Skip to main content
Log in

Energy deposition in metals by laser-guided discharges

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Experimental and theoretical results are reported concerning energy deposition on metal surfaces by laser-guided discharges (LGD) in argon and nitrogen at atmospheric pressure. These experiments have demonstrated effective guidance of 30-kV discharges for lengths up to 6 cm. The electron temperature and density have been measured spectroscopically for LGD plasmas. Scaling of the melted metallic mass has been studied as a function of discharge circuit parameters for both argon and nitrogen. Results show that laser-guided discharges in nitrogen couple energy to metal samples more efficiently than argon discharges with identical electrical parameters. This experimentally observed difference in energy deposition has been shown to be in good agreement with a theoretical model which accounts for the recombination energy of nitrogen on the metallic surface. Melting has been accomplished by LGDs in copper, iron, aluminum, and titanium foils. Laser-guided discharges have also bored holes and deposited surface layers of aluminum and titanium onto stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Greig, D. W. Koopman, R. F. Fernsler, R. E. Pechacek, I. M. Vitkovitsky, and A. W. Ali,Phys. Rev. Lett. 41, 174 (1978).

    Google Scholar 

  2. D. W. Koopman, J. R. Greig, R. E. Pechacek, A. W. Ali, I. M. Vitkovitsky, and R. F. Fernsler,J. Phys. (Paris) Colloq. Suppl. 7 40, 419 (1979).

    Google Scholar 

  3. D. W. Koopman and K. A. Saum,J. Appl. Phys. 44, 5328 (1973).

    Google Scholar 

  4. K. A. Saum and D. W. Koopman,Phys. Fluids 15, 2077 (1972).

    Google Scholar 

  5. R. M. Gilgenbach, O. E. Ulrich, and L. D. Horton,Rev. Sci. Instrum. 54, 109 (1983).

    Google Scholar 

  6. H. Griem,Plasma Spectroscopy, McGraw Hill, New York (1964), p. 538.

    Google Scholar 

  7. M. Rayleigh and J. R. Greig, NRL Memorandum Report 4556, May 1982.

  8. R. E. Orville, Chapter 8, Lightning Spectroscopy, inLightning, Vol. I. R. H. Golde, ed., Academic Press, New York (1977).

    Google Scholar 

  9. M. L. Prueitt,J. Geophys. Res. 68, 803 (1963).

    Google Scholar 

  10. R. E. Orville and L. E. Salanave,Appl. Opt. 9, 1775 (1970).

    Google Scholar 

  11. M. A. Uman and R. E. Orville,J. Geophys. Res. 69, 5151 (1964).

    Google Scholar 

  12. R. D. Hill,J. Geophys. Res. 76, 637 (1971).

    Google Scholar 

  13. M. W. Thring, Plasma Engineering, inProperties and Applications of Low-Temperature Plasma, Plenum Press, New York (1966).

    Google Scholar 

  14. D. L. Baulch, D. P. Drysdale, D. G. Horne, and A. C. Lloyd,Evaluated Kinetic Data for High-Temperature Reactions, Vol. II, Homogeneous Gas-Phase Reactions of H2-N2-O2 System, Butterworths, London (1973).

    Google Scholar 

  15. M. L. Rahman and J. W. Linnett,Trans. Faraday Soc. 67, 183 (1971).

    Google Scholar 

  16. A. C. Hindmarsh and G. D. Bryne,episode: An experimental Package for the Integration of Systems of Ordinary Differential Equations, Lawrence Livermore Laboratory, UCID-30112, May 1975.

  17. George Bekefi, editor,Principles of Laser Physics, John Wiley, New York (1976), p. 4.

    Google Scholar 

  18. Handbook of Chemistry and Physics, 51st edn., The Chemical Rubber Co., Cleveland (1970).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brake, M.L., Gilgenbach, R.M., Horton, L.D. et al. Energy deposition in metals by laser-guided discharges. Plasma Chem Plasma Process 3, 367–381 (1983). https://doi.org/10.1007/BF00564625

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00564625

Key words

Navigation