Skip to main content
Log in

Some problems of the earth's magnetosphere physics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Conclusions

The study of ways of the solar wind energy penetration into the magnetosphere is one of the most important problems of the magnetosphere physics. The solution of such problems as the radiation belts origin, the determination of the magnetic storms and auroral nature is connected with this problem.

The magnetic measurements on the satellite OGO-A [157] probably indicate the possibility of the magnetosheath particles penetration into the tail through its side surface. The laboratory simulation of the solar wind flow around the magnetosphere [44–46] also indicate the comparatively rapid penetration of the incident plasma flow particles into the tail. On the other side the aurorae oval location [139–141] and the similarity of electrons spectrum in the aurorae and in the magnetic tail (according to the data of [138]) suggest that the aurorae on the earth nightside are caused by the penetration of particles from the tail plasmasheet. The dayside aurorae can probably appear as a result of the direct penetration of the solar wind particles (thermalized in the magnetosheath) in the vicinity of neutral points, as the geomagnetic field lines passing in this region intersect the earth's surface in the auroral Zone. It is reasonable to carry out the complex investigations of these regions by means of the special system of satellites. Possible experiments on the satellite passing in the region of the neutral point and requirement to the equipment onboard the satellite have been discussed in detail in [152].

In Figure 8 the sampling satellite orbits are shown passing through the regions of dayside neutral point and of neutral plane of the tail. The orbits with an apogee of about 30 R E allow us to compare the different characteristics of the geomagnetic field, trapped and auroral radiation inside the magnetosphere with the solar wind parameters (such as a direction of frozen-in magnetic field, temperature and particles concentration, etc.) and with the magnetosheath parameters. However it is difficult technically to launch a satellite into the region of the south neutral point. Besides, with the prolonged satellite existence outside the magnetosphere boundary we lose the part of the measurements inside the magnetosphere. That is why it is reasonable instead of the orbit SII in Figure 8 to launch a satellite into the north neutral point region but with a less apogee, of about 15 R E (orbit SII in Figure 9). A system of three satellites shown in Figure 9 (it is more profitable technically than the one shown in Figure 8) allows us to perform different measurements simultaneously in the solar wind, in the magnetosheath, in the vicinity of the neutral points, in the tail plasma sheet (including a neutral plane) and in the zone of auroral and trapped radiation.

By means of such a system of satellites it is possible, for example, to make a comparison of particles composition simultaneously in the denoted regions of the earth environment. This is necessary for solving many magnetosphere physics problems, for example, the mystery of aurorae. There are indications [144] that in the aurora the ratio of alpha-particles flux to proton flux (I α/Ip) is approximately the same as in the solar wind. However it is unknown in which way these particles penetrate into the aurora region; no simultaneous measurements of the ratio I α/Ip in the tail were made.

The measurements of the particles composition are also of interest in studies of different mechanisms of the particles transfer inside the magnetosphere. For example, the experiments [153–154] indicate that the ratio I α/Ip in the inner magnetosphere is approximately by two orders of magnitude less than in the solar wind, and by one order less than predicted by the theory of particles diffusion under the influence of sudden pulses.

The other experimental problems connected with the questions discussed are listed below:

  1. 1.

    The determination of the magnetopause shape above the poles and the magnetic tail shape at large distances from the earth.

  2. 2.

    The investigation of the magnetosphere asymmetry in the north-south direction, as indicated by Explorer 12 experiments [155] (such type of asymmetry is not explained by the existing theories).

  3. 3.

    The continuous magnetic measurements on the synchronous satellite (L ∼ 6.6) allow us to restore the significant parameters of the magnetosphere, if a satisfactory quantitative model is available (see for more details [51]).

  4. 4.

    A detailed study of the magnetic field distribution on the magnetosphere boundary and in its vicinity.

    In the Hones-Taylor model the lines of force located nearly to the magnetosphere forward end, according to [55], have highlatitude minima of intensity B, topologically connected with the equatorial minima B on the nightside. As a result the particles which were equatorial on the nightside, drifting to the dayside, can be put into the higher latitudes. In the Mead-Williams model drift orbit branchings do not occur [51] due to the lack of a similar topological connection. Thus, these magnetic field measurements allow us to choose between different theoretical models and along with the direct particles measurements give a possibility to determine the boundaries of regions of trapped and quasi-trapped radiation. Besides, a detailed study of magnetopause location can answer the question if the magnetosphere boundary is the surface enveloping a family of the magnetic field lines (i.e. if the magnetic field normal component vanishes on the surface of discontinuity) that is of interest for the problem of the solar wind flow around the magnetosphere.

