Skip to main content
Log in

Nondestructive Testing of Historic Structures

  • Published:
Archives and Museum Informatics

Abstract

Nondestructive testing (NDT) of historic structures can be used for architectural archaeology, structural stability analysis, or materials characterization. Four types of physical probes are available: sound, penetrating radiation, visible light, and electromagnetism. Each of these can be utilized in several ways. Additional options involve hybrid techniques that combine probe methods. Widespread application in architectural conservation depends upon overcoming institutional barriers including the lack of standardization, fragmented decision-making, and restrictive contracting procedures that do not take into account the benefits of NDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accardo, G., C. Caneva and S. Massa, “Stress monitoring by temperature mapping and acoustic emission analysis: a case study of Marcus Aurelius”, Studies in Conservation 28 (1983), pp. 67-74.

    Google Scholar 

  • Aggour, M.S., “Nondestructive testing of timber piles for structures”, in Preprints of the TRB Annual Meeting 1991, Paper 91-0431 (Washington, DC: Transportation Research Board, 1991).

    Google Scholar 

  • Alvarez, L.W., J.A. Anderson, F. El Bedwei, J. Burkhard, A. Fakhry, A. Girgis, A. Goneid, F. Hassan, D. Iverson, G. Lynch, Z. Miligiy, A.H. Moussa, M. Sharkawi and L. Yazolino, “Search for hidden chambers in the pyramids”, Science 167 (1970), pp. 832-839.

    Google Scholar 

  • Amber, J., “Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon dates for lime mortars”, Journal of Archaeological Science 14 (1987), pp. 569-576.

    Google Scholar 

  • Asmus, J., “Digital image processing in art conservation”, Byte 12(3) (1987), pp. 169-190.

    Google Scholar 

  • ASTM, “Standard Test Methods for Density of Hardened and Unhardened Portland Cement Concrete in Place by Nuclear Methods, C1040Ů93”, in 1996 Annual Book of ASTM Standards, Col. 04.02, Concrete and Aggregates (Philadelphia, PA: American Society for Testing and Materials, 1996), pp. 509-512.

    Google Scholar 

  • Beckmann, P., Structural Aspects of Building Conservation (New York, NY: McGraw Hill, 1995).

    Google Scholar 

  • Berke, N.S., “Corrosion rates of steel in concrete”, ASTM Standardization News March (1986), pp. 57-61.

  • Berra, M., L. Binda, L. Anit and A. Fatticcioni, “Utilisation of sonic tests to evaluate damaged and repaired masonries”, in B. Supernant, J. Noland and M. Schuller (eds.), Proceedings Nondestructive Evaluation of Civil Structures and Materials (Boulder, CO: Atkinson-Noland & Associates, 1992), pp. 329-338.

    Google Scholar 

  • Carden, M.L., “Use of ultraviolet light as an aid to pigment identification”, APT Bulletin XXIII(3) (1991), pp. 26-37.

    Google Scholar 

  • Cesareo, R., S. Sciuti and M. Marabelli, “Non-destructive analysis of ancient bronzes”, Studies in Conservation 18 (1973), pp. 64-80.

    Google Scholar 

  • Clarke, E.T., “Radiography of ancient structures on the acropolis of athens”, Technology and Conservation 8(3) (1983), pp. 18-25.

    Google Scholar 

  • Clarke, J., “SQUIDs”, Scientific American 271(2) (1994), pp. 46-53.

    Google Scholar 

  • Clemeña, G.C., “Short-pulse radar methods”, in V.M. Malhotra and N.J. Carino (eds.), CRC Handbook on Nondestructive Testing of Concrete (Boca Raton, FL: CRC Press, Inc., 1991), pp. 253-274.

    Google Scholar 

  • Cliver, E.B. and R. Baboian, “Life expectancy for the statue of liberty', in S.J. Kelley and P.C. Marshall (eds.), Service Life of Rehabilitated Buildings and Other Structures, STP 1098 (Philadelphia, PA: American Society for Testing and Materials, 1990), pp. 68-73.

    Google Scholar 

  • Collins, M.P. and R.M. Belchamber, “Acoustic emission source location using simplex optimization”, Journal of Acoustic Emission 9(4) (1990), pp. 271-276.

