Skip to main content
Log in

Dissociation quotients of oxalic acid in aqueous sodium chloride media to 175°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The first and second molal dissociation quotients of oxalic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. The emf of oxalic acid-bioxalate solutions was measured relative to an HCl standard solution from 25 to 125°C over 25o intervals at nine ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and available literature data were treated in the all anionic form by a five-term equation that yielded the following thermodynamic quantities at infinite dilution and 25°C: logK1a=−1.277±0.010, ΔH o1a =−4.1±1.1 kJ-mol−1, ΔS o1a =38±4 J-K−1-mol−1, and ΔC op,1a =−168±41 J-K−1-mol−1. Similar measurements of the bioxalate-oxalate system were made at 25o intervals from 0 to 175°C at seven ionic strengths from 0.1 to 5.0m. A similar regression of the experimentally-derived and published equilibrium quotients using a seven-term equation yielded the following values at infinite dilution and 25°C: logK2a=−4.275±0.006, ΔH o2a =−6.8±0.5 kJ-mol−1, ΔS o2a =−105±2 J-K−1-mol−1, and ΔC op,2a =−261±12 J-K−1-mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Murray and L. F. Becker, Jr.,Water Chem. Nucl. React. Sys. 4, 275 (1986).

    Google Scholar 

  2. J. Akatsu,Sep. Sci. and Tech. 17, 1433 (1983).

    Google Scholar 

  3. I. Sekine and C. Okano,Corrosion 45, 924 (1988).

    Google Scholar 

  4. W. C. Graustein, K. Cromack, Jr., and P. Sollins,Science 198, 1252 (1977).

    Google Scholar 

  5. P. C. Bennett, M. E. Melcer, D. I. Siegel, and J. P. Hassett,Geochim. Cosmochim. Acta 52, 1521 (1988).

    Google Scholar 

  6. R. C. Surdam and L. J. Crossey,Phil. Trans. R. Soc. Lond. A315, 135 (1985).

    Google Scholar 

  7. A. McAuley and G. H. Nancollas,Trans. Faraday Soc. 56, 1165 (1960).

    Google Scholar 

  8. H. J. de Bruin, D. Kairaitis, and R. K. Temple, Report AAEC/E-72, 1961.

  9. R. F. Bauer and W. M. Smith,Can. J. Chem. 43, 2755 (1965).

    Google Scholar 

  10. E. Bottari and L. Ciavatta,Gazz. Chim. Ital. 95, 908 (1965).

    Google Scholar 

  11. E. G. Moorhead and N. Sutin,N. Inorg. Chem. 5, 1866 (1966).

    Google Scholar 

  12. I. Grenthe, G. Gårdhammer, and E. Rundcrantz,Acta Chem. Scand. 23, 93 (1969).

    Google Scholar 

  13. R. E. Mesmer, D. A. Palmer, and J. M. Simonson, inActivity Coefficients in Electrolyte Solutions, K. S. Pitzer, ed., (CRC Press, 1991), Chap. 8.

  14. K. S. Rajan and A. E. Martell,J. Inorg. Nucl. Chem. 29, 523 (1967).

    Google Scholar 

  15. H. K. Lin, Z. Gu, and Y. Chen,Gazz. Chim. Ital. 117, 23 (1987).

    Google Scholar 

  16. A. McAuley and G. H. Nancollas,J. Chem. Soc. A 1961, 2215.

  17. N. M. Nikolaeva and V. A. Antipina,Akademikita Nauk SSSR 6, 13 (1972).

    Google Scholar 

  18. H. N. Parton and R. C. Gibbons,Trans. Faraday Soc. 35, 542 (1939).

    Google Scholar 

  19. H. S. Harned and L. D. Fallon,J. Am. Chem. Soc. 61, 3111 (1939).

    Google Scholar 

  20. L. S. Darken,J. Am. Chem. Soc. 63, 1007 (1941).

    Google Scholar 

  21. G. D. Pinching and R. G. Bates,J. Res. Nat. Bur. Stand. 40, 405 (1948).

    Google Scholar 

  22. J. J. Christensen, R. M. Izatt, and L. D. Hansen,J. Am. Chem. Soc. 89, 213 (1967).

    Google Scholar 

  23. J. L. Kurz and J. M. Farrar,J. Am. Chem.Soc. 91, 6057 (1969).

    Google Scholar 

  24. J. J. Cruywagen, J. B. Heyns, and R. F. van der Water,J. Chem. Soc. Dalton Trans. 1857 (1986).

  25. R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton,J. Phys. Chem. 74, 1937 (1970).

    Google Scholar 

  26. D. J. Wesolowski, S. E. Drummond, R. E. Mesmer, and H. Ohmoto,Inorg. Chem. 23, 1120 (1984).

    Google Scholar 

  27. L. J. Crossey,Geochim. Cosmochim. Acta 55, 1515 (1991).

    Google Scholar 

  28. C. F. Baes, Jr. and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  29. A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1965).

    Google Scholar 

  30. D. A. Palmer, D. Wesolowski, and R. E. Mesmer,J. Solution Chem. 16, 443 (1987).

    Google Scholar 

  31. D. J. Wesolowski and D. A. Palmer,J. Solution Chem. 18, 545 (1989).

    Google Scholar 

  32. B. F. Hitch and R. E. Mesmer,J. Solution Chem. 5, 667 (1976).

    Google Scholar 

  33. R. H. Busey and R. E. Mesmer,J. Chem. Eng. Data 23, 175 (1978).

    Google Scholar 

  34. W. T. Lindsay,Proc. Int. Water Conf. Eng. Soc., W. Pa. 41, 284 (1980).

    Google Scholar 

  35. R. H. Busey and R. E. Mesmer,J. Solution Chem. 5, 147 (1976).

    Google Scholar 

  36. W. R. Busing and H. A. Levy, Oak Ridge Natl. Lab. Rep., ORNL-TM (U.S.) ORNL-TM-271 (1963).

  37. K. S. Pitzer,J. Phys. Chem. 37, 268 (1973).

    Google Scholar 

  38. A. G. Dickson, D. J. Wesolowski, D. A. Palmer, and R. E. Mesmer,J. Phys. Chem 94, 7978 (1990).

    Google Scholar 

  39. D. A. Palmer and S. E. Drummond,J. Phys. Chem. 92, 6795 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettler, R.M., Palmer, D.A. & Wesolowski, D.J. Dissociation quotients of oxalic acid in aqueous sodium chloride media to 175°C. J Solution Chem 20, 905–927 (1991). https://doi.org/10.1007/BF01074952

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01074952

Key words

Navigation