  5. 5.

    Detailed measurements of the magnetic field intensity vector in different regions of the magnetosphere are significant for an estimation of the quantitative models suitability and provide a distribution of the current density j = c/4π rot B; in particular, an experimental test of the idea about two ring currents [92] is of interest.

  6. 6.

    A construction of the model of the electric field in the magnetosphere is significant for the study of behaviour of particles with the energy of several tens keV and below. For this purpose in addition to the direct measurements of the electric field the Brice method [66] can be evidently used which permits one to restore the pattern of a large-scaled electric field from the position and shape of the plasmapause. Plasma ‘running away’ along the open lines of force (a polar wind [78]) must lead to plasmapause shape distortion on these field lines. An experimental test of this effect is necessary, i.e. the measurements of the plasmasphere boundary at different latitudes.

  7. 7.

    Some convection models [65] suggest that in the vicinity of the magnetopause the directions of plasma movement inside the magnetosphere and in the magneto-sheath can be opposite. This conclusion is not in contradiction with the conditions at the tangential discontinuity: V n1 = V n2, V t1V n1. It is interesting to determine if such plasma flows really occur, that is necessary for the construction of an adequate picture of the electric field.

In conclusion let us enumerate the outstanding significant problems of the physics of the magnetosphere:

  1. 1.

    In which way is the magnetosphere boundary (including the polar regions and magnetic tail) formed as a result of an interaction between solar wind and geomagnetic field?

    To what extent is magnetohydrodynamics applicable to a description of these phenomena?

  2. 2.

    How does the energy (and/or particles) of the solar wind penetrate into the magnetosphere?

    In which way is the momentum transferred to the convective motions of plasma in the magnetosphere?

    Do the solar wind particles penetrate directly into some regions of the magnetosphere? Are the energy and momentum transferred into the magnetosphere with a constant speed or periodically?

  3. 3.

    Does the energy accumulation in a magnetic tail exist and in what way does it occur?

    What is the nature of a ‘trigger mechanism’ which releases suddenly the accumulated energy?

    What changes in the solar wind cause the transfer from quiet conditions to perturbed ones?

    What is the nature of a mechanism which causes the appearance of the magnetic substorms and how are they associated with the accumulation of the energy in the tail and with its release?

  4. 4.

    If the tail plasmasheet is the source of particles that causes the aurorae? In which way are these particles accelerated to appropriate energies? Especially important are the measurements in the plasmasheet ‘horns’ plunging into the upper atmosphere in the auroral zone.

  5. 5.

    Which are the sources of radiation belts particles and the mechanisms of the particles losses?

    In which way is the particles transport across geomagnetic drift shells accomplished? What is the nature of the ring current?

  6. 6.

    To what instabilities is plasma exposed in the magnetosphere? What is the role of instabilities in the particles acceleration?

    To what extent are the instabilities responsible for the particles transport across the magnetic field and for their losses?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, S. and Ferraro, V. C. A., Terr. Magn. Atmos. Electr. 36 (1931) 77, 171, 186; 37 (1932) 147, 421; 38 (1933) 79.

