meyer A, David MM (1986) Seasonal and diurnal patterns in leaf gas exchange of Eucalyptus globulus trees growing in Portugal. Can J For Res 16: 177–184

    Google Scholar 

  • Peters T (1926) Anatomische Untersuchungen an phyllodiinen Akazien. Bein Bot Centralbl 43: 204–254

    Google Scholar 

  • Pospíšilová J, Solárová J (1980) Environmental and biological control of diffusive conductances of adaxial and abaxial epidermes. Photosynthetica 14: 90–127

    Google Scholar 

  • Raschke K (1979) Movements of stomata. In: Haupt W, Feinleib ME (eds) Encyclopedia of plant physiology, vol 7. Springer, Berlin Heidelberg New York, pp 383–441

    Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal response, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. II. Water relations and carbon assimilation. Encyclopedia of plant physiology, vol 12B. Springer, Berlin Heidelberg New York, pp 181–230

    Google Scholar 

  • Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1974) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily time course of stomatal resistance. Oecologia (Berlin) 17: 159–170

    Google Scholar 

  • Schulze E-D, Hall EA, Lange OL, Walz H (1982) A portable steady-state porometer for measuring the carbon dioxide and water vapour exchange of leaves under natural conditions. Oecologia (Berlin) 53: 141–145

    Google Scholar 

  • Slavik B (1974) Methods of studying plant water relations. Ecological studies 9. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tenhunen JD, Lange OL, Jahner D (1982) The control by atmospheric factors and water stress of midday stomatal closure in Arbutus unedo growing in a natural macchia. Oecologia (Berlin) 55: 165–169

    Google Scholar 

  • Tenhunen JD, Lange OL, Gebel J, Beyschlag W, Weber JA (1984) Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of CO2 exchange of leaves of Quercus suber. Planta 162: 193–203

    Google Scholar 

  • Tenhunen JD, Lange OL, Harley PC, Beyschlag W, Meyer A (1985) Limitations due to water stress on leaf net photosynthesis of Quercus coccifera in the Portuguese evergreen scrub. Oecologia (Berlin) 67: 23–30

    Google Scholar 

  • Tichá I (1982) Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and size. Photosynthetica 16: 375–471

    Google Scholar 

  • Turner NC (1979) Differences in response of adaxial and abaxial stomata to environmental variables. In: Sen DN (ed) Structure, function and ecology of stomata. Bishen Singh Mahendra Pal Singh, Dehra Dun (India), pp 229–250

    Google Scholar 

  • Turner NC, Singh DP (1984) Responses of adaxial and abaxial stomata to light and water deficits in sunflower and sorghum. New Phytol 96: 187–195

    Google Scholar 

  • Ullmann I, Lange OL, Ziegler H, Ehleringer J, Schulze E-D, Cowan IR (1985) Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in Central Australia. Oecologia (Berlin) 67: 577–587

    Google Scholar 

  • Walter H, Breckle S-W (1984) Spezielle Ökologie der Tropischen und Subtropischen Zonen. (Ökologie der Erde, vol 2) Fischer, Stuttgart

    Google Scholar 

  • Walters GA, Bartholomew DP (1984) Acacia koa leaves and phyllodes: gas exchange, morphological, anatomical and biochemical characteristics. Bot Gaz 145: 351–357

    Google Scholar 

  • Whibley OJE (1980) Acacias of South Australia. DJ Woolman, Government Printer, S.A.

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1978) Leaf conductance in relation to assimilation in Eucalyptus pauciflora Sieb. ex Spreng.: influence of irradiance and partial pressure of carbon dioxide. Plant Physiol 62: 670–674

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1985) Leaf conductance in relation to rate of CO2 assimilation. II. Effects of shortterm exposures to different photon flux densities. Plant Physiol 78: 826–829

    Google Scholar 

  • Wood JG (1934) The physiology of xerophytism in Australian plants. The stomatal frequencies, transpiration and osmotic pressures of sclerophyll and tomentose-succulent leaved plants. J Ecol 22: 69–87

    Google Scholar 

  • Yera R, Davis S, Frazer J, Tallman G (1986) Responses of adaxial and abaxial stomata of normally oriented and inverted leaves of Vicia faba L. to light. Plant Physiol 82: 384–389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, O.L., Ullmann, I., Tenhunen, J.D. et al. Stomatal conductance and transpiration of the two faces of Acacia phyllodes. Trees 1, 110–122 (1987). https://doi.org/10.1007/BF00203579

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203579

Keywords

Navigation