Skip to main content
Log in

Relevance of crustacean carapace wettability for fouling

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Carapace wettability and density of fouling organisms (bacteria, diatoms, protozoa, fungi, macro-organisms) were investigated for 45 crustacean species (Hoplocarida, Decapoda) from 15 families in the Gulf of Thailand. The results show that crustaceans can create and maintain characteristic carapace wettabilities. About 21 species (47%) possess highly wettable carapaces with contact angles below 20°. Contact angles between 20° and 40° were recorded for four species (2%), angles between 40° and 60° for eight species (4%) and from 60° to 70° for 11 (24%) species. One species, Alpheus euphrosyne (Alpheidae, Decapoda), exhibited an extremely low surface wettability (contact angle: 91°). Densities of colonisers and contact angles did not correlate. Very low wettability by water (θ > 90°) may only contribute little to fouling reduction in A. euphrosyne which showed the most hydrophobic carapace surface and was colonised by the lowest numbers of bacteria among all species and no other colonisers at all. We conclude that surface wettability is of little relevance for antifouling defence in crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absolom, D. R., F. V. Lamberti, Z. Policova, W. Zingg, C. J. Van Oss & A. W. Neumann, 1983. Surface thermodynamics of bacterial adhesion. Apl. envir. Microbiol. 10: 90–97.

    Google Scholar 

  • Abu, G. O., R. M. Weiner, J. Rice & R. R. ColwellL, 1991. Properties of an extracellular adhesive polymer from the marine bacterium Schewanella colwelliana. Biofouling 3: 69–84.

    Google Scholar 

  • Baier, R. E., 1970. Surface properties influencing biological adhesion. In Manly, R. S. (ed.), Adhesion in Biological Systems. Academic Press, New York, London: 15–48.

    Google Scholar 

  • Barnes, H. & T. B. Bagenal, 1951. Observations on Nephrops norvegica (L.) and on an epizooic population of Balanus crenatus Brug. J. mar. biol. Ass. U.K. 30: 369–380.

    Google Scholar 

  • Bauer, R. T., 1989. Decapod crustacean grooming: functional morphology, adaptive value and phylogenetic significance. In Felgenhauer, B. E., L. Walting & A. B. Thistle (eds), Functional Morphology of Feeding and Grooming in Crustacea, Crustacean Issues 6, F. R. Schram (ed.), A. A. Balkema, Rotterdam, Brookfield: 49–74.

    Google Scholar 

  • Becker, K., 1993. Attachment strength and colonisation pattern of two macrofouling species on substrata with different surface tension (in situ studies). Mar. Biol. 117: 301–309.

    Google Scholar 

  • Becker, K., 1996. Epibionts on carapaces of some malacostracan crustaceans from the Gulf of Thailand. J. crust. Biol. 16: 92–104.

    Google Scholar 

  • Becker, K. & M. Wahl, 1996. Behavioural patterns as natural antifouling mechanisms of tropical marine crabs. J. exp. mar. Biol. Ecol. 203: 245–258.

    Google Scholar 

  • Becker, K., S. Siriratanachai & T. Hormchong, 1997. Influence of initial substratum surface tension on marine micro-and macrofouling in the Gulf of Thailand. Helgoländer. wiss. Meeresunters. 51: 445–461.

    Google Scholar 

  • Brewer, R. H., 1984. The influence of the orientation, roughness and wettability of solid surfaces on the behaviour and attachment of planulae of Cyanea (Cnidaria: Scyphozoa). Biol. Bull. 166: 11–21.

    Google Scholar 

  • Bultman, J. D., J. R. Griffith & D. E. Field, 1984. Fluoropolymer coatings for the marine environment. In Costlow, J. D. & R. C. Tipper (eds), Marine Corrosion and Biodeterioration-An Interdisciplinary Study. E. & F. N. Spon. Ltd., London: 237–243.

    Google Scholar 

  • Carman, K. R. & F. C. Dobbs, 1997. Epibiotic microorganisms on copepods and other marine crustaceans. Microscopy Res. Techn. 37: 116–135.

    Google Scholar 

  • Chamberlain, A. H. L., 1976. Algal settlement and secretion of adhesive materials. In Sharpley, J. M. & A. M. Kaplan (eds), Proc. 3rd Intern. Biodegrad. Symp., Appl. Sci., London: 417–432.

  • Compere, P. & G. Goffinet, 1995. Cytochemical demonstration of acid mucopolysaccharides in the epicuticular surface coat of the crab Carcinus maenas (L.) (Crustacea, Decapoda). Belg. J. Zool. 125: 95–100.

    Google Scholar 

  • Cooksey, K. E. & B. Cooksey, 1986. Adhesion of fouling diatoms to surfaces: some biochemistry. In Evans, L. V. & K. D. Hoagland (eds), Algal Biofouling. Elsevier, Amsterdam: 41–53.

