Skip to main content

Advertisement

Log in

Coagulation efficiency and aggregate formation in marine phytoplankton

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Flocculation of phytoplankters into large, rapidly sinking aggregates has been implicated as a mechanism of vertical transport of phytoplankton to the sea floor which could have global significance. The formation rate of phytoplankton aggregates depends on the rate at which single cells collide, which is mainly physically controlled, and on the probability of adhesion upon collision (=coagulation efficiency, stickiness), which depends on physico-chemical and biological properties of the cells. We describe here an experimental method to quantify the stickiness of phytoplankton cells and demonstrate that three species of diatoms grown in the laboratory (Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema costatum) are indeed significantly sticky and form aggregates upon collision. The dependency of stickiness on nutrient limitation and growth was studied in the two latter species by investigating variation in stickiness as batch cultures aged. In nutrient repleteT. pseudonana cells stickiness is very low (< 5 × 10−3), but increases by more than two orders of magnitude as cell growth ceases and the cells become nutrient limited. Stickiness ofS. costatum cells is much less variable, and even nutrient replete cells are significantly sticky. Stickiness is highest (> 10−1) forS. costatum cells in the transition between the exponential and the stationary growth phase. The implications for phytoplankton aggregate formation and subsequent sedimentation in the sea of these two different types of stickiness patterns are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Ali, W., O'Melia, C. O., Edzwald, J. K. (1984). Colloidal stability of particles in lakes: measurement and significance. Wat. Sci. Tech. 17: 701–712

    Google Scholar 

  • Alldredge, A. L., Gotschalk, C. (1989). Direct observations of the flocculation of diatom blooms: characteristics, setting velocities and formation of diatom aggregates. Deep-Sea Res. 36: 159–171

    Google Scholar 

  • Alldredge, A. L., Silver, M. W. (1988). Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82

    Google Scholar 

  • Biddanda, B. A. (1985). Microbial synthesis of macroparticulate matter. Mar. Ecol. Prog. Ser. 20: 241–251

    Google Scholar 

  • Bodungen, B. V., Brockel, K. V., Smetacek, V., Zeitzschel, B. (1981). Growth and sedimentation of the phytoplankton spring bloom in the Bornholm Sea (Baltic Sea). Kieler Meeresforsch. 5: 49–60

    Google Scholar 

  • Bodungen, B. V., Smetacek, V. S., Tilzer, M. M., Zeitzschel, B. (1986). Primary production and sedimentation during spring in the Antarctic Peninsula region. Deep-Sea Res. 33: 177–194

    Google Scholar 

  • Calleja, G. B. (1984). Microbial aggregation. CPC Press Inc., Boca Raton, Florida

    Google Scholar 

  • Camp, T. R., Stein, P. C. (1943). Velocity gradients and internal work in fluid motion. J. Boston Soc. Civ. Eng. 30: 219–237

    Google Scholar 

  • Cole, J. J., Findlay, S., Pace, M. L. (1988). Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10

    Google Scholar 

  • Cullen, J. J. (1982). The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a . Can. J. Fish. aquat. Sciences 39: 791–803

    Google Scholar 

  • Degens, E. T., Ittekot, V. (1984). A new look at clay-organic interactions. Mitt. Geol.-paläont. Inst. Univ. Hamburg (SCOPE/UNEP Sdbd.) 56: 229–248

    Google Scholar 

  • Edzwald, J. K., Upchurch, J. B., O'Melia, C. O. (1974). Coagulation in estuaries. Env. Sci. Technol. 8: 58–63

    Google Scholar 

  • Fowler, S. W., Knauer, G. A. (1986). Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 16: 147–194

    Google Scholar 

  • Gibbs, R. J. (1983). Effect of natural organic coatings on the coagulation of particles. Envir. Sci. Technol. 17: 237–240

    Google Scholar 

  • Goldmann, J. C. (1987). On phytoplankton growth rates and particulate C:N:P ratios at low light. Limnol. Oceanogr. 31: 1358–1363

    Google Scholar 

  • Guillard, R. L., Ryther, J. H. (1962). Studies of marine planktonic diatoms. 1.Cyclotella nana Hustedt, andDetonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239

    Google Scholar 

  • Hobbie, J. E., Daley, R. J., Japser, S. (1977). Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl. envirl. Microbiol. 33: 1225–1228

    Google Scholar 

  • Jackson, G. A. (1990). A model of the formation of marine algal flocs by physical coagulation processes. Deep-Sea Res. (in press)

  • Joiris, C. and co-authors (1982). A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production. Neth. J. Sea Res. 16: 260–280

    Google Scholar 

  • Kiørboe, T., Kaas, H., Kruse, B., Møhlenberg, F., Tiselius, P., Ærtebjerg, G. (1990). The structure of the pelagic food web in relation to water column structure in the Skagerrak. Mar. Ecol. Prog. Ser. 59: 19–32

    Google Scholar 

  • Kranck, K., Milligan, T. (1980). Macroflocs: production of marine snow in the laboratory. Mar. Ecol. Prog. Ser. 3: 19–24

    Google Scholar 

  • Kranck, K., Milligan, T. G. (1988). Macroflocs from diatoms: in situ photography of particles in Bedford Basin, Nova Scotia. Mar. Ecol. Prog. Ser. 44: 183–189

    Google Scholar 

  • LeFévre, J. (1986). Aspects of the biology of frontal systems. Adv. mar. Biol. 23: 163–299

    Google Scholar 

  • Leussen, W. van (1988). Aggregation of particles, settling velocities of mud flocs. A review. In: Dronkers, J., Leussen, W. van (eds.) Physical processes in estuaries. Springer-Verlag, Berlin, p. 347–403

    Google Scholar 

  • Logan, B. E., Alldredge, A. L. (1989). Potential for increased nutrient uptake by flocculating diatoms. Mar. Biol. 101: 443–450

    Google Scholar 

  • McCave, I. N. (1984). Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res. 31: 329–352

    Google Scholar 

  • McLachlang, J., McInnes, A. G., Palk, M. (1965). Studies on the Chitan (chitin: poly-n-acetylglucosamine) fibers of the diatomThalassiosira fluviatilis Hustedt. Can. J. Bot. 43: 707–713

    Google Scholar 

  • Prieur, L., Legendre, L. (1988). Oceanographic criteria for new phytoplankton production. In: Rothschild, B. J. (ed.). Toward a theory on biological-physical interactions in the world ocean. Kluwer Academic Publishers, Dordrecht, p. 71–112

    Google Scholar 

  • Riebesell, U. (1989). Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Mar. Ecol. Prog. Ser. 54: 109–119

    Google Scholar 

  • Rose, A. H. (1984). Physiology of cell aggregation: flocculation bySaccharomyces cerevisiae as a model system. In: Marshall, K. C. (ed.) Microbial adhesion and aggregation. Springer Verlag, Berlin, p. 323–335

    Google Scholar 

  • Shanks, A. L., Edmonson, E. W. (1989). Laboratory-made artificial marine snow: a biological model of the real thing. Mar. Biol. 101: 463–470

    Google Scholar 

  • Smayda, T. J., Boleyn, B. J. (1966). Experimental observations of flotation in marine diatoms. II.Skeletonema costatum andRhizosolenia setigera. Limnol. Oceanogr. 11: 18–34

    Google Scholar 

  • Smetacek, V. S. (1985). Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar. Biol. 84: 239–251

    Google Scholar 

  • Weilenmann, U., O'Melia, C. R., Stumm, W. (1989). Particle transport in lakes: models and experiments. Limnol. Oceanogr. 34: 1–18

    Google Scholar 

  • Yamazaki, H., Osborn, T. R. (1988). Review of oceanic turbulence: implications for biodynamics. In: Rothschild, B. J. (ed.) Toward a theory on biological-physical interactions in the world ocean. Kluwer Academic Publishers, Dordrecht, p. 215–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiørboe, T., Andersen, K.P. & Dam, H.G. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol. 107, 235–245 (1990). https://doi.org/10.1007/BF01319822

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319822

Keywords

Navigation