Skip to main content
Log in

On the topology of an integrable variant of a nonholonomic Suslov problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The topology of a new intagrable version of a nonholonomic Suslov problem is considered. It is shown that the integral manifolds are either Liouville tori with quasiperiodic windings or closed two-dimensional surfaces almost all trajectories on which are closed. Bibliography18 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”,Dokl. Akad. Nauk SSSR,287, 1072–1075 (1986).

    MathSciNet  Google Scholar 

  2. A. T. Fomenko,Integrability and Nonintegrability in Geometry and Mechanics, Kluwer Academic Publishers, Dordrecht (1988).

    Google Scholar 

  3. A. T. Fomenko, “Qualitative geometrical theory of integrable systems. classification of isoenergetic surfaces and bifurcation of Liouville tori at the critical energy values”,Lect. Notes Math.,1334, 221–245 (1988).

    MATH  MathSciNet  Google Scholar 

  4. A. T. Fomenko, “The theory of invariants of muldimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”,Advances in Soviet Math.,6, 1–35 (1991).

    MATH  MathSciNet  Google Scholar 

  5. A. T. Fomenko, “Theory of rough classification of integrable nondegenerate Hamiltonian differential equations on four-dimensional manifolds. application to classical mechanics”,Advances in Soviet Math.,6 (1991).

  6. G. G. Okuneva, “Integrable Hamiltonian systems in analytic dynamics and mathematical physics”,Advances in Soviet Math.,6, 37–65 (1991).

    MATH  MathSciNet  Google Scholar 

  7. A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”,Advances in Soviet Math.,6, 67–146 (1991).

    MATH  MathSciNet  Google Scholar 

  8. Y. Sinagawa, Y. L. Kergosien, and T. L. Kunii, “Surface coding based on Morse theory”,IEEE Computer Graphics and Applications,11, 66–78 (1991).

    Google Scholar 

  9. Y. Shinagawa, T. L. Kunii, A. T. Fomenko, and S. Takahashi,Coding of Object Surfaces Using Atoms, in press: Frontiers in Scientific Visualization (Larry Rosenblum, eds.).

  10. G. K. Suslov.Theoretical Mechanics [in Russian], Gostekhizdat, Moscow (1946).

    Google Scholar 

  11. G. V. Gorr, L. V. Kudryashoba, and L. A. Stepanova,Classical Problems in the Dynamics of a Solid Body [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  12. G. G. Okuneva, “Movement of a rigid body with fixed point under nonholonomic connection in Newton field”,Mekh. Tverd. Tela, No. 18, 40–43 (1986).

    MATH  Google Scholar 

  13. G. G. Okuneva, “Orbital topological classification of flows with closed trajectories”,Continuous Maps of Topological Spaces [in Russian], Izdat. Latv. Univ. (1986), pp. 170–175.

  14. G. G. Okuneva, “Orbital topological classification of two-dimensional flows with almost all trajectories closed. Abstracts, Part 2”,Internat. Topology Conference, Baku, p. 225 (1987).

  15. G. G. Okuneva, “Qualitive investigation of an integrable variant of the nonholonomic Suslov problem”,Vest. MGU, Ser. Mat. Mekh., No. 5, 59–64 (1987).

    MATH  MathSciNet  Google Scholar 

  16. D. N. Goryachev, “On motion of a rigid body about a fixed point in the caseA=B=4C”,Mat. Sb.,21, No. 3 (1900).

    Google Scholar 

  17. E. V. Anoshkina, “Topological classification of integrable systems in Goryachev-Chaplygin case with generalized potential”,Usp. Mat. Nauk,47, No. 3 (1992).

    Google Scholar 

  18. E. V. Anoshkina, “Topological classification of integrable systems in the case of generalized hyrostat”, Manuscript deposited in VINITI,B293, (1993).

Download references

Authors

Additional information

Published inZapiski Nauchnykh Seminarov POMI, Vol. 235, 1900, pp. 7–21.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anoshkina, E.V., Kunii, T.L., Okuneva, G.G. et al. On the topology of an integrable variant of a nonholonomic Suslov problem. J Math Sci 94, 1448–1456 (1999). https://doi.org/10.1007/BF02365196

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365196

Keywords

Navigation