    Google Scholar 

  • Corpe, W. A., 1980. Microbial surface components involved in adsorption onto surfaces. In Bitton, G. & K. C. Marshall (eds), Adsorption of Micro-organisms to Surfaces. Wiley Interscience Publ., New York: 105–143.

    Google Scholar 

  • Crisp, D. J., G. Walker, G. A. Young & A. B. Yule, 1985. Adhesion and substrate choice in mussels and barnacles. J. Coll. Interf. Sci. 104: 40–50.

    Google Scholar 

  • Decho, A. W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in the food webs and marine processes. Oceanogr. mar. Biol. Ann. Rev. 28: 73–153.

    Google Scholar 

  • Denell, R., 1960. Integument and exoskeleton. In Waterman, T. H. (ed.), The Physiology of Crustacea, Vol. I. Academic Press, New York-London: 449–473.

    Google Scholar 

  • Dexter, S. C., 1979. Influence of substratum critical surface tension on bacterial adhesion-In situ studies. J. Coll. Interf. Sci. 70: 346–354.

    Google Scholar 

  • Fletcher, M. & G. I. Loeb, 1979. Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Apl. envir. Microbiol. 37: 67–72.

    Google Scholar 

  • Fletcher, M., J. M. Lessmann & G. I. Loeb, 1991. Bacterial surface adhesives and biofilm matrix polymers of marine and freshwater bacteria. Biofouling 4: 120–140.

    Google Scholar 

  • Fletcher, R. L. & R. E. Baier, 1984. Influence of surface energy on the development of the green alga Enteromorpha. Mar. Biol. Lett. 5: 251–254.

    Google Scholar 

  • Gil-Turnes, M. S., M. E. Hay & W. Fenical, 1989. Symbiotic marine bacteria defend crustacean embryos from a pathogenic fungus. Science 240: 116–118.

    Google Scholar 

  • Gili, J. M., P. Abello & R. Villanueva, 1993. Epibionts and intermoult duration in the crab Bathynectes piperitus. Mar. Ecol. Progr. Ser. 98: 107–113.

    Google Scholar 

  • Glynn, P. W., 1970. Growth of algal epiphytes on a tropical marine isopod. J. exp. mar. Biol. Ecol. 5: 88–93.

    Google Scholar 

  • Green, P. J. & M. R. Neff, 1972. A survey of the fine structure of the integument of the fiddler crab. Tissue Cell 4: 137–171.

    Google Scholar 

  • Hascall, G. K., 1973. The stalk of the suctorian Tokophyra infusionum: histochemistry, biochemistry and physiology. J. Protozool. 20: 701–704.

    Google Scholar 

  • Hoagland, K. D., J. D. Rosowski, M. R. Gretz & S. C. Roemer, 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry and physiology. J. Phycol. 29: 537–566.

    Google Scholar 

  • Jensen, A. R. & D. E. Morse, 1988. The bioadhesive of Phragmotopoma californica tubes: a silk cement containing L-Dopa. J. comp. Physiol. B. 158: 317–324.

    Google Scholar 

  • Lindner, E., 1984. The attachment of macrofouling invertebrates. In Costlow, J. D. & R. C. Tipper (eds), Marine Corrosion and Biodeterioration-An Interdisciplinary Study. E. & F. N. Spon. Ltd., London: 184–201.

    Google Scholar 

  • Lindner, E., 1992. A low surface energy approach in the control of marine biofouling. Biofouling 6: 193–205.

    Google Scholar 

  • Marszalek, D. S., S. M. Gerchakov & L. R. Udey, 1979. Influence of substrate composition on marine microfouling. Apl. envir. Microbiol. 38: 987–995.

    Google Scholar 

  • Nagasawa, S., 1987. Exosceletal scars by bacterial attachment to copepods (Short communication). J. Plankton. Res. 9: 749–753.

    Google Scholar 

  • Nair, N. B., K. Dharmaraj, P. K. Abdul Azis, M. Arunchalam & K. Krishna Kumar, 1984. Ecology of biofouling on Crassostrea madrasensis (Preston) (Mollusca: Bivalvia) in a tropical backwater. Proc. Indian Acad. Sci. (Anim. Sci.) 93: 419–430.

    Google Scholar 

  • Neu, T. R. & K. C. Marshall, 1991. Microbial 'footprint': a new approach to adhesive polymer. Biofouling 3: 101–112.

    Google Scholar 

  • Paul, J. H. & W. H. Jeffrey, 1985. Evidence for seperate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Apl. envir. Microbiol. 50: 431–437.

    Google Scholar 

  • Read, S., S. T. Moss & E. B. G. Jones, 1991. Attachment studies of aquatic hyphomycetes. Phil. Trans. r. Soc., Lond. B 344: 449–457.

