Skip to main content
Log in

Differential multiple-quantum relaxation arising from cross-correlated time-modulation of isotropic chemical shifts

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In this paper it is demonstrated that cross-correlated time modulation of isotropic chemical shifts (`conformational exchange') leads to differential relaxation of double- and zero-quantum coherences, respectively. Quantitative information can be obtained from the time dependence of the interconversion between the two two-spin coherences 2IxSx and 2IySy, induced by the differential relaxation. The effect is illustrated with an application to 13C,15N-labeled quail CRP2(LIM2), by studying 15N-1HN multiple-quantum relaxation. Significant cross-correlated fluctuations of isotropic chemical shifts were observed for residues which are part of a disordered loop region connecting two β-strands in CRP2(LIM2). Differential 1HN and 15N exchange contributions to multiple-quantum relaxation observed at these sites illustrate the complex interplay between hydrogen bonding events and conformational reorientations in proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1986) The Principles of Nuclear Magnetism, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Akke, M. and Palmer, A.G. (1996) J. Am. Chem. Soc., 118, 911–912.

    Google Scholar 

  • Akke, M., Liu, J., Cavanagh, J., Erickson, H.P. and Palmer III, A.G. (1998) Nat. Struct. Biol., 5, 55–59.

    Google Scholar 

  • Blommers, M.L.J., Stark, W., Jones, C.E., Head, D., Owen, C.E. and Jahnke, W. (1999) J. Am. Chem. Soc., 121, 1949–1953.

    Google Scholar 

  • Bremi, T. and Brüschweiler, R. (1997) J. Am. Chem. Soc., 119, 6672–6673.

    Google Scholar 

  • Brutscher, B., Skrynnikov, N.R., Bremi, T., Brüschweiler, R. and Ernst, R.R. (1998) J. Magn. Reson., 130, 346–351.

    Google Scholar 

  • Carlomagno, T., Felli, I.C., Czech, M., Fischer, R., Sprinzl, M. and Griesinger, C. (1999) J. Am. Chem. Soc., 121, 1945–1948.

    Google Scholar 

  • Carr, H.Y. and Purcell, E.M. (1954) Phys. Rev., 94, 630–638.

    Google Scholar 

  • Daragan, V.A. and Mayo, K.H. (1997) Prog. NMR Spectrosc., 31, 63–105.

    Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.

    Google Scholar 

  • Desvaux, H., Birlirakis, N., Wary, C. and Berthault, P. (1995) Mol. Phys., 86, 1059–1073.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 553–559.

    Google Scholar 

  • Engelke, J. and Rüterjans, H. (1997) J. Biomol. NMR, 9, 63–78.

    Google Scholar 

  • Fersht, A. (1985) In Enzyme Structure and Mechanism, W.H.Freeman and Company, New York, NY, USA.

    Google Scholar 

  • Fischer, M.W.F., Zeng, L., Pang, Y., Hu, W., Majumdar, A. and Zuiderweg, E.R.P. (1997) J. Am. Chem. Soc., 119, 12629–12642.

    Google Scholar 

  • Fischer, M.W.F., Majumdar, A. and Zuiderweg, E.R.P. (1998) Prog.NMR. Spectrosc., 33, 207–272.

    Google Scholar 

  • Garrett, D.S., Powers, P., Gronenborn, A.M. and Clore, G.M. (1991) J. Magn. Reson., 95, 214–220.

    Google Scholar 

  • Geen, H. and Freeman, R. (1991) J. Magn. Reson., 93, 93–141.

    Google Scholar 

  • Ghose, R., Huang, K. and Prestegard, J.H. (1998) J. Magn. Reson., 135, 487–499.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593–12594.

    Google Scholar 

  • Gutowsky, H.S., Vold, R.L. and Wells, E.J. (1965) J. Chem. Phys., 43, 4107–4125.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Konrat, R. and Sterk, H. (1993) Chem. Phys. Lett., 203, 75–81.

    Google Scholar 

  • Konrat, R., Weiskirchen, R., Kräutler, B. and Bister, K. (1997) J.Biol. Chem., 272, 12001–12007.

