Skip to main content
Log in

Mössbauer spectroscopy of quenched high-pressure phases: Investigating the Earth's interior

  • Invited Papers
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

New phases formed at high pressure and temperature can be successfully quenched to ambient conditions if the kinetics of the back transformation are slow. One important application of this technique is to mineral physics — the combination of microscopic measurements of the structural, physical and chemical properties of high-pressure minerals measured in the laboratory with macroscopic geophysical and geochemical data to produce a unified description of the Earth's interior. The dominant high-pressure phases inferred to be present in the Earth's mantle have been synthesised using a multi-anvil press to correlate structural and chemical information obtained from Mössbauer data with bulk geophysical and geochemical data to determine properties of the mantle, such as the oxidation state. Results from experiments on the major transition zone minerals β−(Mg, Fe)2SiO4, (Mg, Fe)SiO3 garnet and γ−(Mg, Fe)2SiO4 spinel include the discovery of significant Fe3+ in these phases synthesised in equilibrium with metallic iron and excess silica, implying that the oxygen fugacity (fO2) of the transition zone must be substantially lower than the upper mantlefO2. Mössbauer spectra of the lower mantle phase (Mg, Fe)SiO3 perovskite show that Fe2+ occupies the large distorted site almost exclusively, and that significant Fe3+ is present at the minimum fO2 stability limit. Low temperature spectra indicate a phase transition possibly corresponding to a distortion of the perovskite structure. Mössbauer spectra of FexO quenched from high pressure indicate that the Fe3+ content of samples in equilibrium with metallic iron is small, implying that the minimum amount of Fe3+ in the lower mantle (Mg, Fe)O at lower mantle conditions is also small. Mössbauer spectra from samples of (Mg, Fe)O synthesised at different temperatures andfO2 conditions show that the Fe3+ content can be reliably measured, and that it varies significantly withfO2. Implications of these results to properties of the Earth's interior are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Birch, J. Geophys. Res. 57(1952)227.

    Google Scholar 

  2. R.J. Hemley, P.M. Bell and H.K. Mao, Science (1987) 605.

  3. S. Akimoto, in:High Pressure Research in Mineral Physics, eds. M.H. Manghnani and Y. Syono (Terra Scientific Publ., Tokyo / Am. Geophys. Union, Washington D.C., 1987) p. 1.

    Google Scholar 

  4. R.C. Liebermann and Y. Wang, in:High Presure Research: Application to Earth and Planetary Sciences, eds. Y. Syono and M.H. Manghnani (Terra Scientific Publ., Tokyo / Am. Geophys. Union, Washington D.C., 1992) p. 19.

    Google Scholar 

  5. H. St. C. O'Neill, D.C. Rubie, D. Canil, C.A. Geiger, C.R. Ross II, F. Seifert and A.B. Woodland, in:Evolution of the Earth and Planets, Geophysical Monograph 74, eds. E. Takahashi, R. Jeanloz and D.C. Rubie (Am. Geophys. Union, Washington D.C., 1993) p. 73.

    Google Scholar 

  6. C.A. McCammon, in:Handbook of Physical Constants, ed. T.J. Ahrens (Am. Geophys. Union, Washington D.C, 1994), in press.

