Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dystrophin expression in the human retina is required for normal function as defined by electroretinography

Abstract

We have studied retinal function by electroretinography in five Becker and six Duchenne muscular dystrophy patients. All had abnormal electroretinograms with a markedly reduced amplitude for the b–wave in the dark–adapted state. Using three antisera raised to different domains of dystrophin, we identified dystrophin in the outer plexiform layer of human retina. The retinal dystrophin is present in multiple isoforms as the result of alternative splicing. The localization of dystrophin to the outer plexiform layer coincident with the abnormal b–wave suggests that dystrophin is required for normal retinal electrophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weleber, R.G. et al. Åland Island eye disease (Forsius-Eriksson syndrome) associated with contiguous gene deletion syndrome at Xp21: Similarity to incomplete congenital stationary night blindness. Arch. Opthalmol. 107, 1170–1179 (1989).

    Article  CAS  Google Scholar 

  2. Pillers, D.M. et al. Åland Island eye disease (Forsius-Eriksson ocular albinism) and an Xp21 deletion in a patient with Duchenne muscular dystrophy, glycerol kinase deficiency, and adrenal hypoplasia. Am. J. med. Genet. 36, 23–28 (1990).

    Article  CAS  Google Scholar 

  3. Pillers, D.M. et al. Deletion mapping of Åland Island eye disease to Xp21 between DXS67 (B24) and Duchenne muscular dystrophy. Am. J. hum. Genet. 47, 795–801 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Alitalo, T., Kruse, T.A., Forsius, H., Eriksson, A.W. & de la Chapelle, A. Localization of the Åland Island eye disease locus to the pericentric region of the X chromosome by linkage analysis. Am. J. hum. Genet. 48, 31–38 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Musarella, M.A. et al. Assignment of the gene for complete X-linked congenital stationary night blindness (CSNB1) to Xp11.3. Genomics 5, 727–737 (1989).

    Article  CAS  Google Scholar 

  6. Gal, A. et al. Gene of X-chromosomal congenital stationary night blindness is closely linked to DXS7 on Xp. Hum. Genet. 81, 315–318 (1989).

    Article  CAS  Google Scholar 

  7. Bech-Hansen, N.T. et al. A locus for congenital stationary night blindness is located on the proximal portion of the short arm of the X chromosome. Hum. Genet. 84, 406–408 (1990).

    Article  CAS  Google Scholar 

  8. Davies, K.E. et al. Report on the genetic constitution of the X chromosome. Cytogenet. Cell Genet. 58, 853–966 (1991).

    Article  Google Scholar 

  9. Chamberlain, J.S. et al. Expression of the murine Duchenne muscular dystrophy gene in muscle and brain. Science 239, 1416–1418 (1988).

    Article  CAS  Google Scholar 

  10. Chelly, J. et al. Dystrophin gene transcribed from different promoters in neuronal and glial cells. Nature 344, 64–65 (1990).

    Article  CAS  Google Scholar 

  11. Chelly, J. et al. Quantitative estimation of minor mRNAs by cDNA-polymerase chain reaction. Application to dystrophin mRNA in cultured myogeneic and brain cells. Eur. J. Biochem. 187, 691–698 (1990).

    Article  CAS  Google Scholar 

  12. Hoffman, E.P., Hudecki, M.S., Rosenberg, P.A., Pollina, C.M. & Kunkel, L.M. Cell and fiber type distribution of dystrophin. Neuron 1, 411–420 (1988).

    Article  CAS  Google Scholar 

  13. Miike, T., Miyatake, M., Zhao, J., Yoshioka, K. & Uchino, M. Immunohistochemical dystrophin reaction in synaptic regions. Brain. Dev. 11, 344–346 (1989).

    Article  CAS  Google Scholar 

  14. Zhao, J., Uchino, M., Yoshioka, K., Miyatake, M. & Miike, T. Dystrophin in control and mdx retina. Brain Dev. 13, 135–137 (1991).

    Article  CAS  Google Scholar 

  15. Dick, E. & Miller, R.F. Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Res. 154, 388–394 (1978).

    Article  CAS  Google Scholar 

  16. Kline, R.P., Ripps, H. & Dowling, J.E. Generation of b-wave currents in the skate retina. Proc. natn. Acad. Sci. U.S.A. 75, 5727–5731 (1978).

    Article  CAS  Google Scholar 

  17. Miller, R.F. & Dowling, J.E. Intracellular response of the Muller (Glial) cells of mudpuppy retina: Their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).

    Article  CAS  Google Scholar 

  18. Bulman, D.E., Murphy, E.G., Zubrzycka-Gaarn, E.E., Worton, R.G. & Ray, P.N. Differentiation of Duchenne and Becker muscular dystrophy phenotypes with amino- and carboxy-terminal antisera specific for dystrophin. Am. J. hum. Genet. 48, 295–304 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Burrow, K.L. et al. Dystrophin expression and somatic reversion in prednisone treated and untreated Duchenne dystrophy. CIDD Study Group. Neurology 41, 661–666 (1991).