    Google Scholar 

  • Drouillard, T.F., “Anecdotal history of acoustic emission from wood”, Journal of Acoustic Emission 9(3) (1990), pp. 155-176.

    Google Scholar 

  • D'Aversa, F., M. Ferretti, P. Moioli and R. Scafe, “A multi-gamma attenuation technique for the quantitative characterization of archaeological metal alloys”, in N.S. Baer, C. Sabbione and A.I. Sors (eds.), Science, Technology and European Cultural Heritage (Oxford, England: Butterworth-Heinemann, 1989), pp. 579-582.

    Google Scholar 

  • Elizabeth, M.V. and T. Annick, “nondestructive metal detection in ancient masonries, Paper 19”, in A. Nappi (ed.), Preprints of EC Workshop on Non-destructive Testing to Evaluate Damage Due to Environmental Effects on Historic Monuments (Trieste, Italy: University of Trieste, 1996), pp. 19.1-19.5.

    Google Scholar 

  • Erdek, M., “recent photogrammetric studies of the dome of the Hagia Sophia”, in R. Mark and A. Cakmak (eds.), The Hagia Sophia from the Age of Justinian to the Present (Cambridge, MA: Cambridge University Press, 1992), pp. 78-82.

    Google Scholar 

  • Grattan, D.W., W. Bokman and C.M. Cook, “Scientific examination of totem poles at ninstints world heritage site”, Journal of the International Institute of Conservation — Canadian Group 12 (1987), pp. 43-57.

    Google Scholar 

  • Green, P., “Historic bridge rehabbed for rails”, Engineering News Record January 9 (1992), pp. 20-21.

  • Hart, D., X-ray Examination of Historic Structures, PB 85-180-800 (Springfield, VA: National Technical Information Service, 1975).

    Google Scholar 

  • Hassan, M., O. Burdett and R. Favre, “Combination of ultrasonic measurements and load tests in bridge evaluation”, in M.C. Forde (ed.), Proceedings of the Fifth International Conference on Structural Faults and Repairs (Edinburgh, Scotland: Engineering Technics Press, 1993), pp. 59-64.

    Google Scholar 

  • Heikkenen, H.J. and M.R. Edwards, “The key-year dendrochronology technique and its application in dating historic structures in Maryland”, Bulletin of the Association for Preservation Technology XV (1983), pp. 3-26.

    Google Scholar 

  • Hertlein, B.H., “Learning to love NDT”, Civil Engineering 62(1) (1992), pp. 48-51.

    Google Scholar 

  • Holt, A., L. Goldberg, M. McCurdy and J. Mittleman, “Ultrasonic testing applications for structures”, in Birks, A.S. and Green, R.E., eds, Nondestructive Testing Handbook, Volume 7: Ultrasonic Testing (Columbus, OH: American Society for Nondestructive Testing, 1991).

    Google Scholar 

  • Hopwood, T. and C. McGogney, “Acoustic emission applications in civil engineering”, in R.K. Miller and P. McIntire (eds.), Nondestructive Testing Handbook, Volume 5: Acoustic Emission Testing (Columbus, OH: American Society for Nondestructive Testing, 1987), pp. 325-345.

    Google Scholar 

  • Hubbell, J.H., “Survey of industrial, agricultural and medical applications of radiometric gauging and process control”, Journal of Research of the National Institute of Standards and Technology 95 (1990), pp. 689-699.

    Google Scholar 

  • Hudson, A.P. and R.G. Newton, “A means for the in-situ identification of medieval class by its natural radioactivity”, Archaeometry 18(2) (1976), pp. 229-232.

    Google Scholar 

  • Huy, D.B., J. Montluco, J. Lakshmanan, J.C. Erling and C. Nakhla, “Les possibilities offerte par la microgravimetrie dans l'Auscultation de monuments antiques”, in P.G. Marinos and G.C. Koukis (eds.), The Engineering Geology of Ancient Works, Monuments and Historical Sites, Vol. 2 (Rotterdam, Netherlands: Balkema, 1988).

    Google Scholar 

  • Jain, K., K. Tej Singh and O.P. Agrawal, “Corrosion of iron dowels and clamps in the deterioration of monuments”, in Ciabach, J., ed., VIth International Congress on the Deterioration and Conservation of Stone (Torum, Poland: Nicholas Copernicus University, 1988), pp. 116-124.

    Google Scholar 

  • Kennedy, E.B., “Videographic documentation, analysis and manipulation”, Bulletin of the Association for Preservation Technology XXII(1) (1990), pp. 97-103.

    Google Scholar 

  • Kevlin, M.J., “Radiographic inspection of plank-house construction”, Bulletin of the Association for Preservation Technology XVIII(3) (1986), pp. 40-47.

    Google Scholar 

  • Lanius, R.M., R. Tichy and W.M. Bulleit, “Strength of old wood joists”, ASCE J. Structure. Division 107(12) (1981), pp. 2313-2325.

    Google Scholar 

  • Lauer, K.R., “Magnetic/electrical methods”, in V.M. Malhotra and N.J. Carino (eds.), CRC Handbook on Nondestructive Testing of Concrete (Boca Raton, FL: CRC Press Inc., 1991), pp. 203-226.

    Google Scholar 

  • Lee, I.D.G., “Ultrasonic pulse testing considered as a safety measure for timber structures”, in Second Symposium on Nondestructive Testing of Wood (Pullman, WA: Washington State University, 1965), pp. 185-203.

    Google Scholar 

  • Livingston, R.A., “Transferring technology from conservation science to renewal of the infrastructure”, Public Roads 58(1) (1994), pp. 18-25.

    Google Scholar 

  • Livingston, R.A., L. Chang, L.S. Evans and J.I. Trombka, “The application of the neutron probe to the nondestructive examination of architectural and archaeological materials”, in E.V. Sayre, P.B. Vandiver, J. Druzik and C. Stevenson (eds.), Materials Issues in Art and Archaeology. Materials Research Society Symposium Proceedings Vol. 123 (Pittsburgh, PA: Materials Research Society, 1988), pp. 59-64.

    Google Scholar 

  • Livingston, R., A. Wolde-Tinsae and A. Chaturbahai, “The use of gypsum mortar in historic structures”, in C. Brebbia (ed.), Proceedings of the 1991 Conference on Structural Studies, Repairs, and Maintenance of Historical Buildings (Southampton, UK: Computational Mechanics Institute, 1991).

    Google Scholar 

  • Mark, R., Experiments in Gothic Structure (Cambridge, MA: The MIT Press, 1982).

    Google Scholar 

  • McDonald, T.C., Understanding Old Buildings: The Process of Architectural Preservation, Preservation Briefs 35 (Washington, DC: National Park Service, 1993).

    Google Scholar 

  • McGonnagle, W.J., “The lixiscope in nondestructive testing, medical applications and radiation management”, International Advances in Nondestructive Testing 7 (1981), pp. 405-427.

    Google Scholar 

  • Mejdahl, V., A Survey of Archaeological Samples Dated in 1986, RISO-M-26-38 (Roskilde, Denmark: Riso National Laboratory, 1986).

    Google Scholar 

  • Montoto, M., L. Calleja, B. Perez and R.M. Esbert, “Evaluation in situ of the state of deterioration of monumental stones by non-destructive ultrasonic techniques”, in P.B. Vandiver, J. Druzik and G.S. Wheeler (eds.), Materials Issues in Art and Archaeology II, Symposium Proceeding Vol. 185 (Pittsburgh, PA: Materials Research Society, 1991), pp. 273-284.

    Google Scholar 

  • Nash, K., J. Matteo and M. King, “Structural investigation and analysis of Frank Lloyd Wright's fallingwater”, in M. Schuller and D. Woodham (eds.), 3rd Conference on Nondestructive Evaluation of Civil Structures and Materials (Boulder, CO: Atkinson-Noland & Associates, 1996), pp. 23-28.

    Google Scholar 

  • Natesayier K. and K.C. Hover, “In situ identification of asr products in concrete”, Cement and Concrete Research 18 (May) (1988), pp. 455-463.

  • Natesayier, K. and K.C. Hover, “Some field strategies of the new in situ method for identification of alkali silica reaction products in concrete”, Cement and Concrete Research 19 (Sept.) (1989), pp. 770-778.

