Skip to main content
Log in

Somein situ STM contributions to the characterization of electrochemical systems

  • Reviews of Applied Electrochemistry 36
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We present a critical review on the use of STM as anin situ technique to characterize electrochemical systems based on the work performed in our laboratory. Contributions ofin situ STM studies include: (i) atomic resolution of electrodeposited lead on graphite; (ii) imaging of modifications on metallic electrode surfaces induced by electrochemical oxidation-reduction processes; (iii) imaging of corrosion process on aluminium and Al-Ta alloy electrodes in NaCl solution; (iv) characterization of semiconductor-solution interfaces. These studies allowed: (a) establishment of STM as a technique which, for some systems, yields atomic resolution of metallic surfaces in air and in solution; (b) establishment of a mechanism for the electrochemical growth of oxide films on metal electrodes; (c) establishment of a corresponding mechanism for the reduction of those electrochemically grown oxide films; (d) direct monitoring of corrosion processes on a scale of nm to μm; and (e) determination of the presence of surface states and their energy position at the semiconductor-solution interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oberlech, 1985,IBM J. Res. Develop. 30(4/5) (1986).

  2. A. J. Arvia,in ‘Spectroscopy and Diffraction Techniques in Interfacial Electrochemistry’, (edited by C. Gutierres and C. Melendres), Kluwer Academic Publishers, Boston (1990).

    Google Scholar 

  3. R. Sonnenfeld and P. K. Hansma,Science 232 (1986) 211.

    Google Scholar 

  4. R. Christoph, H. Siegenthaler, H. Rohrer and H. Wiese,Electrochim. Acta. 14 (1989) 1011.

    Google Scholar 

  5. M. Szklarczyk and J. O'M. Bockris,J. Electrochem. Soc. 137 (1990) 452.

    Google Scholar 

  6. R. S. Robinson,J. Vac. Sci. Technol. A8 (1990) 511.

    Google Scholar 

  7. C. M. Vitus, S.-C. Chang, B. C. Schardt and M. J. Weaver,J. Phys. Chem. 95 (1991) 7559.

    Google Scholar 

  8. K. Uosaki and H. Kita,J. Vac. Sci. Technol. A8 (1990) 520.

    Google Scholar 

  9. R. C. Bhardwaj, A. González-Martín and J. O'M. Bockris,J. Electroanal. Chem. 307 (1991) 195.

    Google Scholar 

  10. R. C. Bhardwaj, A. González-Martín and J. O'M. Bockris,J. Electrochem. Soc. 138 (1991) 1901.

    Google Scholar 

  11. M. Szklarczyk and J. O'M. Bockris,Surf. Sci. 241 (1991) 54.

    Google Scholar 

  12. K. Sashikata, N. Furuya and K. Itaya,J. Vac. Sci. Technol. B9 (1991) 457.

    Google Scholar 

  13. J.-S. Chen, T. M. Devine, D. F. Ogletree and M. Salmeron,Surf. Sci. 258 (1991) 346.

    Google Scholar 

  14. F.-R. F. Fan and A. J. Bard,J. Electrochem. Soc. 136 (1989) 166.

    Google Scholar 

  15. R. C. Bhardwaj, A. González-Martín and J. O'M. Bockris,ibid. 139 (1992) 1050.

    Google Scholar 

  16. M. Szklarczyk, A. González-Martín, O. Veleva and J. O'M Bockris,Surf. Sci. 239 (1990) 305.

    Google Scholar 

  17. M. Szklarczyk, A. González-Martín and J. O'M. Bockris,ibid. 257 (1991) 307.

    Google Scholar 

  18. P. Carlsson, B. Holmstrom, H. Kita and K. Uosaki,ibid. 237 (1990) 280.

    Google Scholar 

  19. K. Itaya, R. Sugawara, Y. Morita and H. Tokumoto,Appl. Phys., Lett. 60 (1992) 2534.

    Google Scholar 

  20. M. Szklarczyk, O. Velev and J. O'M. Bockris,J. Electrochem. Soc. 136 (1989) 2433.

    Google Scholar 

  21. J. Wintterlin, J. Wiechers, H. Brune, T. Critsch, H. Hofer and R. J. Behm,Phys. Rev. Lett. 62 (1989) 59.

    Google Scholar 

  22. V. M. Hallmark, S. Chiang, J. F. Rabot, J. D. Swalen and R. J. Wilson,Phys. Rev. Lett. 59 (1987) 2879.

    Google Scholar 

  23. B. C. Schardt,Science 243 (1989) 1050.

    Google Scholar 

  24. T. Gritsch, D. Coulman, R. J. Behm and G. Ertl,Appl. Phys. A 49 (1989) 403.

    Google Scholar 

  25. W. L. Bragg and J. A. Darbyshire,Trans. Faraday Soc. 28 (1932) 522.

    Google Scholar 

  26. ‘CRC Handbook of Chemistry and Physics’, (edited by R. C. Weast and M. J. Astle) 60th edn, CRC Press, Ohio (1980).

