Skip to main content
Log in

Nuclear Magnetic Resonance and Infrared Spectroscopic Analysis of Nedocromil Hydrates

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Nedocromil sodium (NS), which is used in the treatment ofreversible obstructive airway diseases, such as asthma, has been foundto exist in the following solid phases: the heptahemihydrate, thetrihydrate, a monohydrate, an amorphous phase, which contains variableamounts of water, and a recently discovered methanol + water (MW)solvate. Our aim was to apply 13C solid-state nuclear magneticresonance (NMR) spectroscopy and solid-state Fourier transform infrared(FTIR) spectroscopy to the study of specific interactions in the varioussolid forms of NS.

Methods. The 13 solid-state NMR and FTIR spectra of the varioussolid forms of NS were obtained and were related to the crystalstructures of NS, the conformations of the nedocromil anion, and theinteractions of the water molecules in these crystals.

Results. The 13C solid-state NMR spectrum is sensitive to theconformation of the nedocromil anion, while the solid-state FTIR spectrumis sensitive to interactions of water molecules in the solid state. In NSmonohydrate, for which the crystal structure has not yet been solved,and in the amorphous phase, the information about the conformationsof the nedocromil anion and the interactions of the water moleculesare deduced from the 13C solid-state NMR spectra and solid-state FTIRspectra, respectively.

Conclusions. 13C solid-state NMR spectroscopy and solid-state FTIRspectroscopy are shown to be powerful complementary tools forprobing the chemical environment of molecules in the solid state,specifically the conformation of the nedocromil anion and the interactions ofwater-molecules, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. G. Brittain (ed.). Polymorphism in Pharmaceutical Solids, Marcel Dekker, Inc., New York, 1999.

    Google Scholar 

  2. T. L. Threlfall. Analysis of organic polymorphs. Analyst. 120:2435–60 (1995).

    Google Scholar 

  3. C. Fyfe. Solid-state NMR for Chemists. C. F. C. Press, Guelph, Ontario, Canada, 1983.

    Google Scholar 

  4. M. C. Etter and G. M. Vojta. The use of solid-state NMRand X-ray crystallography as complementary tools for studying molecular recognition. J. Mol. Graphics 7:3–11 (1989).

    Google Scholar 

  5. D. Bugay. Solid-state nuclear magnetic resonance spectroscopy: theory and pharmaceutical applications. Pharm. Res. 10:317–32 (1993).

    Google Scholar 

  6. D. E. Bugay. Magnetic Resonance Spectrometry. In H. G. Brittain (ed.), Physical Characterization of Pharmaceutical Solids, Marcel Dekker, Inc., New York, 1995, pp. 93–126.

    Google Scholar 

  7. D. E. Bugay and A. C. Williams. Vibrational Spectroscopy. In H. G. Brittain (ed.), Physical Characterization of Pharmaceutical Solids, Marcel Dekker, Inc., New York, 1995, pp. 59–92.

    Google Scholar 

  8. D. A. Skoog and J. J. Leary. Principles of Instrumental Analysis, Harcourt Brace College Publishers, New York, 1992, pp. 252–295.

    Google Scholar 

  9. R. Khankari, L. R. Chen, and D. J. W. Grant. Physical characterization of nedocromil sodium hydrates. J. Pharm. Sci. 97:1052–1061 (1998).

    Google Scholar 

  10. H. Cairns, D. Cox, K. J. Gould, A. H. Ingall, and J. L. Suschitzky. New anti-allergic pyrano[3,2-g]quinoline-2,8,-dicarboxylic acids with potential for the topical treatment of asthma. J. Med. Chem. 28:1832–1842 (1985).

    Google Scholar 

  11. L. R. Chen, V. Young, B. E. Padden, E. J. Munson, and D. J. W. Grant. Structural and physicochemical characterization of a new mixed methanol 1 water solvate of nedocromil sodium. Pharm. Res. 14:S-202 (1997).

    Google Scholar 

  12. L. R. Chen. Solid-state Behavior of Pharmaceutical Hydrates. Ph.D Thesis, University of Minnesota, 1999, pp. 63–109, 110¶ 155.

  13. A. A. Freer, D. W. Payling, and J. L. Suschitzky. Structure of nedocromil sodium: a novel anti-asthmatic agent. Acta Crystallog. C43:1900–1905 (1987).