    Google Scholar 

  2. Parker, E. N., Astrophys. J. 128 (1958) 664.

    Google Scholar 

  3. Parker, E. N., Interplanetary Dynamical Processes, New York, 1963.

  4. Gringauz, K. I., Bezrukikh, V. V., Ozerov, V. D., and Rybchinsky, R. E., Dokl. Akad. Nauk SSSR 131 (1960) 1301.

    Google Scholar 

  5. Gold, T., J. Geophys. Res. 64 (1959) 1219.

    Google Scholar 

  6. O'Brien, B. J., paper presented at Intern. Symposium on the Solar-Terrestrial Physics, Beograd, 1966.

  7. Vernov, S. N., Grigorov, N. L., and Logachev, Yu. I., Dokl. Akad. Nauk SSSR 120 (1958) 123.

    Google Scholar 

  8. Van Allen, J. A., Ludwig, G. H., Ray, E. C., and McIlwain, C. E., Jet Propulsion 28 (1958) 588.

    Google Scholar 

  9. Gringauz, K. I., Kurt, V. G., Moroz, V. I., and Shklovskii, I. S., Dokl. Akad. Nauk SSSR 132 (1960) 1062.

    Google Scholar 

  10. Gringauz, K. I., Space Res. 1 (1962) 539; Planetary Space Sci. 11 (1963) 281.

    Google Scholar 

  11. Carpenter, D. L., paper presented at the Fourteenth General Assembly of URSI, Tokyo, 1963.

  12. Dolginov, Sh. Sh., Eroshenko, E. G., Zhuzgov, L. N., Pushkov, N. V., and Tyurmina, L. O., Isk. Sputniki Zemli [Artificial Earth Satellites] 5 (1960) 16.

    Google Scholar 

  13. Cahill, L. J., J. Geophys. Res. 71 (1966) 4505.

    Google Scholar 

  14. Frank, L. A., J. Geophys. Res. 72 (1967) 1905.

    Google Scholar 

  15. Frank, L. A., J. Geophys. Res. 72 (1967) 3753.

    Google Scholar 

  16. Ness, N. F., Scearce, C. S., and Seek, J. B., J. Geophys. Res. 69 (1964) 3531.

    Google Scholar 

  17. Geophysics. The Earth's Environment, 1963.

  18. Cosmical Physics, Moscow, Mir (Peace) Publishers, 1966.

  19. Solar-Terrestrial Physics, Moscow, Mir (Peace) Publishers, 1968.

  20. Tverskoy, B. A., The Dynamics of the Earth's Radiation Belts, Nauka Publishing House, Moscow, 1968.

    Google Scholar 

  21. Shabansky, V. P., ‘Magnetospherical Processes and Related Geophysical Phenomena’, Space Sci. Rev. 8 (1968) 366.

    Google Scholar 

  22. Jigulev, V. N. and Romishevskii, E. A., Dokl. Akad. Nauk SSSR 127 (1959) 1001.

    Google Scholar 

  23. Coll, J. D. and Huth, J. H., Phys. Fluids 2 (1959) 624.

    Google Scholar 

  24. Sigov, Yu. S., Space Res. VII (1966) 550.

    Google Scholar 

  25. Midgley, J. and Davis, L., J. Geophys. Res. 67 (1962) 409.

    Google Scholar 

  26. Midgley, J. and Davis, L., J. Geophys. Res. 68 (1963) 5111.

    Google Scholar 

  27. Slutz, R. J., J. Geophys. Res. 67 (1962) 505.

    Google Scholar 

  28. Slutz, R. J. and Winkelman, J. R., J. Geophys. Res. 69 (1964) 4933.

    Google Scholar 

  29. Beard, D. B., Rev. Geophys. 2 (1964) 335.

    Google Scholar 

  30. Mead, G. D. and Beard, D. B., J. Geophys. Res. 69 (1964) 1169.

    Google Scholar 

  31. Spreiter, I. R. and Briggs, B. R., J. Geophys. Res. 67 (1962) 37.

    Google Scholar 

  32. Chesalin, L. S., ‘Interaction of Solar Wind with the Earth's Magnetosphere’, Trudy (Proceedings) of the Fifth All-Union Annual Winter School of Cosmophysics, March 21–April 5, 1968, The Kola Branch of the USSR Academy of Sciences, Apatity, 1968, p. 223.

  33. Williams, D. I. and Mead, G. D., J. Geophys. Res. 70 (1965) 3017.

    Google Scholar 

  34. Spreiter, J. R. and Jones, W. P., J. Geophys. Res. 68 (1963) 3555.

    Google Scholar 

  35. Fairfield, D. H. and Cahill, L. J., J. Geophys. Res. 71 (1966) 155.

    Google Scholar 

  36. Hirshberg, J. and Colburn, D. S., ‘A Detailed Comparison of an Interplanetary Magnetic Storm and its Corresponding Geomagnetic Storm’, paper presented at the Intern. Symp. on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  37. Dungey, J. W., Phys. Rev. Letters 6 (1961) 47.

    Google Scholar 

  38. Axford, W. I., Petschek, H. E., and Siscoe, G. L., J. Geophys. Res. 70 (1965) 1231.

    Google Scholar 

  39. Dessler, A. J. and Juday, R. D., Planetary Space Sci. 13 (1965) 63.

    Google Scholar 

  40. Samokhin, M. V., Magnitnaya Gidrodinamika [Magnetohydrodynamics] 4 (1966) 19.

    Google Scholar 

  41. Spreiter, J. R., Summers, A. L., and Alksne, A. Y., Planetary Space Sci. 14 (1966) 223.

    Google Scholar 

  42. Dryer, M. and Heckman, G. R., Planetary Space Sci. 15 (1967) 515.

    Google Scholar 

  43. Baranov, V. B., ‘Concerning the Simulation of Interplanetary Plasma Flow Around the Earth's Magnetosphere’, Kosm. Issled. [Cosmic Research] 7 (1969) 109. (The Sixth International Symposium on Dynamics of Rarefied Gases, USA, Cambridge, July 1968.)

  44. Managadze, G. G., Podgorny, I. M., and Rusanov, V. D., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 8 (1968) 545.

    Google Scholar 

  45. Managadze, G. G. and Podgorny, I. M., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 8 (1968) 618.

    Google Scholar 

  46. Managadze, G. G. and Podgorny, I. M., Dokl. Akad. Nauk SSSR 180 No. 6 (1968) 1333.

    Google Scholar 

  47. Mead, G. D., J. Geophys. Res. 69 (1964) 1181.

    Google Scholar 

  48. Hones, E. W., J. Geophys. Res. 68 (1963) 1209.

    Google Scholar 

  49. Taylor, H. E. and Hones, E. W., J. Geophys. Res. 70 (1965) 3605.

    Google Scholar 

  50. Taylor, H. E., J. Geophys. Res. 71 (1966) 5135.

    Google Scholar 

  51. Roederer, J. G., ‘Quantitative Models of the Magnetosphere’, review paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  52. Fairfield, D. H., ‘The Average Magnetic Field Configuration of the Outer Magnetosphere’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  53. Cummings, W. D. and Coleman, P. I., J. Geophys. Res. 73 (1968) 5699.

    Google Scholar 

  54. Olson, W. P., ‘The Determination of the Shape of the Magnetopause for Various Orientations of the Geomagnetic Dipole with Respect to the Solar Wind’, paper presented at the Intern. Symposium of the Magnetosphere, Washington, Sept. 3–13, 1968.

  55. Antonova, A. E. and Shabansky, V. P., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 8, No. 5 (1968) 801.

    Google Scholar 

  56. McIlwain, C. E., J. Geophys. Res. 66 (1961) 3681.

    Google Scholar 

  57. Kavanagh, L. D., J. Geophys. Res. 73 (1968) 185.

    Google Scholar 

  58. Northrop, T. and Teller, E., Phys. Rev. 117 (1960) 215.

    Google Scholar 

  59. Stern, D. P., J. Geophys. Res. 72, No. 15 (1967) 3995.

    Google Scholar 

  60. Stern, D. P., J. Geophys. Res. 73, No. 13 (1968) 1373.

    Google Scholar 

  61. Alfven, H. and Fälthammar, G. Y., Cosmical Electrodynamics, 2nd ed., Oxford, 1963.

  62. Krassovsky, V. I., Issled. Kosmich. Prostr. [Exploration of Outer Space], Nauka Publishing House, Moscow, 1965, p. 11.

    Google Scholar 

  63. Axford, W. I. and Hines, C. O., Can. J. Phys. 39 (1961) 1433.

    Google Scholar 

  64. Alfven, H., J. Geophys. Res. 73 (1968) 4379.

    Google Scholar 

  65. Nishida, A., J. Geophys. Res. 71 (1966) 5669.

    Google Scholar 

  66. Brice, N. M., J. Geophys. Res. 72 (1967) 5193.

    Google Scholar 

  67. Obayashi, T. and Nishida, A., Space Sci. Rev. 8 (1968) 3.

    Google Scholar 

  68. Kavanagh, L. D., Freeman, J. W., and Chen, A. J., J. Geophys. Res. 73 (1978) 5511.

    Google Scholar 

  69. Hundhausen, A. J., Asbridge, J. R., Bame, S. J., Gilbert, H. E., and Strong, I. B., ‘Observations of Plasma Flow in the Earth's Magnetosheath’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  70. Landau, L. D. and Lifshitz, E. M., Elektrodinamika Sploshnykh Sred [Electrodynamics of Continuous Media], Moscow, 1957, ch. VIII.

  71. Cahill, L. J. and Amazeen, P. G., J. Geophys. Res. 68 (1963) 1835.

    Google Scholar 

  72. Freeman, J. W., Kavanagh, L. D., and Warren, C. S., ‘Plasma Flow in the Magnetosphere’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  73. Frank, L. A., ‘Several Comments Concerning the Distributions of Low-Energy Charged Particles in the Earth's Magnetosphere’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  74. Freeman, J. W., Warren, C. S., and Maguire, J. J., J. Geophys. Res. 73 (1968) 5719.

    Google Scholar 

  75. Carpenter, D. L., J. Geophys. Res. 71 (1966) 693.

    Google Scholar 

  76. Freeman, J. W., J. Geophys. Res. 73 (1968) 4151.

    Google Scholar 

  77. Sharp, R. D., Johnson, R. G., Shea, M. F., and Shook, G. B., J. Geophys. Res. 72 (1967) 227.

    Google Scholar 

  78. Banks, P. M. and Holzer, T. E., ‘The Polar Wind’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968; J. Geophys. Res. 73 (1968) 6846.

  79. Vernov, S. N., Vakulov, P. V., Kuznetsov, C. N., Logachev, Yu. I., Sosnovets, E. I., and Stolpovsky, V. G., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 7 (1967) 417.

    Google Scholar 

  80. Roederer, J. G., J. Geophys. Res. 72 (1967) 981.

    Google Scholar 

  81. Gringauz, K. I., J. Geophys. Res. 69 (1964) 1007.

    Google Scholar 

  82. Freeman, J. W., J. Geophys. Res. 69 (1964) 1691.

    Google Scholar 

  83. Vasyliunas, V. M., J. Geophys. Res. 73 (1968) 2839.

    Google Scholar 

  84. Vasyliunas, V. M., ‘A Survey of Low Energy Electrons on the Day Side of the Magnetosphere with OGO-3’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  85. Anderson, K. A., Harris, H. K., and Paoli, R. J., J. Geophys. Res. 70 (1965) 1039.

    Google Scholar 

  86. McDiarmid, I. B. and Burrows, I. R., J. Geophys. Res. 70 (1965) 3031.

    Google Scholar 

  87. Behannon, K. W. and Ness, N. F., J. Geophys. Res. 71 (1966) 2327.

    Google Scholar 

  88. Hones, E. W., Same, S. J., Singer, S. F., and Brawn, R. R., J. Geophys. Res. 73 (1968) 6189.

    Google Scholar 

  89. Starkov, G. V. and Feldshtein, Ya. I., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 7 (1967) 62.

    Google Scholar 

  90. Belyakova, S. I., Zaitseva, S. A., and Pudovkin, M. I., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 8 (1968) 712.

    Google Scholar 

  91. Pletnev, V. D. and Shalimov, V. P., a paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  92. Akasofu, S. I., Space Sci. Rev. 2 (1963) 91.

    Google Scholar 

  93. Obayashi, T., paper presented at the Intern. Symposium on the Solar-Terrestrial Physics, Beograd, 1966.

  94. Zaitseva, S. A., Pudovkin, M. I., and Shumilov, O. I., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 8 (1968) 905.

    Google Scholar 

  95. Davis, T. N. and Pathasarathy, R., J. Geophys. Res. 72 (1967) 5825.

    Google Scholar 

  96. Shalimov, V. P., Kosmich. Issled. [Cosmic Research] 6 (1968) 941.

    Google Scholar 

  97. Brown, W. L., Cahill, L. J., Davis, L. R., McIlwain, C. E., and Roberts, C. S., J. Geophys. Res. 73 (1968) 153.

    Google Scholar 

  98. Coleman, P. J. and Cummings, W. D., ‘Storm-Time Variations in the Magnetic Field of Synchronous Distances’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  99. Chapman, S., Geophysics. The Earth's Environment, 1963, p. 373.

  100. Smith, E. J., Coleman, P. J., Judge, D. L., and Sonett, C. P., J. Geophys. Res. 65 (1960) 1858.

    Google Scholar 

  101. Dolginov, Sh. Sh., Eroshenko, E. G., and Zhuzgov, L. N., Issled. Kosmich. Prostr., Nauka, Moscow, 1965, p. 342.

    Google Scholar 

  102. Hoffman, R. A. and Bracken, P. A., J. Geophys. Res. 70 (1965) 3541; 72 (1967) 6039.

    Google Scholar 

  103. Schopke, N., J. Geophys. Res. 71 (1966) 3125.

    Google Scholar 

  104. Dessler, A. J. and Parker, E. N., J. Geophys. Res. 64 (1959) 2239.

    Google Scholar 

  105. Olbert, S., Siscoe, G. L., and Vasyliunas, V. M., J. Geophys. Res. 73 (1968) 1115.

    Google Scholar 

  106. Vernov, S. N., ‘Special Lecture at the Fifth General Assembly of the IGY’, Moscow, 1968.

  107. Singer, S. F., Phys. Rev. Letters 1 (1958) 171, 181.

    Google Scholar 

  108. Kellogg, P. J., Nuovo Cimenta, Ser. X 11 (1959) 48.

    Google Scholar 

  109. Hess, W. N., Radiation Trapped in the Earth's Magnetic Field (ed. by B. M. McCormac), 1966, p. 187.

  110. Kellogg, P. J., Nature 183 (1959) 1295.

    Google Scholar 

  111. Parker, E. N., J. Geophys. Res. 65 (1960) 3117.

    Google Scholar 

  112. Davis, L. and Chang, D. B., J. Geophys. Res. 67 (1962) 2169.

    Google Scholar 

  113. Tverskoy, B. A., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 4 (1964) 436.

    Google Scholar 

  114. Ershkovich, A. I., Skuridin, G. A., Chesalin, L. S., and Shalimov, V. P., Kosmich. Issled. [Cosmic Research] 5 (1967) 792.

    Google Scholar 

  115. Chesalin, L. S., Ershkovich, A. I., and Skuridin, G. A., Space Res. VIII, Amsterdam, 1968.

  116. Ershkovich, A. I. and Chesalin, L. S., Trudy (Proceedings) of the Fifth All-Union Annual Winter School of Cosmophysics, March 21–April 5, 1968. The Kola Branch of the USSR Academy of Sciences, Apatity, 1968, p. 231.

  117. Kavanagh, L. D., J. Geophys. Res. 73 (1968) 2959.

    Google Scholar 

  118. Birmingham, T. J. and Jones, F. C., ‘Two Problems Dealing with the Radial Diffusion of Trapped Particles’, paper presented at the Intern. Symposium of the Magnetosphere, Washington, Sept. 3–13, 1968.

  119. Murayama, T. and Hirose, T., ‘Variation of Electron Intensities in the Magnetic Tail and the Outer Radiation Belt with Geomagnetic Disturbances’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  120. Van Allen, J. A., Frank, L. A., and Hills, H. K., J. Geophys. Res. 69 (1964) 2171.

    Google Scholar 

  121. Frank, L. A., J. Geophys. Res. 70 (1965) 1593.

    Google Scholar 

  122. Parks, G. K., Lezniak, T. W., and Winckler, J. R., ‘The Magnetospheric Substorm: A Fundamental Mode of Production of Energetic Electrons in the Van Allen Belt’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  123. Williams, D. J., Arens, J. E., and Lanzerotti, L. J., J. Geophys. Res. 73 (1968) 5673.

    Google Scholar 

  124. Cladis, I. B., J. Geophys. Res. 71 (1966) 5019.

    Google Scholar 

  125. Savenko, I. A., Teltsov, M. V., and Shavrin, P. I., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 6 (1968) 298.