  • Newton, C.M. and M.O. Eberhard, “Influence of the magnetic properties of concrete on magneto-static detection of reinforcing steel”, in M. Schuller and D. Woodham (eds.), Third Conference on Nondestructive Evaluation of Civil Structures and Materials (Boulder, CO: Atkinson-Noland & Associates, 1996), pp. 319-333.

    Google Scholar 

  • Phillips, M.K., “mechanic geniuses and duckies, a revision of new England's cut nail chronology before 1820”, Bulletin of the Association for Preservation Technology XXV (1994), pp. 3-4, 4–16.

    Google Scholar 

  • Pineault, J.A. and M.E. Brauss, “In situ measurements of residual and applied stresses in pressure vessels and pipelines using x-ray diffraction techniques”, in J.C. Spanner (ed.), Determining Materials Characterization (New York, NY: American Society of Mechanical Engineers, 1994), pp. 145-148.

    Google Scholar 

  • Placious, R.C. D. Polansky, H. Berger, C. Bueno, C.L. Vosberg, R.A. Betz and D.J. Rogerson, “High-density glass scintillator for real-time X-ray inspection”, Materials Evaluation 49(11) (1991), pp. 1419-1421.

    Google Scholar 

  • Sansalone M. and N.J. Carino, “Stress wave propagation methods”, in V.M. Malhotra and N.J. Carino (eds.), CRC Handbook of Nondestructive Testing of Concrete (Boca Raton, FL: CRC Press, 1991), pp. 175-304.

    Google Scholar 

  • Seguin, F.H., “High-resolution computer tomography and digital radiography of archaeological and art-historical objects”, in P.B. Vandiver, J. Druzik and G.S. Wheeler (eds.), Materials Issues in Art and Archaeology II, MRS Symposium Proceedings Vol. 185 (Pittsburgh, PA: Materials Research Society, 1990), pp. 63-73.

    Google Scholar 

  • Skoulikidis, Th., 'Attaque Atmospherique (Goujons en Acier) et Mesures a Prendre', in N. Beloyannis (ed.), Second International Symposium on the Deterioration of Building Stones (Athens, Greece: Ministry of Science and Culture, 1976), pp. 347-349.

    Google Scholar 

  • Tassios, T.P. and Chr. Economou, 'Non-destructive evaluation of marble quality on the west part of the parthenon”, in N. Beloyannis (ed.), Second International Symposium on the Deterioration of Building Stones (Athens, Greece: Ministry of Science and Culture, 1976), pp. 299-308.

    Google Scholar 

  • Thomasen, S.E., “Degradation and rehabilitation of Terra Cotta”, in G. Frohnsdorff and G. Horner (eds.), Second International Conference on the Durability of Building Material (Gaithersburg, MD: National Bureau of Standards, 1981), pp. 108-114.

    Google Scholar 

  • Timoshenko, S.P., History of Strength of Materials (New York, NY: Dover, 1953).

    Google Scholar 

  • Van Asperen de Boer, 'Imaging techniques: Results and prospects”, in N.S. Baer, C. Sabbioni and A.I. Sors (eds.), Science, Technology and European Cultural Heritage (Oxford, UK: Butterworth-Heinemann, 1991), pp. 278-283.

    Google Scholar 

  • Wilford, J.N., “Technology opens ancient doors”, New York Times 24 February (1987), C1.

  • Winkler, E., “Ultra-violet luminescence”, Bulletin of the Association of Engineering Geologists XX(2) (1983), pp. 227-230.

    Google Scholar 

  • Woodham, D.B., R.S.K. van der Hoeven and M.P. Schuller, “material characterization using tomographic velocity reconstruction”, in M. Schuller and D. Woodham (eds.), Third Conference on Nondestructive Evaluation of Civil Structures and Materials (Boulder, CO: Atkinson-Noland & Associates, 1996), pp. 199-210.

    Google Scholar 

  • Yu, Zhoyun, Palaces of the Forbidden City (New York, NY: The Viking Press, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingston, R.A. Nondestructive Testing of Historic Structures. Archives and Museum Informatics 13, 249–271 (1999). https://doi.org/10.1023/A:1012416309607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012416309607

Keywords

Navigation