    Google Scholar 

  14. R. K. Khankari, W. H. Ojala, W. Gleason, and D. J. W. Grant. Crystal structure of nedocromil sodium heptahemihydrate and its comparison with that of nedocromil sodium trihydrate. J. Chem. Crystallog. 25:863–70 (1995).

    Google Scholar 

  15. F. Gölles. The examination and calculation of thermodynamic data from experimental measurements. I. The numerical integration of the vapor-pressure curves of the system methanol-water. Monatsh. Chem. 92:981–991 (1961).

    Google Scholar 

  16. L. R. Chen and D. J. W. Grant. Effect of water vapor pressure on the dehydration kinetics of nedocromil sodium trihydrate. Pharm. Res. 13:S-356 (1996).

    Google Scholar 

  17. W. T. Dixon, J. Schaefer, M. D. Sefcik, E. O. Stejskal, and R. A. McKay. Total suppression of sidebands in CP/MAS 13C NMR. J. Magn. Reson. 49:341–5 (1982).

    Google Scholar 

  18. W. T. Dixon. Spinning-sideband-free and spinning-sideband only NMRspectra in spinning samples. J. Chem. Phys. 77:1800 (1982).

    Google Scholar 

  19. S. J. Opella and M. H. J. Frey. Selection of nonprotonated carbon resonances in solid-state nuclear magnetic resonance, J. Am. Chem. Soc. 101:5854–5856 (1979).

    Google Scholar 

  20. D. Lin-Vein, N. B. Colthup, W. G. Fateley, and J. G. Grasselli. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York, 1991.

    Google Scholar 

  21. R. M. Silverstein, G. C. Bassler, and T. C. Morrill. Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York, 1991, pp. 91–164.

    Google Scholar 

  22. M. Falk and P. Knop. Water in Stoichiometric Hydrates. In F Franks (ed.), Water, a Comprehensive Treatise, Vol. 2. Plenum Press, New York, 1973, pp. 55–113.

    Google Scholar 

  23. W. C. Hamilton and J. A. Ibers. Hydrogen Bonding in Solids. W. A. Benjamin, Inc., New York, 1968.

    Google Scholar 

  24. J. Kleeberg (ed.). Structure and Bonding. Springer-Verlag, Berlin, Heidelberg, 1988, pp. 97–125.

    Google Scholar 

  25. H. Brittain, D. Bugay, S. Bogdanowich, and J. DeVincentis. Spectral methods for determination of water. Drug. Dev. Ind. Pharm. 14:2029–2046 (1988).

    Google Scholar 

  26. G. Brink and M. Falk. Infrared studies of water in crystalline hydrates: LiI.3H2O. Can. J. Chem. 49:347–351 (1970).

    Google Scholar 

  27. H. Zhu, R. K. Khankari, B. E. Padden, E. J. Munson, W. B. Gleason, and D. J. W. Grant. Physicochemical characterization of nedocromil bivalent metal salt hydrates. 1. Nedocromil magnesium. J. Pharm. Sci. 85:10261–1034 (1996).

    Google Scholar 

  28. H. Zhu, J. A. Halfen, V. G. Young Jr., B. E. Padden, E. J. Munson, V. Menon, and D. J. W. Grant. Physicochemical characterization of nedocromil bivalent metal salt hydrates: 2. Nedocromil zinc. J. Pharm. Sci. 86:418–429 (1997).

    Google Scholar 

  29. W. H. Ojala, R. K. Khankari, D. J. W. Grant, and W. B. Gleason. Crystal structure and physical chemical properties of nedocromil zinc heptahydrate and nedocromil magnesium pentahydrate. J. Chem. Crystallog. 26:167–178 (1996).

    Google Scholar 

  30. H. Zhu, J. A. Halfen, V. G. Young Jr., B. E. Padden, E. J. Munson, V. Menon, and D. J. W. Grant. Physicochemical characterization of nedocromil bivalent metal salt hydrates: 3. Nedocromil calcium. J. Pharm. Sci. 86:1439–1447 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L.R., Padden, B.E., Vippagunta, S.R. et al. Nuclear Magnetic Resonance and Infrared Spectroscopic Analysis of Nedocromil Hydrates. Pharm Res 17, 619–624 (2000). https://doi.org/10.1023/A:1007533419711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007533419711

Navigation