Skip to main content
Log in

Positron diffusion in solids and the reconstruction of inhomogeneous defect distributions from lifetime measurements

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The time dependent diffusion trapping equations for positrons implanted into inhomogeneous solids are analyzed. This problem is of central importance in the study of polycrystalline materials and for the application of pulsed positron beams to defect studies in materials research. The main problem in previous investigations was the necessity to solve the time-dependent diffusion equation. It prevented analytical treatment in all but the simplest applications. For the first time this difficulty is eliminated by invoking a new concept, the observable local annihilation characteristics for local implantation of positrons into the thermalized ensemble. It will be shown that the local annihilation characteristics are governed by field equations which reduce to the well known quantities of the standard trapping model in the case of homogeneous defect distributions. Furthermore, inhomogeneous defect distributions are uniquely determined from the field equations provided the local annihilation characteristics are known. Analytical solutions are derived and applied successfully to recent experimental results for a selection of simple, but realistic problems. The formal procedure includes internal drift fields and could be extended to cover also the epithermal period of positron thermalization, if necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Triftshäuser: in Microscopic Methods in Metals, U. Gonser (ed.), Springer, Berlin 1986, p. 249

    Google Scholar 

  2. W. Brandt: in Positron Annihilation, A.T. Steward, L.O. Roellig (eds.), Academic, New York 1967, p. 155

    Google Scholar 

  3. P. Willutzki, J. Störmer, G. Kögel, P. Sperr, D.T. Britton, R. Steindl, W. Triftshäuser; Mat. Science Forum175-178, 237 (1995).

    Google Scholar 

  4. R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazadei, T. Tomimasu; J. Appl. Phys.30, L532 (1991)

    Google Scholar 

  5. W. Frank, A. Seeger: Appl. Phys.3, 61 (1974)

    Google Scholar 

  6. A. Seeger: Appl. Phys.4, 183 (1974)

    Google Scholar 

  7. R.M. Nieminen, J. Laakkonen, P. Hautojärvi, A. Vehanen: Phys. Rev.B19, 1397 (1979)

    Google Scholar 

  8. W.E. Frieze, K.G. Lynn, D.O. Welch: Phys. Rev.B31,15 (1985)

    Google Scholar 

  9. D.T. Britton: J. Phys.: Condens. Mater3. 681 (1991)

    Google Scholar 

  10. G. Kögel: Mat. Science Forum175-178 107 (1995)

    Google Scholar 

  11. R. Würschum, A. Seeger: Phil. Mag. A,73, 1489 (1996)

    Google Scholar 

  12. P.J. Schultz, K.G. Lynn: Rev. Mod. Phys.60, 701 (1988)

    Google Scholar 

  13. A. van Veen, H. Schut, M. Clement, J.M.M. de Nijs, A. Kruseman, M.R. Ijpma: Applied Surface Science85, 216 (1995)

    Google Scholar 

  14. L.V. Jorgensen, J.P. Merrison, B.I. Deutsch, M. Charlton, G.O. Jones; Phys. Rev.B52 12402 (1995)

    Google Scholar 

  15. T. McMullen, H.J. Stott: Phys. Rev.B34, 8985 (1986)

    Google Scholar 

  16. K.O. Jensen, A.B. Walker: in Positron at Metallic Surfaces, A. Ishii (ed.), Trans Tech. Publications, Aedermannsdorf, 1993, p. 293

    Google Scholar 

  17. A. Goodyear, A.P. Knights, N. Overton, P.G. Coleman; Materials Science Forum175-178, 161 (1995)

    Google Scholar 

  18. Y. Kong, K.G. Lynn: Phys. Rev.B41, 6179 (1990)

    Google Scholar 

  19. A. Dupasquier, R. Romero, A. Somoza: Phys. Rev.B48, 9235 (1993)

    Google Scholar 

  20. A. Dupasquier; private communication (1996)

  21. G. Kögel; in Position Annihilation, L. Dorikens, M. Dorikens, D. Segers (eds.), World Scientific, 1989, p. 52

  22. J. Jian, X.Z. Zhou, J. Zhu, C.W. Lung: Materials Science Forum175-178 395 (1995)

    Google Scholar 

  23. P.M. Morse, H. Feshback; Methods of Theoretical Physics, McGraw Hill 1953, p. 791

  24. K. Uhlmann, W. Triftshäuser, G. Kögel, P. Sperr, D.T. Britton, A. Zecca, R.S. Brusa, G. Karwasz, Fresenius J: Anal. Chem.353, 594 (1995)

    Google Scholar 

  25. V.J. Gosh: Applied Surface Science85, 187 (1995)

    Google Scholar 

  26. G. Kögel: Mat. Science Forum175-178, 185 (1995)

    Google Scholar 

  27. J. Störmer: Thesis, Universität der Bundeswehr München, 1995 (unpublished)

  28. A. Soininen, J. Mäkinen, D. Beyer, P. Hautojärvi: Phys. Rev.B46, 13104 (1992)

    Google Scholar 

  29. W. Pahl, V. Gröger, G. Krexner, A. Dupasquier: J. Phys.: Condens. Matter7, 5939 (1995)

    Google Scholar 

  30. F. Natterer: The Mathematics of Computerized Tomography, Wiley, 1986

  31. J. Radon: Berichte Sächsische Akademie der Wissenschaften, Leipzig, Math.-Phys. Kl.,69, 267 (1917)

    Google Scholar 

  32. A.N. Drozdov: PhysicaA196, 283 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kögel, G. Positron diffusion in solids and the reconstruction of inhomogeneous defect distributions from lifetime measurements. Appl. Phys. A 63, 227–235 (1996). https://doi.org/10.1007/BF01567874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567874

PACS

Navigation