Skip to main content
Log in

On the estimation of alternative pathways of fatty acid oxidation in the liverIn vivo

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The relative contributions of mitochondrial β-oxidation and peroxisomal β-oxidation and peroxisomal ω-oxidation to the oxidation of a given fatty acidin vivo can be quantitated by an isotopic method. The approach requires infusion of a fatty acid labelled on two specific carbon atoms (e.g. [1-14C] and [11-14C] palmitate) to an isotopic steady state, with subsequent isolation and degradation of an acetylated conjugate as a product of the liver cytosolic acetyl CoA pool and of ketone bodies as a product of the liver mitochondrial acetyl CoA pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Antony, G. J. and B. R. Landau. 1968. Relative contributions of α- β-and ω-oxidation pathways toin vitro fatty acid oxidation in rat liver.J. Lipid Res. 9, 267–269.

    Google Scholar 

  • Bergseth, S., J. P. Poisson and J. Bremer. 1990. Metabolism of dicarboxylic acids in rat hepatocytes.Biochim. Biophys. Acta 1042, 182–187.

    Google Scholar 

  • Brown, G. W., D. D. Chapman, H. R. Matheson, I. L. Chaikoff and W. G. Dauben. 1954. Acetoacetate formation in liver III On the mechanism of acetoacetate formation from palmitic acid.J. biol. Chem. 209, 537–548.

    Google Scholar 

  • Crabtree, B., M. J. Souter and S. E. Andersen. 1989. Evidence that the production of acetae in rat hepatocytes is a predominantly cytoplasmic process.Biochem. J.,257, 673–678.

    Google Scholar 

  • Des Rosiers, C., J. A. Montgomery, M. Garneau, F. David, O. A. Mamer, P. Daloze, G. Toffolo, C. Cobelli, B. R. Landau and H. Brunengraber. 1990. Pseudoketogenesis in hepatectomized dogs.Am. J. Physiol. 258, E519-E528.

    Google Scholar 

  • Des Rosiers, C., F. David, M. Garneau and H. Brunengraber. 1991. Nonhomogeneous labeling of liver mitochondrial acetyl CoA.J. biol. Chem. 266, 1574–1578.

    Google Scholar 

  • Fritz, I. B. and L. Lee 1974. Compartmentation of mitochondrial acetyl CoA. InRegulation of Hepatic Metabolism, F. Lundquist and N. Tygstrup (Eds), pp. 224–234. Copenhagen: Munksgaard.

    Google Scholar 

  • Goodenough, R. D. and R. R. Wolfe. 1983. A model for isotopic sampling and administration in constant infusion experiments: a test with13C-palmitate.Am. J. Clin. Nutr.,37, 1004–1009.

    Google Scholar 

  • Hellertein, M. K., K. Wu, S. Kaempfer, C. Kletke and C. H. L. Shackleton. 1991. Sampling the lipogenis hepatic acetyl CoA poolin vivo in the rat. Comparison of xenobiotic probe to values predicted from isotopomeric distribution in circulating lipids and measurement of lipogenesis and acetyl CoA dilution.J. biol. Chem. 266, 10,912–10,919.

    Google Scholar 

  • Hemmelgarn, E., K. Kumaran and B. R. Landau. 1977. Role of ω-oxidation of fatty acids in formation of the acetyl group for acetylation.J. biol. Chem. 252, 4379–4383.

    Google Scholar 

  • Hemmelgarn, E., W. C. Schumann, J. Margolis, K. Kumaran, and B. R. Landau. 1979. ω-Oxidation of fatty acids and the acetylation ofp-aminobenzoic acid.Biochim. Biophys. Acta 572, 298–306.

    Google Scholar 

  • Heubi, J. E., J. C. Partin, J. S. Partin and W. K. Schubert. 1987. Reye's syndrome: current concepts.Hepatology 7, 155–164.

    Google Scholar 

  • Hryb, D. J. and J. F. Hogg. 1979. Chain length specificities of peroxisomal and mitochondrial β-oxidation in rat liver.Biochem. biophys. Res. Comm. 87, 1200–1206.

    Article  Google Scholar 

  • Kam, K., K. Kumaran and B. R. Landau. 1978. Contribution of ω-oxidation to fatty acid oxidation by liver of rat and monkey.J. Lipid Res. 19, 591–600.

    Google Scholar 

  • Katz, J., S. Abraham and I. L. Chaikoff. 1955, Analytical procedures using a combined combustion-diffusion vessel.Analyt. Biochem. 27, 155–156.

    Article  Google Scholar 

  • Kolvraa, S. and N. Gregersen. 1986.In vitro studies on the oxidation of medium-chain dicarboxylic acids in rat liver.Biochim. Biophys. Acta 876 515–525.

    Google Scholar 

  • Kondrup, J. and P. B. Lazarow. 1985. Flux of palmitate through the peroxisomal and mitochondrial β-oxidation systems in isolated rat hepatocytes.Biochim. Biophys. Acta 835, 147–153.

