Skip to main content
Log in

Microbial control of dissolved organic carbon in lakes: research for the future

  • DOM as an energy source
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The dissolved organic carbon (DOC) of lakes dominates any budget of organic carbon in these systems. Limnologists are still limited by techniques and particularly by the lack of measurements of rates of microbial transformation and use of this DOC.

There are now four different approaches to the study of the microbial control of DOC in lakes. The first is through measurements of the total DOC. Recent advances in measurement with high temperature combustion will likely lead to higher and more consistent measurements in freshwaters than previously. It is possible that a biologically active fraction may be identified. The second approach is through measurements of microbial incorporation and respiration of 14C-labeled organic matter. The kinetics of this process are well known but advances in measurement of the size of the substrate pool are still being made. The third approach is to use bacterial growth in batch or continuous flow experiments in order to understand how much of the total DOC can be decomposed by microbes. The assay in this approach may be microbial growth (thymidine incorporation, biomass changes) or change in the DOC (total concentrations, specific compounds, or fractions of the DOC by molecular weight). These methods are promising but are not developed enough for routine use. For example, growth measurements in the laboratory are all subject to experimental artifacts caused by changes in the DOC and in the bacterial populations. Finally, the fourth approach is through the use of isotopes of the natural DOC. In the sea this approach has given the age of the bulk DOC (14C data). In freshwaters it has great potential for differentiating between bacterial use of terrestrial DOC vs. use of algal-derived DOC (13C data). Stable isotopes are also useful for experimentally labeling DOC produced by algae and following the use of this material by bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammerman, J. W., J. A. Fuhrman, A. Hagström & F. Azam, 1984. Bacterial growth in seawater. I. Growth kinetics and cellular characteristics in seawater cultures. Mar. Ecol. Prog. Ser. 18: 31–39.

    Google Scholar 

  • Bell, R. T. & J. Kuparinen, 1984. Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl. envir. Microbiol. 48: 1221–1230.

    CAS  Google Scholar 

  • Bjornsen, P. K., 1986. Bacterioplankton growth yield in continuous seawater cultures. Mar. Ecol. Prog. Ser. 30: 191–196.

    Google Scholar 

  • Burney, C. M., P. G. Davis, K. M. Johnson & J. M. Sieburth, 1981. Dependence of dissolved carbohydrate concentrations upon small scale nanoplankton and bacterioplankton in the western Sargasso Sea. Mar. Biol. 65: 289–296.

    Article  CAS  Google Scholar 

  • Coffin, R. B., B. Fry, B. J. Peterson & R. T. Wright, 1989. Carbon isotopic compositions of estuarine bacteria. Limnol. Oceanogr. 34: 1305–1310.

    CAS  Google Scholar 

  • Coffin, R. B., D. J. Velinsky, R. Devereux, W. A. Price & L. A. Cifuentes, 1990. Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrate used by estuarine bacteria. Appl. envir. Microbiol. 56: 2012–2020.

    CAS  Google Scholar 

  • Cole, J., 1985. Decomposition. In G. E. Likens (ed.) An Ecosystem Approach to Aquatic Ecology. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo: 302–310.

    Google Scholar 

  • Cole, J. J., S. Findlay & M. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Google Scholar 

  • Coveney, M. F., 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38: 8–20.

    CAS  Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 66: 109–120.

    Article  Google Scholar 

  • Fuhrman, J. A. & R. L. Ferguson, 1986. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: Agreement between chemical and microbiological measurements. Mar. Ecol. Prog. Ser. 33: 237–242.

    CAS  Google Scholar 

  • Gordon, D. C. & W. H. Sutcliffe, 1973. A new dry combustion method for the simultaneous determination of total organic carbon and nitrogen in seawater. Mar. Chem. l: 231–244.

    Article  Google Scholar 

  • Hagström, Å., J. W. Ammerman, S. Henrichs & F. Azam, 1984. Bacterioplankton growth in seawater, II. Organic matter utilization during steady-state growth in seawater cultures. Mar. Ecol. Prog. Ser. 18: 41–48.

    Google Scholar 

  • Hobbie, J. E., 1988. A comparison of the ecology of planktonic bacteria in fresh and salt water. Limnol. Oceanogr. 33: 750–764.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., 1990. Measuring heterotrophic activity in plankton. In R. Grigorova & J. R. Norris (eds), Methods in Microbiology, Volume 22. Academic Press, London: 235–250.

    Google Scholar 

  • Hobbie, J. E. & J. J. Cole, 1984. Response of a detrital foodweb to eutrophication. Bull. mar. Sci. 35: 357–363.

    Google Scholar 

  • Hollibaugh, J. T. & F. Azam, 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104–1116.

