Skip to main content
Log in

Quantitative composition of the defensive secretion ofBledius species (Coleoptera: Staphylinidae: Oxytelinae) is adapted to naturally occurring predators

  • Published:
CHEMOECOLOGY Aims and scope Submit manuscript

Summary

The adaptation of defensive secretions to their target organisms was examined for the abdominal gland secretions ofBledius furcatus, B. spectabilis andB. arenarius. Therefore the target organisms of the secretion of theseBledius species (i.e. their predators) had to be identified. At the collection sites examined these were the earwigLabidura riparia, the antCataglyphis bicolor, the flyLispe candicans, different carabids of the generaPogonus, Dichirotrichus, Dyschirius, Bembidion andCalathus and the wading birdsHaematopus ostralegus andCalidris alba. The secretion of the abdominal glands contains the toxin ptoluquinone dissolved in eitherγ-dodecalactone and 1-undecene (B. furcatus andB. spectabilis) or in octanoic acid and octyloctanoate (B. arenarius). The ratio of these solvents is species-specific. Application experiments using some of the natural insect predators (L. riparia, C. bicolor, Pogonus, Di. gustavii, Dyschirius) revealed that these solvent ratios provided a more effective deterrent than other possible ratios. Thus by combining the solvents in certain ratios, the capability of cuticular penetration and therefore the effectiveness of the defensive secretions are adapted to their natural targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adis J (1979) Problems of interpreting arthropod sampling with pitfall traps. Zool Anz Jena 202:177–184

    Google Scholar 

  • Araujo MJ (1973) Morphologie et histologie de la glande pygidiale défensive deBledius spectabilis Kr. (Staphylinidae, Oxytelinae). Comptes Rendues de l'Acad. de Sciences Paris 276 Série D:2713–2716

    Google Scholar 

  • Baumann H, Kaib M (1993) Multifunktionelle Bedeutung des Giftdrüsensekretes der AmeiseMyrmicaria eumenoides. P 159. Kurzfassungen der Vorträge und Poster der DGaaE-Tagung, Jena 1993

  • Blum MS (1978) Biochemical defenses of insects. Pp 466–513in Rockstein M (ed.) Biochemistry of Insects. New York, San Francisco: Academic Press

    Google Scholar 

  • Blum MS (1981) Chemical Defenses of Arthropods. New York: Academic Press

    Google Scholar 

  • Burmeister F (1939) Biologie, Ökologie und Verbreitung der europäischen Käfer auf systematischer Grundlage: Adephaga, Caraboidea. Pp 62–69. Krefeld: Goecke & Evers

    Google Scholar 

  • Crowson RA (1981) The biology of Coleoptera. London: Academic Press

    Google Scholar 

  • Dettner K (1985) Chemische Ökologie, Evolutionstrends und Chemotaxonomie von Wehrdrüsensystemen bei Käfern (Coleoptera). Habilitationsschrift, TH Aachen

    Google Scholar 

  • Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Annu Rev Entomol 32:17–48

    Google Scholar 

  • Dettner K (1991) Solvent-dependent variability of effectiveness of quinone-defensive systems of Oxytelinae beetles (Coleoptera: Staphylinidae). Entomol Gener 15:275–292

    Google Scholar 

  • Dettner K (1993) Defensive secretions and exocrine glands in freeliving staphylinid beetles — their bearing on phylogeny (Coleoptera: Staphylinidae). Biochem Syst Ecol 19:291–303

    Google Scholar 

  • Dettner K, Grümmer R (1986) Quasisynergism as evolutionary advance to increase repellency of beetle defensive secretions. Z Naturforsch 41c:493–496

    Google Scholar 

  • Duffey SS (1976) Arthropod allomones: Chemical effronteries and antagonists. Proc XV Int Congr Entomol (1976):323–394

    Google Scholar 

  • Eisner T, Meinwald J, Monro A, Ghent R (1961) Defence mechanisms of arthropods — I. The composition and function of the spray of the whipscorpion,Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida). J Insect Physiol 6:272–298

    Google Scholar 

  • Bezzel E (1993) Kompendium der Vögel Mitteleuropas, Passeres Singvögel. Pp 576–577. D-Wiesbaden: Aula-Verlag

    Google Scholar 

  • Frommherz H (1966) Physikalisch-chemisches Rechnen in Wissenschaft und Technik. D-Weinheim: Verlag Chemie

    Google Scholar 

  • Glutz U v. B, Bauer KM, Bezzel E (1975) Handbuch der Vögel Mitteleuropas 6, 1. D-Wiesbaden: Akademische Verlags-gesellschaft

    Google Scholar 

  • Günther K, Hannemann HJ, Hieke F, Königsmann E, Schuhmann H (1989) Insekten, Urania Tierreich in sechs Bänden. 5. Aufl. Leipzig, Jena, Berlin: Urania Verlag

    Google Scholar 

  • Herman LH (1986) Revision ofBledius. Part IV. Classification of species groups, phylogeny, natural history, and catalogue (Coleoptera, Staphylinidae, Oxytelinae). Bull Am Mus Nat Hist 184:1–368

    Google Scholar 

  • Hinton HE (1944) Some general remarks on sub-social beetles, with notes on the biology of the staphylinid,Platystethus arenarius (Fourcroy). Proc R Ent Soc Lond (A) 19:115–128

