Skip to main content
Log in

Dynamics and self-organization of catalytic systems

  • Future Directions and Industrial Perspectives
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of a catalytic reaction is frequently formulated in terms of simple concepts of the Langmuir type. Apart from limitations arising from the non-uniformity of the catalyst's surface and from the coverage dependence of the rate “constants”, several other complications may come into play. These may arise on the “quantum level” where energy flow between the various degrees of freedom may cause failure of simple transition state theory, as well as on the “continuum level” where formulation of rate equations in terms of coupled non-linear differential equations may give rise to a rich scenario of spatio-temporal self-organization, including kinetic oscillations, chaos, and formation of concentration patterns. Several of these phenomena are illustrated by selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Dumesic, contribution at this meeting;

  2. P. Stoltze and J.K. Nørskov, Phys. Rev. Lett. 55 (1985) 2502; Surf. Sci. 197 (1988) L230; J. Catal. 110 (1988) 1;

    Google Scholar 

  3. M. Bowker, I. Parker and K.C. Waugh, Appl. Catal. 14 (1985) 101; Surf. Sci. 97(1988)L223;

    Google Scholar 

  4. J.A. Dumesic and A. A. Treviño, J. Catal. 116 (1989) 119;

    Google Scholar 

  5. J.W. Geus and K.C. Waugh, in:Catalytic Ammonia Synthesis, ed. J.R. Jennings (Plenum Press, New York, 1991) p. 179.

    Google Scholar 

  6. G. Ertl, S.B. Lee and M. Weiss, Surf. Sci. 114 (1982) 515.

    Google Scholar 

  7. C.T. Rettner and H. Stein, Phys. Rev. Lett. 59 (1987) 2768.

    Google Scholar 

  8. M.C. Tsai, U. Seip, I. Bassignana, J. Küppers and G. Ertl, Surf. Sci. 155 (1985) 387.

    Google Scholar 

  9. H. Shi, K. Jacobi and G. Ertl, J. Chem. Phys., submitted.

  10. T. Matsushima, Surf. Sci. 197 (1988) L287.

    Google Scholar 

  11. G. Doyen, Vacuum 32 (1982) 91.

    Google Scholar 

  12. H. Brune, J. Wintterlin, R.J. Behm and G. Ertl, Phys. Rev. Lett. 68 (1992) 624.

    Google Scholar 

  13. A.F. Carley and M.W. Roberts, J. Chem. Soc. Chem. Comm. (1987) 355.

  14. T. Matsushima, Surf. Sci. 127 (1983) 403.

    Google Scholar 

  15. W.D. Mieher and W. Ho, J. Chem. Phys. 91 (1989) 2755.

    Google Scholar 

  16. T. Gritsch, D. Coulman, R.J. Behm and G. Ertl, Phys. Rev. Lett. 63 (1989) 1086.

    Google Scholar 

  17. K. Krischer, M. Eiswirth and G. Ertl, J. Chem. Phys. 96 (1992) 9161.

    Google Scholar 

  18. M. Eiswirth, T.M. Kruel, G. Ertl and F.W. Schneider, Chem. Phys. Lett. 193 (1992) 305.

    Google Scholar 

  19. W. Engel, M. Kordesch, H.H. Rotermund, S. Kubala and A. von Oertzen, Ultramicroscopy 36 (1991) 148.

    Google Scholar 

  20. G. Ertl, Science 254 (1991) 1750.

    Google Scholar 

  21. S. Nettesheim, A. von Oertzen, H.H. Rotermund and G. Ertl, J. Chem. Phys. 98 (1993) 9977.

    Google Scholar 

  22. J. Lauterbach, G. Haas, H.H. Rotermund and G. Ertl, Surf. Sci., in press.

  23. V. Gorodetskii, W. Drachsel and J.H. Block, Catal. Lett. 19 (1993) 223;

    Google Scholar 

  24. V. Gorodetskii, J.H. Block, W. Drachsel and M. Ehsasi, Appl. Surf. Sci. 67 (1993) 198.

    Google Scholar 

  25. M. Bär, Ch. Zülicke, M. Eiswirth and G. Ertl, J. Chem. Phys. 96 (1992) 8595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertl, G. Dynamics and self-organization of catalytic systems. Top Catal 1, 305–314 (1994). https://doi.org/10.1007/BF01492284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01492284

Keywords

Navigation