Skip to main content
Log in

An upscaling method for one‐phase flow in heterogeneous reservoirs. A weighted output least squares (WOLS) approach

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper we study the problem of determining the effective permeability on a coarse scale level of problems with strongly varying and discontinuous coefficients defined on a fine scale. The upscaled permeability is defined as the solution of an optimization problem, where the difference between the fine scale and the coarse scale velocity field is minimized. We show that it is not necessary to solve the fine scale pressure equation in order to minimize the associated cost‐functional. Furthermore, we derive a simple technique for computing the derivatives of the cost‐functional needed in the fix‐point iteration used to compute the optimal permeability on the coarse mesh. Finally, the method is illustrated by several analytical examples and numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allaire and F. Murat, Homogenization of the Neumann problem with nonisolated holes, Asympt. Anal. 7(2) (1993) 81–95.

    MATH  MathSciNet  Google Scholar 

  2. G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method, Numer. Math. 76(1) (1997) 27–68.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Babuska, Homogenization and its application. Mathematical and computational problems, in: Numerical Solution of Partial Differential Equations, Vol. 3, ed. B. Hubbard (Academic Press, New York, 1976) pp. 89–116.

    Google Scholar 

  4. H.T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems (Birkhäuser, Basel, 1989).

  5. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978).

    Google Scholar 

  6. A. Bourgeat, E. Marusvsić and A. Mikelić, Effective behaviour of a porous medium containing a thin fissure, in: Calculus of Variations, Homogenization and Continuum Mechanics, eds. G. Bouchitté, G. Buttazzo and P. Suquet (World Scientific, 1994) pp. 69–83.

  7. X. Cai, B.F. Nielsen and A. Tveito, An analysis of a preconditioner for the discretized pressure equation arising in reservoir simulation, Preprint 1995-4, The Department of Informatics, University of Oslo (1995).

  8. M. Dale, S. Ekrann and L. Holden, Reservoir modelling; Effective properties, in: Recent Advances in Improved Oil Recovery Methods for North Sea Sandstone Reservoirs, eds. S.M. Skjæveland and J. Kleppe (Norwegian petroleum directorate, 1992).

  9. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. II, Functional and Variational Methods (Springer, Berlin, 1988).

    Google Scholar 

  10. A.J. Desbarats, Numerical estimation of effective permeabilities in sand–shale formations, Water Resour. Res. 23(2) (1987) 273–286.

    Google Scholar 

  11. C.V. Deutsch, Calculating effective absolute permeability in sandstone/shale sequences, SPE Formation Evaluation (1989) 343–348.

  12. Diffpack home page, http://www.nobjects.com/diffpack.

  13. L.J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res. 27(5) (1991) 699–708.

    Article  MathSciNet  Google Scholar 

  14. H.W. Engl, Regularization methods for the stable solution of inverse problems, Surv. Math. Ind. 3 (1993) 71–143.

    MATH  MathSciNet  Google Scholar 

  15. H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems 5 (1989) 523–540.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Ewing, Problems arising in the modeling of processes for hydrocarbon recovery, in: The Mathematics of Reservoir Simulation, ed. R. Ewing (SIAM, Philadelphia, PA, 1983) pp. 3–34.

    Google Scholar 

  17. R. Fletcher, Practical Methods of Optimization, 2nd ed. (Wiley, New York, 1987).

    Google Scholar 

  18. J.J. Gomez-Hernandez and A.G. Journel, Stochastic characterization of grid-block permeabilities: from point values to block tensors, in: Proceedings of 2nd European Conference on the Mathematics of Oil Recovery, eds. D. Guérillot and O. Guillon (Éditions Technip, Paris, 1990) pp. 83–90.

    Google Scholar 

  19. M. Griebel and S. Knapek, Matrix-dependent multigrid-homogenization for diffusion problems, in: Proceedings of the GAMM-Seminar on Modelling and Computation in Environmental Sciences, Stuttgart, 1995, Notes on Numerical Fluid Mechanics (Vieweg, Braunschweig, 1996).

    Google Scholar 

  20. L. Holden and O. Lia, A tensor estimator for the homogenization of absolute permeability, Transport in Porous Media 8(1) (1992) 37–47.

    Article  Google Scholar 

  21. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functions (Springer, Berlin, 1994).

    Google Scholar 

  22. P.R. King, The use of renormalization for calculating effective permeability, Transport in Porous Media 4 (1989) 37–58.

    Article  Google Scholar 

  23. H.P. Langtangen, Diffpack: Software for partial differential equations, in: Proceedings of the 2nd Annual Object-Oriented Numerics Conference, Sunriver, OR (1994).

  24. H. Omre, K. Sølna and H. Tjelmeland, Simulation of random functions on large lattices, in: Proceedings of 4th International Geostatistical Congress, Troia, Portugal (September 13–18, 1992).

  25. D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation (Elsevier, 1977).

  26. K. Suzuki and N. Kikuchi, A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Engrg. 93(3) (1991) 291–318.

    Article  MATH  Google Scholar 

  27. L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115(3/4) (1990) 193–230.

    MATH  MathSciNet  Google Scholar 

  28. K. Tyler, A. Henriques, A. Hektoen, L. Holden and A. MacDonald, MOHERES – A collection of stochastic models for describing heterogeneities in clastic reservoirs, in: Proceedings 3rd International Conference on North Sea Oil and Gas Reservoirs, Trondheim (November 30–December 2, 1992).

  29. J.E. Warren and H.S. Price, Flow in heterogeneous porous media, Soc. Peral. Engrg. J. (1961) 14–28.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, B.F., Tveito, A. An upscaling method for one‐phase flow in heterogeneous reservoirs. A weighted output least squares (WOLS) approach. Computational Geosciences 2, 93–123 (1998). https://doi.org/10.1023/A:1011541917701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011541917701

Navigation