    CAS  Google Scholar 

  • Jannasch, H. W., 1969. Estimations of bacterial growth rates in natural waters. J. Bact. 99: 156–160.

    PubMed  CAS  Google Scholar 

  • Kirchman, D. L. & R. E. Hodson, 1986. Metabolic regulation of amino acid uptake in marine waters. Limnol. Oceanogr. 31: 339–350.

    CAS  Google Scholar 

  • Kirchman, D. L., E. K'Ness & R. Hodson, 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. envir. Microbiol. 49: 599–607.

    CAS  Google Scholar 

  • Larsson, U. & Å. Hagström 1982. Fractionated phytoplankton primary production, exudate release, and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70.

    Article  Google Scholar 

  • Lee, C. & S. G. Wakeham. Organic matter in the water column. Future research challenges. Mar. Chem. (in press).

  • Likens, G. E., J. S. Eaton & N. M. Johnson, 1985. Physical and chemical environment. In G. E. Likens (ed.) An Ecosystem Approach to Aquatic Ecology. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo: 89–108.

    Google Scholar 

  • Lindroth, P. & K. Mopper, 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by pre-column fluorescence derivatization with o-phthaldialdehyde. Analyt. Chem. 51: 1667–1674.

    Article  CAS  Google Scholar 

  • Parsons, T. R. & J. D. M. Strickland, 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep Sea Res. 8: 211–222.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18: 293–320.

    Article  Google Scholar 

  • Peterson, B. J., B. Fry, M. Hullar, S. Saupe & R. Wright, 1990. A stable isotope approach for tracing sources of DOC used by estuarine bacteria. EOS 71(2): 190.

    Google Scholar 

  • Quimby, H., H. W. Ducklow, E. R. Peele & K. A. Glowersen, 1990. 3H-thymidine incorporation and bacterial production in Chesapeake Bay and the North Atlantic Ocean. EOS 71: 109.

    Google Scholar 

  • Romankevich, E. A., 1984. Geochemistry of organic matter in the ocean. Springer-Verlag, Berlin, 334 p.

    Google Scholar 

  • Sakamoto, T. & T. Miyasaka, 1987. TOC analysis. Study confirming the accuracy of a method for measuring TOC by wet oxidation. Ultrapure Water, December 1987: 24–31.

    Google Scholar 

  • Saupe, S., M. Hullar, B. Fry & B. J. Peterson, 1990. A method for determining carbon isotopic compositions of DOC. EOS 71(2): 190.

    Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    CAS  Google Scholar 

  • Sugimura, Y. & Y. Suzuki, 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem. 24: 105–121.

    Article  CAS  Google Scholar 

  • Suzuki, Y. & E. Tanoue, 1991. Dissolved organic carbon enigma — Implications for ocean margins. In R. F. Mantoura, J. M. Martin & R. F. Wollast (eds), Ocean Margin Processes in Global Change, Report of the Dahlem Workshop, Berlin, March 18–23, 1990. Wiley, New York.

    Google Scholar 

  • Suzuki, Y., E. Tanoue & Y. Sugimura. Distribution of dissolved organic carbon in subtropical and tropical Pacific oceanic waters. Deep-Sea Res. (in press).

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J. & M. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

    CAS  Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W.B. Saunders Company, Philadelphia, London, Toronto, 743 p.

    Google Scholar 

  • Wiebe, W. J. & D. F. Smith, 1977. Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs. Mar. Biol. 42: 213–223.

    Article  CAS  Google Scholar 

  • Williams, P. J. leB., 1984. Bacterial production in the marine food chain: The emperor's new suit of clothes. In M. J. R. Fasham (ed.) Flows of Energy and Materials in Marine Ecosystems. Plenum Press, New York, London: 271–299.

    Google Scholar 

  • Williams, P. J. leB. & C. Askew, 1968. A method of measuring the mineralization by micro-organisms of organic compounds in sea-water. Deep Sea Res. 15: 365–375.

    CAS  Google Scholar 

  • Williams, P. M. & E. R. M. Druffel, 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330: 246–248.

    Article  CAS  Google Scholar 

  • Williams, P. M. & E. R. M. Druffel, 1988. Dissolved organic matter in the ocean: Comments on a controversy. Oceanography 1: 14–17.

    Google Scholar 

  • Wright, R. T., 1984. Dynamics of pools of dissolved organic carbon. In J. E. Hobbie & P. J. leB. Williams (eds) Heterotrophic Activity in the Sea. Plenum Press, N.Y. and London: 121–154.

    Google Scholar 

  • Wright, R. T. & J. E. Hobbie, 1966.The use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobbie, J.E. Microbial control of dissolved organic carbon in lakes: research for the future. Hydrobiologia 229, 169–180 (1992). https://doi.org/10.1007/BF00006999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006999

Key words

Navigation