    Google Scholar 

  • Krebs, H. A. and R. Hems. 1970. Fatty acid metabolism in the perfused rat liver.Biochem. J. 119, 525–533.

    Google Scholar 

  • Landau, B. R. 1986. A potential pitfall in the use of isotopes to measure ketone body production.Metabolism 35, 94–95.

    Article  Google Scholar 

  • Lazarow, P. B. and C. de Duve. 1976. A fatty acyl CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug.Proc. natn. Acad. Sci. USA 73, 2043–2046.

    Article  Google Scholar 

  • Leighton, F., S. Bergseth, T. Rortveit, E. N. Christiansen and J. Bremer. 1989. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.J. biol. Chem. 264, 10,347–10,350.

    Google Scholar 

  • Lopes-Cardozo, M., W. Klazinga and S. G. van den Bergh. 1978. Evidence for a homogeneous pool of acetyl CoA in rat liver.Eur. J. Biochem. 83, 635–640.

    Article  Google Scholar 

  • Mannaerts, G. P., L. J. Debeer, J. Thomas and P. J. deSchepper. 1979. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats.J. biol. Chem. 254, 4585–4595.

    Google Scholar 

  • McGarry, J. D., M. J. Guest and D. W. Foster. 1970. Ketone body metabolism in the ketosis of starvation and alloxan diabetes.J. biol. Chem. 245, 4382–4390.

    Google Scholar 

  • Neat, C. E., M. S. Thomassen and H. Osmundsen. 1981. Induction of peroxisomal β-oxidation in rat liver by high fat diets.Biochem. J. 186, 369–371.

    Google Scholar 

  • Ohgaku, S., P. S. Brady, W. C. Schumann, G. E. Bartsch, J. M. Margolis, K. Kumaran, S. B. Landau and B. R. Landau. 1982. A method for quantitating the contributions of the pathways of acetoacetate formation and its application to diabetic ketosisin vivo.J. biol. Chem. 257, 9283–9289.

    Google Scholar 

  • Osmundsen, H., C. E. Neat and K. R. Norum. 1979. Peroxisomal oxidation of long chain fatty acids.FEBS Lett. 99, 292–296.

    Article  Google Scholar 

  • Osmundsen, H., J. Bremer and J. I. Pedersen. 1991. Metabolic aspects of peroxisomal β-oxidation.Biochim. Biophys. Acta 1085, 141–158.

    Google Scholar 

  • Osumi, T. and T. Hashimoto. 1978. Acyl-CoA axidase of rat live: a new enzyme for fatty acid oxidation.Biochem. biophys. Res. Comm. 83, 479–485.

    Article  Google Scholar 

  • Rognstad, R. 1991. Estimation of peroxisomal and mitochondrial fatty acid oxidation in rat hepatocytes using tritiated substrates.Biochem. J. 279, 147–150.

    Google Scholar 

  • Rosenblatt, J. and R. R. Wolfe. 1988. Calculation of substrate flux using stable isotopes.Am. J. Physiol. 254, E526-E531.

    Google Scholar 

  • Schumann, W. C., E. Hemmelgarn and B. R. Landau. 1978. Omega oxidation of fatty acids and the pathway of 3-hydroxybutyrate formation.Arch. Biochem. Biophys. 190, 345–350.

    Article  Google Scholar 

  • Scofield, R. F., W. C. Schumann, K. Kumaran and B. R. Landau. 1983. Ketone body production in diabetic ketosis by other than liver.Metabolism,32, 1009–1012.

    Article  Google Scholar 

  • Siess, E. A., D. G. Brocks and O. H. Wieland. 1976. Subcellular distribution of key metabolites in isolated liver cells from fasted rats.FEBS Lett. 69, 265–271.

    Article  Google Scholar 

  • Suzuki, H., J. Yamada, T. Watanabe and T. Suga. 1989. Compartmentation of dicarboxylic β-oxidation in rat liver: importance of peroxisomes in the metabolism of dicarboxylic acids.Biochim. Biophys. Acta 990, 25–30.

    Google Scholar 

  • Van Veldhoven, P. P., W. W. Just and G. P. Mannaerts 1987. Permeability of the peroxisomal membrane to cofactors of β-oxidation. Evidence for the presence of a pore-forming protein.J. biol. Chem. 262, 4310–4318.

    Google Scholar 

  • Verkade, P. E. and J. Van der Lee, 1934. Research on fat metabolism.Biochem. J. 28, 31–40.

    Google Scholar 

  • Van Glutz, G. and P. Walter. 1975. Compartmentation on acetyl CoA in rat-liver mitochondria.Eur. J. Biochem. 60, 147–152.

    Article  Google Scholar 

  • Zhang, Y., M. Beylot, K. C. Agarwal, F. David, K. Y. Tserng and H. Brunengraber. 1993. Isotopic heterogeneity of liver extramitochondrial acetyl CoA.FASEB J. 7, A383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rognstad, R. On the estimation of alternative pathways of fatty acid oxidation in the liverIn vivo . Bltn Mathcal Biology 57, 191–203 (1995). https://doi.org/10.1007/BF02460615

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460615

Keywords

Navigation