Skip to main content
Log in

A model of HIV-I reverse transcriptase: Possible mechanisms for AZT resistance

  • Published:
Molecular Engineering

Abstract

In this report we present our preliminary results on the explanation of possible roles that mutations at positions 41, 67, 70, 215, and 219 of the p66 subunit of HIV-I reverse transcriptase play in AZT resistance. These explanations stem from molecular modeling studies of AZT in both the active site of our full-coordinate model, and in the channel to the active site. These results suggest the following: (a) that mutant residues Arg 70, Tyr 215, and possibly Leu 41, sterically block the opening to the active site and help reverse transcriptase selectively exclude AZT due to its larger 3′ group compared to normal nucleotides, (b) the loss of the positively charged lysine ammonium head group in the Lys 219 → Gln mutation removes a favorable monopole-dipole interaction with the 3′ azido group of AZT, and (c) the mutant residue Asn 67 can hydrogen bond to the single-stranded template of the template-primer complex and constrains the β3-β4 loop into a conformation which disallows AZT uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Varmus:Sci. Am. 257, 56 (1987).

    Google Scholar 

  2. E. Arnold and G. F. Arnold:Adv. Virus. Res. 39, 1 (1991).

    Google Scholar 

  3. R. F. Setlik, D. J. Meyer, M. Shibata, R. Roskwitalski, R. L. Ornstein, and R. Rein:J. Biomol. Str. Dyn. 12, 37–60 (1994).

    Google Scholar 

  4. A. Jacobo-Molina, J. Ding, R. G. Nanni, A. D. Clark, X. Lu, C. Tantillo, R. L. Williams, G. Kamer, A. L. Ferris, P. Clark, A. Hizi, S. H. Hughes, and E. Arnold:P.N.A.S. USA 90, 6320 (1993).

    Google Scholar 

  5. L. Holm and C. Sander:J. Mol. Biol. 218, 183 (1991).

    Google Scholar 

  6. B. A. Larder and S. D. Kemp:Science 246, 1155 (1989).

    Google Scholar 

  7. P. Kellam, C. A. B. Boucher, and B. A. Larder:P.N.A.S. USA 89, 1934 (1992).

    Google Scholar 

  8. R. Parthasarathy and H. Kim:Biochem. Biophys. Res. Commun. 152, 351 (1988).

    Google Scholar 

  9. P. J. Kraulis:J. Appl. Cryst. 24, 946 (1991).

    Google Scholar 

  10. L. A. Kohlstadt, J. Wang, J. M. Friedman, P. A. Rice, and T. A. Steitz:Science 256, 1783 (1992).

    Google Scholar 

  11. M. H. St. Clari, J. L. Martin, G. Tudor-Williams, M. C. Bach, C. L. Vavro, D. M. King, P. Kellam, S. D. Kemp, and B. A. Larder:Science 253, 1557 (1991).

    Google Scholar 

  12. O. Poch, I. Sauvaget, M. Delarue, and N. Tordo:EMBO J. 8, 3867 (1989).

    Google Scholar 

  13. W. Saenger:Principles of Nucleic Acid Structure, C. R. Cantor (Ed.), Springer-Verlag, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Setlik, R.F., Shibata, M., Ornstein, R.L. et al. A model of HIV-I reverse transcriptase: Possible mechanisms for AZT resistance. Mol Eng 5, 81–88 (1995). https://doi.org/10.1007/BF00999580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999580

Key words

Navigation