Skip to main content
Log in

Effect of carbon dioxide on pigment and membrane content in Synechococcus lividus

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effect of carbon dioxide on pigment and membrane content in Synechococcus lividus was studied by depriving cells of CO2 and examining cell populations biochemically and by electron microscopy. After 120 h of CO2 deprivation, S. lividus lost all detectable chlorophyll a and C-phycocyanin. Such bleached cultures were “mustard yellow”, the result of approximately 1.8 times more carotenoid per cell than green control cultures.

Although cells from beached cultures appeared morphologically identical to control green cells when examined by light microscopy, electron microscopic examination revealed them to be devoid of detectable thylakoid membrane. Thylakoid membrane could not be recovered by physical isolation or revealed by freeze etching of bleached S. lividus. In addition, inclusion bodies characteristically found in S. lividus were also absent.

Reintroduction of CO2 into bleached cultures resulted in a rapid resynthesis of both chlorophyll a and C-phycocyanin. Electron microscopic examination of these regreening cultures revealed that thylakoid membrane was also rapidly resynthesized. Growth of regreened cultures did not occur until there was the synthesis of a full complement of chlorophyll a, C-phycocyanin, and thylakoid membrane.

A time course study of the cytological events occurring during bleaching and regreening is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M. M., Smith, A. J.: Nitrogen chlorosis in blue-green algae. Arch. Mikrobiol. 69, 114–120 (1969)

    Google Scholar 

  • Bunn, C. R., Keele, B. B., Jr., Elkan, G. H.: A technique for improved thin-layer chromatography of phospholipids. J. Chromatog. 45, 326–328 (1969)

    Google Scholar 

  • Carroll, K. K.: Quantitative estimation of peak areas in gas-liquid chromatography. Nature (Lond.) 191, 377–378 (1961)

    Google Scholar 

  • Castenholz, R. W.: Laboratory culture of thermophilic cyanophytes. Schweiz. Z. Hydrologie 32, 538–551 (1970)

    Google Scholar 

  • Dittmer, J. C., Lester, R. L.: A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 5, 126–127 (1964)

    Google Scholar 

  • Drawert, H.: Zellmorphologische und zellphsiologische Studien an Cyanophyceen. I. Mitteilung. Literaturübersicht und Versuche mit Oscillatoria borneti Zuckal. Planta (Berl.) 37, 161–209 (1949)

    Google Scholar 

  • Edwards, M. R., Berns, D. S., Ghiorse, W. O., Holt, S. C.: Ultrastructure of the thermophilic blue-green alga, Synechococcus lividus Copeland. J. Phycol. 4, 283–298 (1968)

    Google Scholar 

  • Edwards, M. R., Gantt, E.: Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J. Cell Biol. 50, 896–900 (1971)

    Google Scholar 

  • Eley, J. H.: Effect of carbon dioxide concentration on pigmentation in the blue-green alga Anacystis nidulans. Plant Cell. Physiol. 12, 311–316 (1971)

    Google Scholar 

  • Folch, J., Lees, M., Sloane, S. G. H.: A simple method for the isolation and purification of total lipides from a nimal tissues. J. Biol. Chem. 226, 497–509 (1957)

    Google Scholar 

  • Van Gorkom, H. J., Donze, M.: Localization of nitrogen fixation in Anabaena. Nature (Lond.) 234, 231–232 (1971)

    Google Scholar 

  • Gregory, D. W., Pirie, B. J. S.: Wetting agents for biological electron microscopy. I. General considerations and negative staining. J. Microscopy 99, 251–265 (1973)

    Google Scholar 

  • Hartree, E. F.: Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427 (1972)

    Google Scholar 

  • Holt, S. C., Edwards, M. R.: Fine structure of the thermophilic blue-green alga Synechococcus lividus Copeland. A study of the frozen-fractured-etched cells. Can. J. Microbiol. 18, 175–181 (1972).

    Google Scholar 

  • Jacin, H., Mishkin, A. R.: Separation of carbohydrates on borate impregnated silica gel G plates. J. Chromatog. 18, 170–173 (1965)

    Google Scholar 

  • Jones, L. W., Meyers, J.: Pigment variations in Anacystis nidulans induced by light of selected wavelengths. J. Phycol. 1, 7–14 (1965)

    Google Scholar 

  • Kellenberger, E., Ryter, A., Sechaud, J.: Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. Biophys. Biochem. Cytol. 4, 671–678 (1958)

    Google Scholar 

  • Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 680–685 (1970)

    Google Scholar 

  • Lang, N. J., Simon, R. D., Wolk, C. P.: Correspondence of cyanophycin granules with structured granules in Anabaena cylindrica. Arch. Mikrobiol. 83, 313–320 (1972)

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409–414 (1961)

    Google Scholar 

  • McKinney, G.: Absorption of light by chlorophyll solutions. J. Biol. Chem. 140, 315–322 (1941)

    Google Scholar 

  • Moss, C. W., Lamberg, M. A., Merwin, W. H.: Comparison of rapid methods for analysis of bacterial fatty acids. Applied Microbiol. 28, 80–85 (1974)

    Google Scholar 

  • Nichols, B. W.: Comparative lipid biochemistry of photosynthetic organisms. In: Phytochemical phylogeny (J. B. Harborne, ed.), pp. 105–118. London-New York: Academic Press 1970

    Google Scholar 

  • Öquist, G.: Changes in pigment composition and photosynthesis induced by iron-deficiency in the blue-green alga Anacystis nidulans. Physiol. Plant. 25, 188–191 (1971)

    Google Scholar 

  • Peary, J. A., Castenholz, R. W.: Temperature strains of a thermophilic blue-green alga. Nature (Lond.) 202, 720–721 (1964)

    Google Scholar 

  • Poukka, R., Vasenius, L., Turpeinen, O.: Catalytic hdyrogenation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 3, 128–129 (1962)

    Google Scholar 

  • Prakash, G., Kumar, H. D.: Studies on sulfur-selenium antagonisms in blue-green algae. I. sulfur nutrition. Arch. Mikrobiol. 77, 196–202 (1971)

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at a high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)

    Google Scholar 

  • Sjöström, M., Thornell, L.-E., Hellström, S.: An efficient standardized method of staining thin sections for electron microscopy. J. Ultrastructure Res. 42, 180–185 (1973)

    Google Scholar 

  • Svedberg, T., Katsurai, T.: The molecular weights of phycocyan and phycoerythrin from Porphyra tenera and of phycocyan from Aphanizomenon flos-aquae. J. Amer. Chem. Soc. 51, 3573–3583 (1929)

    Google Scholar 

  • de Vasconcelos, L., Fay, P.: Nitrogen metabolism and ultrastructure in Anabaena cylindrica. I. The effect of nitrogen starvation. Arch. Microbiol. 96, 271–279 (1974)

    Google Scholar 

  • Vasil'eva, V. E., Levitin, M. G.: Effect of carbon dioxide starvation on certain blue-green algae. Sov. Plant Physiol. 21, 999–1002 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, L.S., Holt, S.C. Effect of carbon dioxide on pigment and membrane content in Synechococcus lividus . Arch. Microbiol. 115, 185–198 (1977). https://doi.org/10.1007/BF00406374

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406374

Key words

Navigation