Skip to main content
Log in

On the fate of inhaled particles in the human: A comparison of experimental data with theoretical computations based on a symmetric and asymmetric lung

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

An analytical model is used to described the behavior of inhaled particulate matter in the human respiratory tract. Three different geometries, symmetric and asymmetric, are utilized to simultate the tracheobronchial (TB) tree. The suitability of each geometry for representing the human is evaluated by comparing calculated aerosol deposition probabilities with experimental data from inhalation exposure tests. A symmetric, dichotomously branching pattern is found to be a reliable description of the TB tree for studies of factors affecting aerosol deposition in the human lung. Calculations with the theoretical model are in excellent agreement with measured aerosol deposition efficiencies. Furthermore, the model accurately predicts experimentally observed features of inhalation exposure data, such as effects of inter-subject lung morphology differences and relative efficiencies of specific deposition mechanisms, on aerosol deposition patterns in the TB tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Chan, T. L., R. M. Schreck and M. Lippman 1980. “Effect of the Laryngeal Jet on Particle Deposition in the Human Trachea and Upper Bronchial Airways.”J. Aerosol Sci. 11, 447–459.

    Article  Google Scholar 

  • Dekker, E. 1961. “Transition Between Laminar and Turbulent Flow in Human Trachea.”J. appl. Physiol. 16, 1060–1064.

    Google Scholar 

  • Ferron, G. A. 1977. “Deposition of Polydisperse Aerosols in Two Glass Models Representing the Upper Human Airways.”J. Aerosol Sci. 8, 409–427.

    Article  Google Scholar 

  • Findeisen, W. 1935. “Über das Absetzen kleiner, in der Luft suspendieter Teilchen in der menschlichen Lunge bei der Atmung.”Pflügers Arch. ges. Physiol. 236, 367–379.

    Article  Google Scholar 

  • Foord, N., A. Black and M. Walsh. 1978. “Regional Deposition of 2.5–7.5 μm Diameter Inhaled Particles in Healthy Male Non-smokers.”J. Aerosol Sci. 9, 343–357.

    Article  Google Scholar 

  • Gerrity, T. R., P. S. Lee, F. J. Hass, A. Marinelli, P. Werner and R. V. Lourenco. 1979. “Calculated Deposition of Inhaled Particles in the Airway Generations of Normal Subjects”J. appl. Physiol. 47, 867–874.

    Google Scholar 

  • Heyder, J. and G. Rudolf. 1977. “Deposition of Aerosol Particles in the Human Nose.” InInhaled Particles IV, Ed. W. H. Walton, pp. 107–126. Oxford: Pergamon Press.

    Google Scholar 

  • Horsfield, K. and G. Cumming. 1967. “Angles of Branching and Diameters of Branches in the Human Bronchial Tree.”Bull. math. Biophys. 29, 245–259.

    Google Scholar 

  • —, G. Dart, D. E. Olson, G. F. Filley and G. Cumming. 1971. “Models of the Human Bronchial Tree.”J. appl. Physiol. 31, 207–217.

    Google Scholar 

  • Hughes, J. M., F. G. Hoppin, Jr. and J. Mead. 1972. “Effect of Lung Inflation on Bronchial Length and Diameter in Excised Lungs.”J. appl. Physiol. 32, 25–35.

    Google Scholar 

  • Landahl, H. D. 1950. “On the Removal of Airborne Droplets by the Human Respiratory Tract: I. The Lung.”Bull. math. Biophys. 12, 43–56.

    MathSciNet  Google Scholar 

  • Lippmann, M. and R. E. Albert. 1969. “The Effect of Particle Size on the Regional Distribution of Inhaled Aerosols in the Human Respiratory Tract.”Am. Ind. Hyg. Ass. J. 30, 257–275.

    Google Scholar 

  • Lippmann, M., R. E. Albert and H. T. Peterson. 1971. “The Regional Deposition of Inhaled Aerosolsin Man.” InInhaled Particles III, Ed. W. H. Walton, pp. 105–122. The Gresham Press, England: Unwin Bros.

    Google Scholar 

  • Martonen, T. B. 1982. “Analytical Model of Hygroscopic Particle Behavior in Human Airways.”Bull. math. Biol. 44, 425–442.

    MATH  Google Scholar 

  • — and D. Gibby, 1982. “Computer Models of Aerosol Deposition in Two Human Tracheobronchial Geometries.”Comput. Biomed. Res. 15, 425–433.

    Article  Google Scholar 

  • Martonen, T. B. and J. Lowe. In press. “Assessment of Aerosol Deposition Paterns in Human Respiratory Tract Cases.” InProceedings of the International Symposium on Aerosols in the Mining and Industrial Work Environment. Ann Arbor: Ann Arbor Science Publishers.

  • — and M. Patel. 1981. “Modeling the Dose Distribution of H2SO4 Aerosols in the Human Tracheobronchial Tree.”Am. Ind. Hyg. Ass. J. 42, 435–460.

    Google Scholar 

  • Pattle, R. E. 1961. “The Retention of Gases and Particles in the Human Nose.” InInhaled Particles and Vapours, Ed. C. N. Davies, pp. 302–309. Oxford: Pergamon Press.

    Google Scholar 

  • Raabe, O. G., H. C. Yeh, G. M. Schum and R. F. Phalen. 1976. “Tracheobronchial Geometry: Human, Dog, Rat, Hamster.” LF-53, Lovelace Foundation for Medical Education and Research. NTIS. Springfield, VA.

    Google Scholar 

  • Scherer, P. W., F. R. Haselton, L. M. Hanna and D. R. Stone. 1979. “Growth of Hygroscopic Aerosols in a Model of Bronchial Airways.”J. appl. Physiol. 47, 544–550.

    Google Scholar 

  • Schlesinger, R. B. and M. Lippmann. 1976. “Particle Deposition in the Trachea:in Vivo and in Hollow Casts.”Thorax 31, 678–684.

    Article  Google Scholar 

  • Schlesinger, R. B., D. E. Bohning, T. L. Chan and M. Lippmann. 1977. “Particle Deposition in a Hollow Cast of the Human Tracheobronchial Tree.”J. Aerosol Sci. 8, 429–445.

    Article  Google Scholar 

  • Schroter, R. L. and M. F. Sudlow. 1969. “Flow Patterns in Models of the Human Bronchial Airways.”Respir. Physiol. 7, 341–355.

    Article  Google Scholar 

  • Soong, T. T., P. Nicholaides, C. P. Yu and S. C. Soong. 1979. “A Statistical Description of the Human Tracheobronchial Tree Geometry.”Respir. Physiol. 37, 161–172.

    Article  Google Scholar 

  • Task Group on Lung Dynamics. 1966. “Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract.”Health Phys. 12, 173–208.

    Google Scholar 

  • Weibel, E. 1963.Morphometry of the Human Lung. Berlin: Springer-Verlag.

    Google Scholar 

  • West, J. B. and P. Hung-Jones. 1959. “Patterns of Gas Flow in the Upper Bronchial Tree.”J. appl. Physiol. 14, 753–759.

    Google Scholar 

  • Widdecombe, J. G. 1954. “Receptors in the Trachea and Bronchi of the Cat.”J. Physiol. 123, 71–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martonen, T. On the fate of inhaled particles in the human: A comparison of experimental data with theoretical computations based on a symmetric and asymmetric lung. Bltn Mathcal Biology 45, 409–424 (1983). https://doi.org/10.1007/BF02459399

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459399

Keywords

Navigation