    Google Scholar 

  27. Quantum mechanical value for diameter of free atom. Reported in ‘Table of Periodic Properties of the Elements’ (Sargent-Welch Scientific Company, Skokie, IL, 1979).

  28. W. J. Moore, Jr. and L. Panting,J. Am. Chem. Soc. 63 (1941) 1392.

    Google Scholar 

  29. S. M. Kochergin,Zh. Tekn. Fiz. 23 (1953) 955.

    Google Scholar 

  30. K. M. Gorbunova, O. S. Popova, A. A. Sytyagina and Y. Polukav, Reports at the 1st Conference on Crystal Growth, Moscow, 5–10 March (1956) p. 58.

  31. S.-L. Yau, C. M. Vitus and B. C. Schardt,J. Am. Chem. Soc. 112 (1990) 3677.

    Google Scholar 

  32. C. M. Vitus, S.-C. Chang, B. C. Schardt and M. J. Weaver,J. Phys. Chem. 95 (1991) 7559.

    Google Scholar 

  33. S.-L. Yau, X. Gao, S.-C. Chang, B. C. Schardt and M. J. Weaver,J. Am. Chem. Soc. 113 (1991) 6049.

    Google Scholar 

  34. F. Besenbacher, F. Jensen, E. Laegsgaard, K. Mortensesn and I. Stensgaard,J. Vac. Sci. Technol. B9 (1991) 874.

    Google Scholar 

  35. D. F. Ogletree, R. Q. Hwang, D. M. Zeglisnki, A. Lopez Vazquez-de-Parga, G. A. Somorgai and M. Salmeron,ibid. B9 (1991) 886.

    Google Scholar 

  36. S. Manne, J. Massie, V. B. Elings, P. K. Hasma and A. A. Gewirth,ibid. B9 (1991) 950.

    Google Scholar 

  37. O. M. Magnussen, J. Hotlos, G. Beitel, D. M. Kolb and R. J. Behm,ibid. B9 (1991) 969.

    Google Scholar 

  38. J. W. M. Frenken, R. J. Hamers and J. E. Demuth,ibid. A8 (1990) 293.

    Google Scholar 

  39. G. Binning and H. Rohrer,Helv. Phy. Acta. 55 (1982) 726.

    Google Scholar 

  40. L. Vazquez, J. M. Gomez Rodriguez, J. Gomez Herrero, A. M. Baro, N. Garcia, J. C. Canullo and A. J. Arvia,Surf. Sci. 181 (1987) 98.