    Article  CAS  Google Scholar 

  20. Zubrzycka-Gaarn, E.E. et al. Dystrophin is tightly associated with the sarcolemma of mammalian skeletal muscle fibers. Exp. cell. Res. 192, 278 (1991).

    Article  CAS  Google Scholar 

  21. Boyce, F.M., Beggs, A.H., Feener, C. & Kunkel, L.M. Dystrophin is transcribed in brain from a distant upstream promoter. Proc. natn. Acad. Sci. U.S.A. 88, 1276–1280 (1991).

    Article  CAS  Google Scholar 

  22. Nudel, U. et al. Duchenne muscular dystrophy product is not identical in muscle and brain. Nature 337, 76–78 (1989).

    Article  CAS  Google Scholar 

  23. Feener, C.A., Koenig, M. & Kunkel, L.M. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511 (1989).

    Article  CAS  Google Scholar 

  24. Bies, R.D. et al. Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart, and brain development. Nucl. Acids Res. 20, 1725–1731 (1992).

    Article  CAS  Google Scholar 

  25. Roberts, R.G., Coffey, A.J., Bobrow, M. & Bentley, D.R. Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 13, 942–950 (1992).

    Article  CAS  Google Scholar 

  26. Lidov, H.G.W., Byers, T.J., Watkins, S.C. & Kunkel, L.M. Localization of dystrophin to post-synaptic regions of central nervous system cortical neurons. Nature 348, 725–728 (1990).

    Article  CAS  Google Scholar 

  27. Yeadon, J.E., Lin, H., Dyer, S.M. & Burden, S.J. Dystrophin is a component of the subsynaptic membrane. J. cell Biol. 115, 1069–1076 (1991).

    Article  CAS  Google Scholar 

  28. Carpenter, S. & Karpati, G. Duchenne muscular dystrophy: Plasma membrane loss initiates muscle cell necrosis unless it is repaired. Brain 102, 147–161. (1979).

    Article  CAS  Google Scholar 

  29. Ervasi, J.M. & Campbell, K.P. Membrane organization of the dystrophin-glycocomplex. Cell 66, 1121–1131 (1991).

    Article  Google Scholar 

  30. Lansman, J.B. & Franco, A.J. What does dystrophin do in normal muscle? J. Muscle Res. Cell Motil. 12, 409–411 (1991).

    Article  CAS  Google Scholar 

  31. Turner, P.R., Fong, P.Y., Denetclaw, W.F. & Steinhardt, R.A. Increased calcium influx in dystrophic muscle. J. cell Biol. 115, 1701–1712. (1991).

    Article  CAS  Google Scholar 

  32. Emory, A.E.H. in Duchenne Muscular Dystrophy. Revised edn (Oxford University Press, New York, 1988).

    Google Scholar 

  33. Lederfein, D. et al. A 71-kilodalton protein is a major product of the Duchenne muscular dystrophy gene in brain and other non-muscle tissues. Proc. natn. Acad. Sci. U.S.A. 89, 5346–5350 (1992).

    Article  CAS  Google Scholar 

  34. Gorecki, D.C. et al. Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum. molec. Genet. 1, 505–510. (1992).

    Article  CAS  Google Scholar 

  35. Mehler, M.F., Hass, K.Z., Kessler, J.A. & Stanton, P.K. Enhanced sensitivity of hippocampal pyramidal neurons from mdx mice to hypoxi-induced loss of synaptic transmission. Proc. natn Acad. Sci. U.S.A. 89, 2461–2465 (1992).

    Article  CAS  Google Scholar 

  36. Faber, D.S. Analysis of the slow transretinal potentials in response to light, thesis, (University of New York, Buffalo, 1969).

  37. Wen, R. & Oakley, B. K(+)-evoked Muller cell depolarization generates fa-wave of electroretinogram in toad retina. Proc. natn. Acad. Sci. U.S.A. 87, 2117–2121 (1990).

    Article  CAS  Google Scholar 

  38. Hoffman, E.P., Brown, R.H. & Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    Article  CAS  Google Scholar 

  39. Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genetic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).

    Article  CAS  Google Scholar 

  40. Zubrzycka-Gaarn, E.E. et al. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333, 466–469 (1988).

    Article  CAS  Google Scholar 

  41. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  42. Towbin, H., Staehlin, T. & Gordon, J. Electrophoretic transfer of protein from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  CAS  Google Scholar 

  43. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  44. Koenig, M., Monaco, A.P. & Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–226 (1988).

    Article  CAS  Google Scholar 

  45. Heery, D.M., Gannon, F. & Powell, R. A simple method for subcloning DNA fragments from gel slices. Trends Genet. 6, 173 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillers, DA., Bulman, D., Weleber, R. et al. Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nat Genet 4, 82–86 (1993). https://doi.org/10.1038/ng0593-82

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0593-82

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing