Skip to main content
Log in

Dissociation quotient of benzoic acid in aqueous sodium chloride media to 250°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The dissociation quotient of benzoic acid was determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of benzoic acid/benzoate solutions was measured relative to a standard aqueous HCl solution at seven temperatures from 5 to 250°C and at seven ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and selected literature data were fitted in the isocoulombic (all anionic) form by a six-term equation. This treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25°C and 1 bar: logKa=−4.206±0.006, ΔH oa =0.3±0.3 kJ-mol−1, ΔS oa =−79.6±1.0 J-mol−1-K−1, and ΔC op;a =−207±5 J-mol−1-K−1. A five-term equation derived to describe the dependence of the dissociation constant on solvent density is accurate to 250°C and 200 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Hammett, Physical Organic Chemistry: Reaction Rates, Equilibria, and Mechanisms (McGraw-Hill, New York, 1970).

    Google Scholar 

  2. P. R. Wells,Chem. Rev. 63, 171 (1963).

    Google Scholar 

  3. T. Matsui, H. C. Ko, and L. G. Hepler,Can. J. Chem.,52, 2906 (1974).

    Google Scholar 

  4. J. Albaiges, F. Casado, and F. Ventura,Wat. Res. 20, 1153 (1986).

    Google Scholar 

  5. G. M. Williams, B. Smith, and C. A. M. Ross,Org. Geochem.,19, 531 (1992).

    Google Scholar 

  6. G. L. Furney and D. F. Goerlitz,Ground Water Monit. Rev. 10, 187 (1990).

    Google Scholar 

  7. A. A. Pohlman and J. G. McColl,Soil Sci. Soc. Am. J. 52, 265 (1988).

    Google Scholar 

  8. V. A. Elder, B. L. Proctor, and R. A. Hites,Biomed. Mass Spectrom.,8, 409 (1981).

    Google Scholar 

  9. R. Dayal, R. F. Pietrzak, and J. H. Clinton,Nucl. Technol. 72, 158 (1986).

    Google Scholar 

  10. J. B. Fisher and J. R. Boles,Chem. Geol. 82, 83 (1990).

    Google Scholar 

  11. T. Barth,Anal. Chem. 59, 2232 (1987).

    Google Scholar 

  12. M. F. Torpy, R. G. Luthy, and L. A. Raphaelian,Biotechnol. Bioeng.,25, 3163 (1983).

    Google Scholar 

  13. F. A. Barber and F. D. Guffey,ASTM Spec. Pub. 720, 38 (1980).

    Google Scholar 

  14. T. I. Eglinton, C. D. Curtis, and S. J. Rowland,Mineral. Mag. 51, 495 (1987).

    Google Scholar 

  15. J. G. Travers, K. G. McCurdy, D. Dolman, and L. G. Hepler,J. Solution Chem. 4, 267 (1975).

    Google Scholar 

  16. A. J. Read,J. Solution Chem. 10, 437 (1981).

    Google Scholar 

  17. T. Matsui, H. C. Ko, and L. G. Hepler,Can. J. Chem. 52, 2912 (1974).

    Google Scholar 

  18. J. M. Wilson, N. E. Gore, J. E. Sawbridge, and F. Cardenas-Cruz,J. Chem. Soc. (B) 649 (1965).

  19. P. D. Bolton, K. A. Fleming, and F. M. Hall,J. Am. Chem. Soc. 94, 1033 (1972).

    Google Scholar 

  20. F. Rodante, F. Rallo, and P. Fiordiponti,Thermochim. Acta 9, 269 (1974).

    Google Scholar 

  21. J. J. Christensen, R. M. Izatt, and L. D. Hansen,J. Am. Chem. Soc. 89, 213 (1967).

    Google Scholar 

  22. A. J. Ellis,J. Chem. Soc. 2299 (1963).

  23. A. V. Jones and H. N. Parton,Trans. Faraday Soc. 48, 8 (1952).

    Google Scholar 

  24. W. J. Canady, H. M. Papée, and K. J. Laidler,Trans. Faraday Soc. 54, 502 (1958).

    Google Scholar 

  25. C. S. Leung and E. Grunwald,J. Phys. Chem. 74, 687 (1970).

    Google Scholar 

  26. L. E. Strong, C. L. Brummel, R. Ryther, J. R. Radford, and A. D. Pethyridge,J. Solution Chem. 12, 1145 (1988).

    Google Scholar 

  27. G. Breigleb and A. Bieber,Z. Electrochem. 55, 250 (1951).

    Google Scholar 

  28. B. S. Smolyakov and M. P. Primanchuk,Russ. J. Phys. Chem. 40, 331 (1966).

    Google Scholar 

  29. A. DeRobertis, C. DeStefano, C. Rigano, and S. Sammartano,J. Solution Chem. 19, 569 (1990).

    Google Scholar 

  30. J. Steigman and D. Sussman,J. Am. Chem. Soc. 89, 6400 (1967).

    Google Scholar 

  31. J. Gulinski, U. Maciejewska, and R. Stewart,J. Solution Chem. 17, 297 (1988).

    Google Scholar 

  32. R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton,J. Phys. Chem. 74, 1937 (1970).

    Google Scholar 

  33. D. J. Wesolowski, S. E. Drummond, R. E. Mesmer, and H. Ohmoto,Inorg. Chem. 23, 1120 (1984).

    Google Scholar 

  34. R. M. Kettler, D. A. Palmer, and D. J. Wesolowski,J. Solution Chem. 20, 905 (1991).

    Google Scholar 

  35. C. F. Baes, Jr. and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  36. A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1965).

    Google Scholar 

  37. R. E. Mesmer and H. F. Holmes,J. Solution Chem. 21, 725 (1992).

    Google Scholar 

  38. R. H. Busey and R. E. Mesmer,J. Chem. Eng. Data 23, 175 (1978).

    Google Scholar 

  39. H. T. Briscoe and J. S. Peake,J. Phys. Chem. 42, 637 (1938).

    Google Scholar 

  40. C. Z. Draves and H. V. Tartar,J. Am. Chem. Soc. 47, 1226 (1925).

    Google Scholar 

  41. D. A. McInnes, D. Belcher, and T. Shedlovsky,J. Am. Chem. Soc. 60, 1094 (1938).

    Google Scholar 

  42. W. J. Hamer and S. F. Acree,J. Res. Natl. Bur. Stand. 33, 87 (1944).

    Google Scholar 

  43. J. J. Christensen, D. E. Smith, M. D. Slade, and R. M. Izatt,Thermochim. Acta 4, 17 (1972).

    Google Scholar 

  44. M. Kilpatrick, R. D. Eanes, and J. G. Morse,J. Am. Chem. Soc. 75, 588 (1953).

    Google Scholar 

  45. J.-P. Morel, J. Fauve, L. Avédikian, and J. Juillard,J. Solution Chem. 3, 403 (1974).

    Google Scholar 

  46. J. March,Advanced Organic Chemistry (Wiley, New York, 1985).

    Google Scholar 

  47. R. M. Kettler, D. J. Wesolowski, and D. A. Palmer,J. Solution Chem. 21, 883 (1992).

    Google Scholar 

  48. R. E. Mesmer, C. S. Patterson, R. H. Busey, and H. F. Holmes,J. Phys. Chem. 93, 7483 (1989).

    Google Scholar 

  49. J. L. S. Bell, D. J. Wesolowski, and D. A. Palmer,J. Solution Chem. 22, 125 (1993).

    Google Scholar 

  50. W. T. Lindsay,Proc. Int. Water Conf. Eng. Soc. W. Pa. 41, 284 (1980).

    Google Scholar 

  51. W. R. Busing and H. A. Levy, Oak Ridge Natl. Lab. Rep., ORNL-TM (US) ORNL-TM-271 (1963).

  52. L. Haar, J. S. Gallagher, and G. S. Kell,NBS/NRC Steam Tables. Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere, Washington, D.C., 1984).

    Google Scholar 

  53. R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes,J. Solution Chem. 17, 699 (1988).

    Google Scholar 

  54. C.-T. Liu and W. T. Lindsay, Jr.,J. Solution Chem. 1, 45 (1972).

    Google Scholar 

  55. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  56. Y. Huh, J. G. Lee, D. C. McPhail, and K. Kim,J. Solution Chem. 22, 651 (1993).

    Google Scholar 

  57. G. M. Anderson, S. Castet, J. Schott, and R. E. Mesmer,Geochim. Cosmochim. Acta 55, 1769 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettler, R.M., Wesolowski, D.J. & Palmer, D.A. Dissociation quotient of benzoic acid in aqueous sodium chloride media to 250°C. J Solution Chem 24, 385–407 (1995). https://doi.org/10.1007/BF01150876

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150876

Key Words

Navigation