    Google Scholar 

  • Jacobs W, Renner M (1988) Biologie und Ökologie der Insekten. D-Stuttgart: Gustav Fischer Verlag

    Google Scholar 

  • Krogerus R (1925) Studien über Lebensweise und Entwicklung einigerBledius-Arten. Acta Soc. Fauna Flora Fenn 56:1–27

    Google Scholar 

  • Krogerus R (1932) Über die Ökologie und Verbreitung der Arthropoden der Triebsandgebiete an den Küsten Finnlands. Acta Zool Fennica 12:1–308

    Google Scholar 

  • Larsen EB (1936) Biologische Studien über die tunnelgrabenden Käfer auf Skallingen. Vidansk Medd Fra Dansk Naturh Foren Kobenhavn 100:1–232

    Google Scholar 

  • v. Lengerken H (1929) Die Salzkäfer der Nord- und Ostseeküste mit Berücksichtigung der angrenzenden Meere sowie des Mittelmeeres, des Schwarzen und des Kaspischen Meeres. Eine ökologisch-biologisch-geographische Studie. Zeitschr Wiss Zool 135:1–162

    Google Scholar 

  • Lewis CT (1980) The penetration of cuticle by insecticides. Pp 367–400in Miller TA (ed.) Cuticle Techniques in Arthropods. New York, Heidelberg, Berlin: Springer Verlag

    Google Scholar 

  • Paulian R (1942) Observations surBledius spectabilis Kraatz. Bull Lab Marit Dinard 24:62–72

    Google Scholar 

  • Peschke K (1983) Defensive and pheromonal secretion of the tergal gland ofAleochara curtula II. Release and inhibition of male copulatory behavior. J Chem Ecol 9:13–31

    Google Scholar 

  • Peschke K, Eisner T (1987) Defensive secretion of tenebrionid beetleBlaps mucronata: physical & chemical determinants of effectiveness. J Comp Physiol A 161:377–388

    Google Scholar 

  • Pöch G, Juan H (1985) Allgemeine Pharmacodynamik. Stuttgart, New York: Thieme Verlag

    Google Scholar 

  • Rudd GT (1835) Observations onHesperophilus arenarius and onZabrus gibbus. Entomol Mag 2:180–182

    Google Scholar 

  • Sainte-Claire Deville J (1924) Kleinere Mitteilungen über dieDyschirius-Arten Europas. Koleopterol Rundsch 11:20–24

    Google Scholar 

  • Steidle JLM (1991) Die Räuber der dreiBlediusartenBl. spectabilis, Bl. furcatus undBl. arenarius (Coleoptera, Staphylinidae). Jber Naturwiss Ver Wuppertal 44:64–68

    Google Scholar 

  • Steidle JLM (1993) Das Abdominaldrüsensekret vonBledius (Coleoptera, Staphylinidae, Oxytelinae): seine Zusammensetzung, Funktion und Anpassung. Bayreuther Forum Ökologie 4:1–164

    Google Scholar 

  • Wheeler JW, Happ GM, Araujo J, Pasteels JM (1972) Gamma-Dodecalactone from rove beetles. Tetrahedron Lett 46:4635–4638

    Google Scholar 

  • Welling W, Paterson GD (1985) Toxicodynamics of insecticides. Pp 603–645in Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry & Pharmacology. Oxford: Pergamon Press

    Google Scholar 

  • Whitman DW, Blum MS, Alsop DW (1990) Allomones: Chemicals for defence. Pp 289–351in Evans DL, Schmidt JO (eds) Insect Defences: Adaptive Mechanisms and Strategies of Prey and Predators. Albany/NY: State University of New York Press

    Google Scholar 

  • v. Wingerden WKRE, Littel A, Boomsma JJ (1981) Strategies and population dynamics of arthropod species from coastal plains and green beaches. Pp 101–125in Smit CJ, Den Hollander J, v. Wingerden WKRE, Wolff WJ (eds) Final Report of the Section “Terrestrial Fauna” of the Wadden Sea Working Group 10

  • Witz BW (1990) Antipredator mechanism in arthropods: a twenty year literature survey. Fla Entomol 73:71–99

    Google Scholar 

  • Wohlenberg E (1937) Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. Helgol Wiss Meeresunters 1:1–92

    Google Scholar 

  • Wyatt TD (1986) How a subsocial beetle,Bledius spectabilis prevents flooding and anoxia in its burrow. Behav Ecol Sociobiol 19:323–331

    Google Scholar 

  • Wyatt TD, Foster WA (1989a) Leaving home: predation and the dispersal of larvae from the maternal burrow ofBledius spectabilis, a subsocial intertidal beetle. Anim Behav 38:778–785

    Google Scholar 

  • Wyatt TD, Foster WA (1989b) Parental care in the subsocial intertidal beetle,Bledius spectabilis, in relation to parasitism by the ichneumonid waspBarycnemis blediator. Behaviour 110:76–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steidle, J.L.M., Dettner, K. Quantitative composition of the defensive secretion ofBledius species (Coleoptera: Staphylinidae: Oxytelinae) is adapted to naturally occurring predators. Chemoecology 4, 63–71 (1993). https://doi.org/10.1007/BF01241675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01241675

Key words

Navigation