    Google Scholar 

  • Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.

    Google Scholar 

  • Kumar, P. and Kumar, A. (1996) J. Magn. Reson., A119, 29–37.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn.Reson., 85, 393–399.

    Google Scholar 

  • Meiboom, S. and Gill, D. (1958) Rev. Sci. Instrum., 29, 688–691.

    Google Scholar 

  • Mulder, F.A.A., de Graaf, R.A., Kaptein, R. and Boelens, R. (1998) J. Magn. Reson., 131, 351–357.

    Google Scholar 

  • Norwood, T.J., Tillett, M.L. and Lian, L.Y. (1999) Chem. Phys.Lett., 300, 429–434.

    Google Scholar 

  • Orekhov, V.Y., Pervushin, K. and Arseniev, A.S. (1994) Eur. J.Biochem., 219, 887–896.

    Google Scholar 

  • Orekhov, V.Y., Pervushin, K.V., Korzhnev, D.M. and Arseniev, A.S. (1995) J. Biomol. NMR, 6, 113–122.

    Google Scholar 

  • Pang, Y., Wang, L., Pellecchia, M., Kurochkin, A.V. and Zuiderweg, E.R.P. (1999) J. Biomol. NMR, 14, 297–306.

    Google Scholar 

  • Pellecchia, M., Pang, Y., Wang, L., Kurochkin, A.V., Kumar, A. and Zuiderweg, E.R.P. (1999) J. Am. Chem. Soc., 121, 9165–9170.

    Google Scholar 

  • Pelupessy, P., Chiarparin, E., Ghose, R. and Bodenhausen, G. (1999) J. Biomol. NMR, 14, 277–280.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Pérez-Alvarado, G.C., Miles, C., Michelsen, J.W., Louis, H.A., Winge, D.R., Beckerle, M.C. and Summers, M.F. (1994). Nat. Struct. Biol., 1, 388–398.

    Google Scholar 

  • Pervushin, K., Rieck, R., Wider, G. and Wüthrich, K. (1998) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.

    Google Scholar 

  • Reif, B., Hennig, M. and Griesinger, C. (1997) Science, 276, 1230–1233.

    Google Scholar 

  • Schleucher, J., Sattler, M. and Griesinger, C. (1993) Angew. Chem. Int. Ed. Engl., 32, 1489–1491.

    Google Scholar 

  • Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335–338.

    Google Scholar 

  • Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 151–164.

    Google Scholar 

  • Tessari, M. and Vuister, G.W. (2000) J. Biomol. NMR, 16, 171–174.

    Google Scholar 

  • Vold, R.L. and Vold, R.R. (1978) Prog. NMR Spectrosc., 12, 79–133.

    Google Scholar 

  • Weiskirchen, R., Pino, J.D., Macalma, T., Bister, K. and Beckerle, M.C. (1995) J. Biol. Chem., 270, 28946–28954.

    Google Scholar 

  • Wennerström, H. (1972) Mol. Phys., 24, 69–80.

    Google Scholar 

  • Wokaun, A. and Ernst, R.R. (1978) Mol. Phys., 36, 317–341.

    Google Scholar 

  • Yang, D., Konrat, R. and Kay, L.E. (1997) J. Am. Chem. Soc., 119, 11938–11940.

    Google Scholar 

  • Yang, D. Gardner, K.H. and Kay, L.E. (1998) J. Biomol. NMR, 11, 213–220.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1998) J. Am. Chem. Soc., 120, 9880–9887.

    Google Scholar 

  • Zeng, L., Fischer, M.W.F. and Zuiderweg, E.R.P. (1996) J. Biomol. NMR, 7, 157–162.

    Google Scholar 

  • Zinn-Justin, S., Berthault, P., Guenneugues, M. and Desvaux, H. (1997) J. Biomol. NMR, 10, 363–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloiber, K., Konrat, R. Differential multiple-quantum relaxation arising from cross-correlated time-modulation of isotropic chemical shifts. J Biomol NMR 18, 33–42 (2000). https://doi.org/10.1023/A:1008317212558

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008317212558

Navigation