    Google Scholar 

  126. Konradi, A., J. Geophys. Res. 73 (1968) 3449.

    Google Scholar 

  127. Fillius, R. W. and McIlwain, C. E., J. Geophys. Res. 72 (1967) 4011.

    Google Scholar 

  128. Lanzerotti, L. J., J. Geophys. Res. 73 (1968) 438.

    Google Scholar 

  129. Truttse, Yu. L., Planetary Space Sci. 16 (1968) 981.

    Google Scholar 

  130. Walbridge, E., J. Geophys. Res. 72 (1967) 5213.

    Google Scholar 

  131. Tverskoy, B. A., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 4 (1964) 224.

    Google Scholar 

  132. Stevenson, T. E. and Comstock, C., J. Geophys. Res. 73 (1968) 175.

    Google Scholar 

  133. Axford, W. I., Planetary Space Sci. 12 (1964) 45.

    Google Scholar 

  134. Eviatar, A. and Wolf, R. A., J. Geophys. Res. 73 (1968) 5561.

    Google Scholar 

  135. Obayashi, T. and Tsuda, T., ‘Energy Transfer Across the Magnetospheric Boundary’, 1966 (preprint).

  136. Starkov, G. B. and Feldstein, Ya. I., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 7 (1967) 367.

    Google Scholar 

  137. Shyder, C. W., Neugebauer, M., and Rao, U. R., J. Geophys. Res. 68 (1963) 6361.

    Google Scholar 

  138. Chase, L. M., ‘Energy Spectra of Auroral Zone Particles’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  139. Khorosheva, O. V., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 1 (1961) 696; 2 (1962) 839; 3 (1963) 363.

    Google Scholar 

  140. Feldstein, Ya. I., Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy] 3 (1963) 183.

    Google Scholar 

  141. Feldstein, Ya. I. and Starkov, G. V., Planetary Space Sci. 16 (1968) 129.

    Google Scholar 

  142. Ershkovich, A. I., Pletnev, V. D., and Skuridin, G. A., Kosmich. Issled. [Cosmic Research] 4 (1966) 378.

    Google Scholar 

  143. Ershkovich, A. I., Pletnev, V. D., and Skuridin, G. A., J. Atmospheric Terrest. Phys. 29 (1967) 367.

    Google Scholar 

  144. Reasoner, D. R., Eather, R. H., and O'Brien, B. J., J. Geophys. Res. 73 (1968) 4185.

    Google Scholar 

  145. Terletsky, Ya. P., Dokl. Akad. Nauk SSSR 47 (1945) 104; J. Exp. Theor. Phys. (in Russian) 19 (1949) 1059.

    Google Scholar 

  146. Davis, L., Phys. Rev. 72 (1947) 632; 73 (1948) 536.

    Google Scholar 

  147. Hones, E. W. and Bergeson, J. E., J. Geophys. Res. 70 (1965) 4951.

    Google Scholar 

  148. Birmingham, T. J. and Northrop, T. G., J. Geophys. Res. 73 (1968) 83.

    Google Scholar 

  149. Allen, C. I., Astronomical Values (Russian ed.), Moscow, 1960, p. 132.

  150. Tamm, I. E., Osnovy Teorii Elektrichestva [Fundamentals of the Theory of Electricity], Moscow, 1956.

  151. Danjon, M. A., Compt. Rend. 247 (1958) 2061; 250 (1960) 1399.

    Google Scholar 

  152. O'Brien, B. J., Space Sci. Rev. 7 (1967) 293.

    Google Scholar 

  153. Krimigis, S. M. and Van Allen, J. A., J. Geophys. Res. 72 (1967) 5779.

    Google Scholar 

  154. Paulikas, G. A. and Blake, J. B., ‘Trapped Alpha-Particles in the Radiation Belt’, paper presented at the Intern. Symposium on the Physics of the Magnetosphere, Washington, Sept. 3–13, 1968.

  155. Mead, G. D. and Cahill, L. J., J. Geophys. Res. 72 (1967) 2737.

    Google Scholar 

  156. Heppner, J. P., ‘Magnetospheric Convection Patterns Inferred from High Latitude Activity’, August 1968, preprint.

  157. Heppner, J. P., Sugiura, M., Skillman, T. L., Ledley, B. G., and Campbell, M., J. Geophys. Res. 72 (1967) 5417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ershkovich, A.I., Skuridin, G.A. & Shalimov, V.P. Some problems of the earth's magnetosphere physics. Space Sci Rev 10, 262–290 (1969). https://doi.org/10.1007/BF00212687

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00212687

Keywords

Navigation