Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pseudocholinesterase staining in the primary visual pathway of the macaque monkey

Abstract

Cholinesterases in brain tissue are divided into two main classes: ‘true’ cholinesterases (acetylcholinesterase, AChE, EC 3.1.1.7), which preferentially hydrolyse the neurotransmitter acetylcholine; and ‘pseudocholinesterases’ (for example, butyrylcholinesterase, BuChE, EC 3.1.1.8), which preferentially hydrolyse higher choline esters1. AChE is found at peripheral and central cholinergic synapses, is known to be the degradative enzyme of the cholinergic mechanism and may also have other functions in the central nervous system1–3. In contrast to AChE, the pseudocholinesterases have been assigned no certain function in neural transmission and initially were thought to occur mainly in neuroglia, Schwann cells and vascular endothelia1,4. Pseudocholinesterase activity has since been found in neurones and neuropil in several brain regions1,4,5, however, and in the superior cervical ganglion, BuChE has been localized to postsynaptic membranes6 and shown to exist in stable molecular forms corresponding to each of the known molecular forms of true cholinesterase7. These observations have led to the alternative interpretations that the pseudocholinesterases are either metabolic precursors of AChE8 or that they have functions closely related to those of AChE5,7 while being independent of true cholinesterases. We have directly compared the distributions of BuChE and AChE in the central visual pathway of the primate, a neural system in which anatomical and functional compartmentalization is well known9. We demonstrate here that the histochemical localization of Pseudocholinesterase rivals that of AChE in terms of specificity, and that BuChE is independent of AChE both in its normal distribution in the lateral geniculate body and striate cortex and in the response it shows to eye enucleation. We conclude that BuChE or its endogenous substrate may be a neuroactive substance in the primate brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Silver, A. The Biology of Cholinesterases (Elsevier, Amsterdam, 1974).

    Google Scholar 

  2. Chubb, I. W., Hodgson, A. J. & White, G. H. Neuroscience 5, 2065–2072 (1980).

    Article  CAS  Google Scholar 

  3. Greenfield, S., Cheramy, A., Leviel, V. & Glowinski, J. Nature 284, 355–357 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Friede, R. L. Topographic Brain Chemistry (Academic, New York, 1966).

    Google Scholar 

  5. Shute, C. C. D. & Lewis, P. R. Nature 199, 1160–1164 (1963).

    Article  ADS  CAS  Google Scholar 

  6. Davis, R. & Koelle, G. B. J. Cell Biol. 78, 785–809 (1978).

    Article  CAS  Google Scholar 

  7. Vigny, M., Grisiger, V. & Massoullié, J. Proc. natn. Acad. Sci. U.S.A. 75, 2588–2592 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Koelle, W. A. et al. J. Neurochem. 28, 307–311 (1977).

    Article  CAS  Google Scholar 

  9. Hubel, D. H. & Wiesel, T. N. Proc. R. Soc. B198, 1–59 (1977).

    ADS  CAS  Google Scholar 

  10. Horton, J. C. & Hubel, D. H. Nature 292, 762–764 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Hendrickson, A. E., Hunt, S. P. & Wu, J.-Y. Nature 292, 605–607 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Wong-Riley, M. T. T. Brain Res. 171, 11–28 (1979).

    Article  CAS  Google Scholar 

  13. Geneser-Jensen, F. A. & Blackstad, T. W. Z. Zellforsch. Mikrosk. Anat. 114, 460–481 (1971).

    Article  Google Scholar 

  14. Manocha, S. L. & Shantha, T. R. Macaca Mulatta. Enzyme Histochemistry of the Nervous System, 115 (Academic, New York, 1970).

    Google Scholar 

  15. Fitzpatrick, D. & Diamond, I. T. J. comp. Neurol. 194, 703–719 (1980).

    Article  CAS  Google Scholar 

  16. Haseltine, E. C., DeBruyn, E. J. & Casagrande, V. A. Brain Res. 176, 153–158 (1979).

    Article  CAS  Google Scholar 

  17. Schiller, P. H. & Malpeli, J. G. J. Neurophysiol. 41, 788–797 (1978).

    Article  CAS  Google Scholar 

  18. Lund, J. S. in The Organization of the Cerebral Cortex (eds Schmitt, F. O., Worden, F. G. & Dennis, F.) 105–124 (MIT Press, Cambridge, 1981).

    Google Scholar 

  19. Rockland, K. S. & Lund, J. S. Science 215, 1532–1534 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Ogren, M. P. & Hendrickson, A. E. Brain Res. 137, 343–350 (1978).

    Article  Google Scholar 

  21. Hubel, D. H., Wiesel, T. N. & Stryker, M. P. J. comp. Neurol. 177, 361–380 (1978).

    Article  CAS  Google Scholar 

  22. Kennedy, C. et al. Proc. natn. Acad. Sci. U.S.A. 73, 4230–4234 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Hendrickson, A. E. & Wilson, J. R. Brain Res. 170, 353–358 (1979).

    Article  CAS  Google Scholar 

  24. Tootell, R. B. H. & Silverman, M. S. Neurosci. Abstr. 7, 356 (1981).

    Google Scholar 

  25. Humphrey, A. L. & Hendrickson, A. E. Neurosci. Abstr. 6, 315 (1980).

    Google Scholar 

  26. Holmstedt, B. & Sjöqvist, F. Biochem. Pharmac. 3, 297–304 (1960).

    Article  CAS  Google Scholar 

  27. Wenk, H., Bigl, V. & Meyer, U. Brain Res. Rev. 2, 295–316 (1980).

    Article  CAS  Google Scholar 

  28. Coyle, J. T., McKinney, M. & Johnston, M. V. in Brain Neurotransmitters and Receptors in Aging and Age-Related Disorders (eds Enna, S. J. et al.) 147–161 (Raven, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graybiel, A., Ragsdale, C. Pseudocholinesterase staining in the primary visual pathway of the macaque monkey. Nature 299, 439–442 (1982). https://doi.org/10.1038/299439a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299439a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing