Skip to main content
Log in

Evidence for in vitro induced mutation which improves somatic embryogenesis in Asparagus officinalis L.

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Somatic embryogenesis from different genotypes of Asparagus officinalis L. could be obtained by in vitro culture of shoot apices. Apices were first cultured on an auxin-rich inducing medium and then transferred onto a hormone-free development medium. All genotypes tested in this way produced a few somatic embryos. In some experiments, during the development phase, a new kind of friable highly embryogenic tissue appeared in a random manner. These tissues could be continuously subcultured on a hormone-free medium and were named embryogenic lines. Five of these embryogenic lines regenerated plants from somatic embryos. These regenerated plants exhibited an increased embryogenic response compared to the parent plants; e.g. apex culture produced somatic embryos without any auxin treatments. For one of the embryogenic lines, a genetic analysis showed that the improved embryogenic response of regenerated plants was controlled by a mendelian dominant monogenic mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LSEA:

low somatic embryogenesis ability

HSEA:

high somatic embryogenesis ability

NAA:

1-naphthaleneacetic acid

References

  • Armstrong CL, Romero-Severson J, Hodges TK (1992) Theor. Appl. Genet. 84: 755–762

    Google Scholar 

  • Binns AN, Meins F Jr (1973) Proc. Nat. Acad. Sci. USA 70: 2660–2662

    Google Scholar 

  • Coïc Y, Lesaint C (1971) Horti. Fr. 8: 11–14

    Google Scholar 

  • Cummings DP, Green C, Stuthman DD (1976) Crop Sci. 16: 465–470

    Google Scholar 

  • Delbreil B, Jullien M (1992) In: XIIIth Eucarpia Congress. Reproductive biology and plant breeding. Book of Poster Abstracts, pp. 349. Angers July 06–11th, 1992

  • Desjardins Y (1992) In: Bajaj YPS, (ed) High-Tech and micropropagation III. vol 19, Springer-Verlag Berlin Heildeberg 26–41

    Google Scholar 

  • Esau K (1953) In: Esau K (ed) Plant Anatomy, J Wiley & Sons Inc, New York, Chapman & Hall LTD, London, pp 597–705

    Google Scholar 

  • Gavin AL, Conger BV, Trigiano RN (1989) Plant Breed. 103: 251–254

    Google Scholar 

  • Gawel NJ, Robacker CD (1990) Euphytica 49: 249–253

    Google Scholar 

  • Hanning GE, Conger BV (1982) Theor. Appl. Genet. 63: 155–159

    Google Scholar 

  • Hanning GE, Conger BV (1986) J. Plant Physiol. 123: 23–29

    Google Scholar 

  • Harada H (1973) In: Thevenin L (ed) Eucarpia Section Horticole, 4ème réunion sur la sélection de l'asperge, Versailles, pp 163–172

  • Hernandez-Fernandez MM, Christie BR (1989) Genome 32: 318–321

    Google Scholar 

  • Hodges TK, Kamo KK, Imbrie CW, Becwar MR (1986) Bio/Technology 4: 219–223

    Google Scholar 

  • Jullien M (1974) C. R. Acad. Sci. Série D 279: 747–750

    Google Scholar 

  • Kaleikau EK, Sears RG, Gill BS (1989) Theor. Appl. Genet. 78: 625–632

    Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) In Vitro Cell. Dev. Biol. 25: 1163–1166

    Google Scholar 

  • Kielly GA, Bowley SR (1992) Genome 35: 474–477

    Google Scholar 

  • Koornneef M, Bade J, Hanhart CJ, Horsman C, Schel J, Verkerk R, Zabel P (1993) The Plant Journal 3: 131–141

    Google Scholar 

  • Koornneef M, Hanhart CJ, Martinelli L (1987) Theor. Appl. Genet. 74: 633–641

    Google Scholar 

  • Levi A, Sink KC (1990) J. Plant Physiol. 137: 184–189

    Google Scholar 

  • Levi A, Sink KC (1992) Plant Cell Tissue Organ Cult. 31: 115–122

    Google Scholar 

  • Ma H, Gu M, Liang GH (1987) Theor. Appl. Genet. 73: 389–394

    Google Scholar 

  • Meins F Jr, Foster R, Lutz JD (1983) Dev. Genet. 4: 129–141

    Google Scholar 

  • Miah MAA, Earle ED, Khush GS (1985) Theor. Appl. Genet. 70: 113–116

    Google Scholar 

  • Morocz S, Donn G, Nemeth J, Dudits D (1990) Theor. Appl. Genet. 80: 721–726

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nadolska-Orczyk A, Malepszy S (1989) Theor. Appl. Genet. 78: 836–840

    Google Scholar 

  • Nitsch JP (1968) Ann. Soc. Nat. Bot. 9: 1–9

    Google Scholar 

  • Nitsch JP, Nitsch C (1965) Ann. Physio. Veg. 7: 251–256

    Google Scholar 

  • Peng J, Hodges TK (1989) In Vitro Cell. Dev. Biol. 25: 91–94

    Google Scholar 

  • Peschke VM, Phillips RL (1992) Adv. Genet. 30: 41–75

    Google Scholar 

  • Petolino JF, Jones AM, Thompson SA (1988) Theor. Appl. Genet. 76: 157–159

    Google Scholar 

  • Reuther G (1977) Acta Hort. 78: 217–224

    Google Scholar 

  • Rines HW (1983) Crop Sci. 23: 268–272

    Google Scholar 

  • Rivière S (1973) C. R. Acad. Sci. Paris 277: 293–296

    Google Scholar 

  • Sears RG, Deckard EL (1982) Crop Sci. 22: 546–550

    Google Scholar 

  • Tomes DT, Smith OS (1985) Theor. Appl. Genet. 70: 505–509

    Google Scholar 

  • Willmar C, Hellendoom M (1968) Nature 217: 369–371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Pelletier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delbreil, B., Jullien, M. Evidence for in vitro induced mutation which improves somatic embryogenesis in Asparagus officinalis L.. Plant Cell Reports 13, 372–376 (1994). https://doi.org/10.1007/BF00234140

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234140

Key words

Navigation