    Google Scholar 

  41. K. Itaya, S. Sugawara and K. Higaki,J. Phys. Chem. 92 (1988) 6714.

    Google Scholar 

  42. K. Itaya, S. Sugawara, K. Sashikata and N. Furuya,J. Vac. Sci. Technol. A8 (1990) 515.

    Google Scholar 

  43. I. Otsuka and T. Iwasake,J. Microsc. 152 (1988) 989.

    Google Scholar 

  44. V. Jovancicevic, R. C. Kainthla, Z. Tang, B. Yang and J. O'M. Bockris,Langmuir 3 (1987) 388.

    Google Scholar 

  45. W. C. Moshier, G. D. Cavis, J. S. Ahearn and H. F. Hough,J. Electrochem. Soc. 136 (1989) 356.

    Google Scholar 

  46. P. M. Natishan, E. McCafferty and G. K. Gabler,Mater. Sci. & Eng. A116 (1989) 41.

    Google Scholar 

  47. A. Miyamaka and H. Ogawa,Corros. Sci. 46 (1990) 99.

    Google Scholar 

  48. F.-R. F. Fan and A. J. Bard,Anal. Chem. 60 (1988) 751.

    Google Scholar 

  49. M. Szklarczyk, Lj. Minevski and J. O'M. Bockris,J. Electroanal. Chem. 289 (1990) 279.

    Google Scholar 

  50. S. Real, M. Urquidi-MacDonald and D. D. MacDonald,J. Electrochem. Soc. 135 (1988) 1633.

    Google Scholar 

  51. D. D. MacDonald, S. Real and M. Urquidi-MacDonald,ibid. 135 (1988) 2397.

    Google Scholar 

  52. W. C. Moshier, G. D. Davis and G. O. Cole,ibid. 133 (1986) 1063.

    Google Scholar 

  53. G. D. Davis, W. C. Moshier, T. L. Fritz and G. O. Cole, Martin Marieta Laboratories, Annual Report, Jan. 1989.

  54. R. C. Bhardwaj, N. Smart and J. O'M. Bockris,J. Electrochem. Soc. in press.

  55. R. T. Foley,Corrosion (Houston) 42 (1986) 277.

    Google Scholar 

  56. O. J. Murphy, T. E. Pon and J. O'M. Bockris,J. Electrochem. Soc. 131 (1984) 2785.

    Google Scholar 

  57. W. C. Moshier, G. D. Davis, J. S. Ahearn and H. F. Hough,ibid. 134 (1987) 2677.

    Google Scholar 

  58. A. Heller,Science 223 (1984) 1141.

    Google Scholar 

  59. R. C. Kaintla, B. Zelenay and J. O'M. Bockris,J. Electrochem. Soc. 134 (1987) 841.

    Google Scholar 

  60. D. Montgomery,S. S. Kocha, J. A. Turner and A. J. Nozik, Proceedings of the DOE/SERI Hydrogen Program, Washington (1991).

  61. J. F. McCann and D. Haneman,J. Electrochem. Soc. 104 (1982) 1134.

    Google Scholar 

  62. H. Gerischer,in ‘Electronic and Molecular Structure of Electrode-Electrolyte Interface’, (edited by W. N. Hansen, D. M. Kolb and D. W. Lynch), Elsevier, New York (1983).

    Google Scholar 

  63. A. Humbert, F. Salvan and C. Mouttet,Surf. Sci. 181 (1987) 307.

    Google Scholar 

  64. J. A. Stroscio and F. M. Feenstra,J. Vac. Sci. Technol. B6 (1988) 1472.

    Google Scholar 

  65. K. Itaya and E. Tomita,Chem. Lett. (1989) 289.

  66. J. A. Stroscio, R. M. Feenstra, D. M. Newns and A. P. Tein,J. Vac. Sci. Technol. A6 (1988) 499.

    Google Scholar 

  67. M. E. Welland and R. H. Koch,Appl. Phys. Lett. 46 (1986) 724.

    Google Scholar 

  68. R. J. Hamers, R. M. Tromp and J. E. Demuth,Surf. Sci. 181 (1987) 346.

    Google Scholar 

  69. R. M. Tromp,J. Phys., Condens. Matter. 1 (1989) 10211.

    Google Scholar 

  70. Ph. Avouris and I.-W. Lyo,Surf. Sci. 242 (1991) 1.

    Google Scholar 

  71. R. Wolkow and Ph. Avouris,Phys. Rev. Lett. 60 (1988) 1049.

    Google Scholar 

  72. K. H. Besocke, M. Tekde and J. Frohn,J. Vac. Set. Technol. A6 (1988) 408.

    Google Scholar 

  73. I. Tanaka, F. Osaka, T. Kato, T. Katayama, S. Muramatsu and T. Shimada,Appl. Phys. Lett. 54 (1989) 427.

    Google Scholar 

  74. Y. Nakagawa, A. Ishitani, T. Takahagi, H. Kuroda, H. Tokumoto, M. Ono and K. Kajimura,J. Vac. Sci. Technol. A8 (1990) 262.

    Google Scholar 

  75. E. Tomita, N. Matsuda and K. Itaya,ibid. A8 (1990) 534.

    Google Scholar 

  76. J. P. Carrejo, T. Thundat, L. A. Nagahara, S. M. Lindsay and A. Majumdar,ibid. B9 (1991) 955.

    Google Scholar 

  77. K. Itaya, R. Sugawara, Y. Morita and H. Tokumoto,Appl. Phys. Lett. 60 (1992) 2534.

    Google Scholar 

  78. M. Szklarczyk, J. O'M. Bockris, V. Brusic and G. Sparrow,Int. J. Hydrogen Energy 9 (1984) 707.

    Google Scholar 

  79. A. González-Martín, Dissertation, Texas A & M University (1992).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Professor Brian E. Conway on the occasion of his 65th birthday and in recognition of his outstanding contribution to electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Martín, A., Bhardwaj, R.C. & Bockris, J.O. Somein situ STM contributions to the characterization of electrochemical systems. J Appl Electrochem 23, 531–546 (1993). https://doi.org/10.1007/BF00721943

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00721943

Keywords

Navigation