Skip to main content
Log in

Permeability of barnacle muscle fibers to water and nonelectrolytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The permeability of isolated muscle fibers of the giant barnacleMegabalanus psittacus to water and nonelectrolytes was studied by determining their reflection and permeability coefficients. Reflection coefficients were obtained by comparing the osmotic fluxes produced by a test molecule to that produced by the impermeant sucrose molecule. Permeability coefficients were determined for measurements of tracer uptake.

The results indicate that, in these fibers, nonelectrolyte permeability is closely related to lipid solubility and molecular size.

A value of 2.16×10−12 cm3/sec dyne for the hydraulic conductivity and a value of 10.45×10−4 cm/sec for3HHO permeability coefficient were obtained.

The effect of membrane surface invaginations and clefts on the determination of permeability coefficients is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birks, R.J., Davey, F.D., 1969. Osmotic responses demonstrating the extracellular character of the sarcoplasmic reticulum.J. Physiol. (London) 202:171

    Google Scholar 

  2. Birks, R.J., Davey, D.F., 1972. An analysis of volume changes in the T-tubes of frog skeletal muscles exposed to sucrose.J. Physiol. (London) 222:95

    Google Scholar 

  3. Bunch, W., Edwards, G. 1969. The permeation of non-electrolytes through the single barnacle muscle cell.J. Physiol. (London) 202:683

    Google Scholar 

  4. Caille, J.P., Hinke, J.A.M. 1973. Evidence for K+ and Cl binding inside muscle from diffusion studies.Can. J. Physiol. Pharmacol. 51:390

    Google Scholar 

  5. Caille, J.P., Hinke, J.A.M. 1974. The volume available for diffusion in the muscle fiber.Can. J. Physiol. Pharmacol. 52:814

    Google Scholar 

  6. Collander, R. 1954. The permeability of Nitella cells to non-electrolytes.Physiol. Plant. 7:420

    Google Scholar 

  7. Crank, J. 1970. The Mathematics of Diffusion. Oxford University Press, London

    Google Scholar 

  8. Dainty, J., House, C.R., 1966. Unstirred layers in frog skin.J. Physiol. (London) 182:66

    Google Scholar 

  9. Diamond, J.M. 1966. A rapid method of determining voltage concentration relations across membranes.J. Physiol. (London) 183:83

    Google Scholar 

  10. Fenichel, I.R., Horowitz, S.B. 1963. The transport of nonelectrolytes in muscle as a diffusional process in cytoplasm.Acta Physiol. Scand. 60(221):1

    Google Scholar 

  11. Gayton, D.C., Hinke, J.A.M. 1968. The location of chloride in single striated muscle fibers of the giant barnacle.Can. J. Physiol. Pharmacol. 46:213

    Google Scholar 

  12. Hoyle, G., McNeill, P.A., Selverston, A.I. 1973. Ultrastructure of barnacle giant muscle fibers.J. Cell Biol. 56:74

    Google Scholar 

  13. Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229

    Google Scholar 

  14. Keynes, R.D., Rojas, E., Taylor, R.E., Vergara, J. 1973. Calcium and potassium systems of a giant barnacle muscle fiber under membrane potential control.J. Physiol. (London) 229:409

    Google Scholar 

  15. Lippe, C. 1969. Urea and thiourea permeability of phospholipid and cholesterol bilayer membranes.J. Mol. Biol. 39:669

    Google Scholar 

  16. Paganelli, C.V., Solomon, A.K. 1957. The rate of exchange of tritiated water across the human red cell membrane.J. Gen. Physiol. 41:259

    Google Scholar 

  17. Park, C.R., Crafford, O.B., Kono, T. 1968. Mediated (non-active) transport of glucose in mammalian cells and its regulation.J. Gen. Physiol. 52:296s

    Google Scholar 

  18. Reuben, J.P., Girardier, L., Grundfest, H. 1964. Water transport and cell structure in isolated crayfish muscle fibers.J. Gen. Physiol. 47:1141

    Google Scholar 

  19. Smyth, D.H., Wright, E.M. 1966. Streaming potentials in the rat small intestine.J. Physiol. (London) 182:591

    Google Scholar 

  20. Solomon, A.K. 1968. Characterization of biological membranes by equivalent pores.J. Gen. Physiol. 51:335s

    Google Scholar 

  21. Sorenson, A.L. 1971. Water permeability of isolated muscle fibers of a marine crab.J. Gen. Physiol. 58:287

    Google Scholar 

  22. Suenson, M., Richmond, D.R., Bassingthwaighte, J.B. 1974. Diffusion of sucrose, sodium and water in ventricular myocardium.Am. J. Physiol. 227:1116

    Google Scholar 

  23. Vargas, F.F. 1968. Water flux and electrokinetic phenomena in the squid axon.J. Gen. Physiol. 51:126s

    Google Scholar 

  24. Vargas, F.F., Johnson, J.A. 1964. An estimate of reflection coefficients for rabbit heart capillaries.J. Gen. Physiol. 47:667

    Google Scholar 

  25. Wedner, H.J., Diamond, J.M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gall-bladder.J. Membrane Biol. 1:92

    Google Scholar 

  26. Wright, E.M., Diamond, J.M. 1969. An electric method of measuring non-electrolyte permeability.Proc. R. Soc. London B 172:203

    Google Scholar 

  27. Wright, E.M., Diamond, J.M. 1969. Patterns of non-electrolyte permeability.Proc. R. Soc. London B 172:227

    Google Scholar 

  28. Wright, E.M., Prather, J.W. 1970. The permeability of the frog choroid plexus to non-electrolytes.J. Membrane Biol. 2:127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, D.F., Alvarez, O.A. & Vargas, F.F. Permeability of barnacle muscle fibers to water and nonelectrolytes. J. Membrain Biol. 30, 197–212 (1976). https://doi.org/10.1007/BF01869668

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869668

Keywords

Navigation