    Google Scholar 

  • Rittschof, D. & J. D. Costlow, 1989. Bryozoan and barnacle settlement in relation to initial surface wettability: a comparision of laboratory and field studies. In Ros, E. D. (ed.), Topics in Marine Biology. Scient. Mar. 53: 411-416.

  • Roberts, D., D. Rittschof, E. Holm & A. R. Schmidt, 1991. Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J. exp. mar. Biol. Ecol. 150: 203–211.

    Google Scholar 

  • Sechler, G. E. & K. Gundersen, 1971. New technique for microscopic examination of the fouling community of submerged opaque surfaces. Appl. Microbiol. 20: 140–143.

    Google Scholar 

  • Shields, J. D., 1992. Parasites and symbionts of the crab Portunus pelagicus from Moreton Bay, Eastern Australia. J. crust. Biol. 12: 94–100.

    Google Scholar 

  • Stevenson, J. R., 1985. Dynamics of the integument. In Bliss, D. E. & L. H. Mantel (eds), The Biology of Crustacea. Academic Press, London: 2–42.

    Google Scholar 

  • Sutherland, I. W., 1980. Polysaccharides in the adhesion of marine and freshwater bacteria. In Berkeley, R. C. W., J. M. Lynch, J. Melling, P. R. Rutter & B. Vincent (eds), Microbial Adhesion to Surfaces. Ellis Horwood, Chichester: 330–338.

    Google Scholar 

  • Svarvarson, J. & B. Davidsdottir, 1994. Foraminiferan (Protozoa) epizoites on arctic isopods (Crustacea) as indicators of isopod behaviour. Mar. Biol. 118: 239–246.

    Google Scholar 

  • Turner, J. T., M. T. Poster & S. B. Collard, 1979: Infestation of the estuarine copepod Acartia tonsa with the ciliate Epistylis. Trans. am. microsc. Soc. 98: 136–138.

    Google Scholar 

  • Van Loosdrecht, M. C. M., J. Lyklema, W. Norde, G. Schraa & A. Zehnder, 1987. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Apl. envir. Microbiol. 53: 1898–1901.

    Google Scholar 

  • Vrolijk, N. H., N. M. Targett, R. E. Baier & A. E. Meyer, 1990. Surface characteristics of two gorgonian coral species: Implications for a natural antifouling defence. Biofouling 2: 39–54.

    Google Scholar 

  • Wahl, M., K. Kroeger & M. Lenz, 1998. Non-toxic protection against epibiosis. Biofouling 12: 205–226.

    Google Scholar 

  • Waite, J. H., 1987. Nature's underwater adhesive specialist. Int. J. Adhesion Adhesives 7: 9–15.

    Google Scholar 

  • Waite, J. H., 1990. The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp. Biochem. Physiol. 97B: 19–29.

    Google Scholar 

  • Webster, D. R., K. E. Cooksey & R. W. Rubin, 1985. An investigation of the involvement of cytoskeletal structures and secretion in gliding motility of the marine diatom, Amphora coffaeformis. Cell Motility 5: 103–122.

    Google Scholar 

  • Weissmann, P., D. J. Lonsdale & J. Yen, 1993. The effect of peritrich ciliates on the production of Acartia hudsonica in Long Island Sound. Limnol. Oceanogr. 38: 613–622.

    Google Scholar 

  • Weng, T. H., 1987. The parasitic barnacle, Sacculina granifera Boschma, affecting the commercial sand crab, Portunus pelagicus (L.), in populations from two different environments in Queensland. J. Fish Diseases 10: 221–227.

    Google Scholar 

  • White, K. N., N. A. Ratcliffe & M. Rossa, 1985. The antibacterial activity of haematocyte clumps in the gills of the shore crab, Carcinus maenas. J. mar. biol. Ass. U. K. 65: 857–870.

    Google Scholar 

  • Wistuba E., 1980. Kleben und Klebstoffe. Chemie in unserer Zeit 14: 124–133.

    Google Scholar 

  • Wolff, T., 1959. Epifauna on certain decapod crustacea. Proc. XVth Congr. Zool. London: 1060-1061.

  • Young, G. A., A. B. Yule & G. Walker, 1988. Adhesion in the anemones Actinia equina L. and Metridium senile (L.). Biofouling 1: 137–146.

    Google Scholar 

  • Xu, Z. & C. W. Burns, 1991. Effect of the epizoic ciliate, Epistylis daphniae, on growth, reproduction and mortality of Boeckella triarticulata (Thomson) (Copepoda: Calanoidea). Hydrobiologia 209: 183–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, K., Hormchong, T. & Wahl, M. Relevance of crustacean carapace wettability for fouling. Hydrobiologia 426, 193–201 (2000). https://doi.org/10.1023/A:1003918512565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003918512565

Navigation