    Google Scholar 

  7. C.A. McCammon, V. Chaskar and G.G. Richards, Meas. Sci. Tech. 2(1991)657.

    Google Scholar 

  8. C.A. McCammon, these proceedings, Hyp. Int.

  9. H. St. C. O'Neill, C.A. McCammon, D. Canil, DC. Rubie, C.R. Ross II and F. Seifert, Am. Mineral. 78(1993)456.

    Google Scholar 

  10. C.A. McCammon, D.C. Rubie, C.R. Ross II, F. Seifert and H. St. C. O'Neill, Am. Mineral. 77(1992)894.

    Google Scholar 

  11. C. McCammon, Science 259(1993)66.

    Google Scholar 

  12. B.J. Wood, L.T. Bryndzia and K.E. Johnson, Science 248(1990)337.

    Google Scholar 

  13. H.G. Huckenholz, J.F. Schairer and H.S. Yoder, Jr., Carnegie Inst. Wash. Yearbook 66(1966)335.

    Google Scholar 

  14. A. Nakamura and H. Schmalzried, Phys. Chem. Minerals 10(1983)27.

    Google Scholar 

  15. H. Horiuchi, E. Ito and D.J. Weidner, Am. Mineal. 72(1987)357.

    Google Scholar 

  16. W.E. Jackson, E. Knittle, G.E. Brown, Jr. and R. Jeanloz, Geophys. Res. Lett. 14(1987)224.

    Google Scholar 

  17. R. Jeanloz, B. O'Neill, M.P. Pasternak, R.D. Taylor and S.R. Bohlen, Geophys. Res. Lett. 19(1992)2135.

    Google Scholar 

  18. J.B. Parise, Y. Wang, A. Yeganeh-Haeri, D.E. Cox and Y. Fei, Geophys. Res. Lett. 17(1990)2089.

    Google Scholar 

  19. Y. Kudoh, C.T. Prewitt, L.W. Finger, A. Daroviskikh and E. Ito, Geophys. Res. Lett. 17(1990)1481.

    Google Scholar 

  20. E. Dowty and D.H. Lindsley, Am. Mineral. 58(1973)850.

    Google Scholar 

  21. Y. Zhao, D.J. Weidner, J.B. Parise and D.E. Cox, Phys. Earth Planet. Inter. 76(1993)1.

    Google Scholar 

  22. Y. Zhao, D.J. Weidner, J.B. Parise and D.E. Cox, Phys. Earth Planet. Inter. 76(1993)17.

    Google Scholar 

  23. N.L. Ross and R.M. Hazen, Phys. Chem. Minerals 16(1989)415.

    Google Scholar 

  24. Y. Kudoh, E. Ito and H. Takeda, Phys. Chem. Minerals 14(1987)350.

    Google Scholar 

  25. N.L. Ross and R.M. Hazen, Phys. Chem. Minerals 17(1990)228.

    Google Scholar 

  26. X. Li and R. Jeanloz, J. Geophys. Res. 96(1991)6113.

    Google Scholar 

  27. J.P. Poirer and J. Peyronneau, in:High Pressure Research: Application to Earth and Planetary Sciences, eds. Y. Syono and M.H. Manghnani (Terra Scientific Publ., Tokyo / Am. Geophys. Union, Washington D.C, 1992) p. 77.

    Google Scholar 

  28. R. Datt and K.J. Muirhead, Phys. Earth Planet. Inter. 15(1977)28.

    Google Scholar 

  29. K.J. Muirhead and A.L. Hales, Earth Planet. Inter. 23(1980)304.

    Google Scholar 

  30. J.A. Tossell, Am. Mineral. 61(1976)130.

    Google Scholar 

  31. R.A. Giddings and R.S. Gordon, J. Am. Ceram. Soc. 56(1973)111.

    Google Scholar 

  32. C.A. McCammon and L. Liu, Phys. Chem. Minerals 10(1984)106.

    Google Scholar 

  33. C. McCammon, Science 261(1993)924.

    Google Scholar 

  34. C.A. McCammon and D.C. Price, Phys. Chem. Minerals 11(1984)250.

    Google Scholar 

  35. C.A. McCammon, J. Magn. Magn. Mater. 104–107(1992)1937.

    Google Scholar 

  36. C.A. McCammon and Q.A. Pankhurst, these Proceedings, Hyp. Int.

  37. I. Srečec, A. Ender, E. Woermann, W. Gans, E. Jacobsson, G. Eriksson and E. Rosén, Phys. Chem. Minerals 14(1987)492.

    Google Scholar 

  38. F. Guyot, M. Madon, J. Peyronneau and J.P. Poirier, Earth Planet. Sci. Lett. 90(1988)52.

    Google Scholar 

  39. P. Valet, W. Pluschkell and H. Engell, Arch. Eisenhüttenwes. 46(1975)383.

    Google Scholar 

  40. A.M. Dziewonski and D.L. Anderson, Phys. Earth Planet. Inter. 25(1981)297.

    Google Scholar 

  41. E. Ito and E. Takahashi, in:High Pressure Research in Mineral Physics, eds. M.H. Manghnani and Y. Syono (Terra Scientific Publ., Tokyo / Am. Geophys. Union, Washington D.C., 1987) p. 221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCammon, C.A. Mössbauer spectroscopy of quenched high-pressure phases: Investigating the Earth's interior. Hyperfine Interact 90, 89–105 (1994). https://doi.org/10.1007/BF02069120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069120

Keywords

Navigation