Skip to main content
Log in

Neutron diffraction studies of nuclear magnetic ordering in copper

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have constructed a two-stage nuclear demagnetization cryostat for neutron diffraction studies of nuclear magnetism in copper. The cryostat is combined with a two-axis neutron spectrometer which can use both polarized and unpolarized neutrons. By demagnetizing highly polarized copper nuclear spins, the nuclei could be cooled below the ordering temperatureT N≃60 nK, while keeping the lattice at a considerably higher temperature between 50 and 100 µK. The neutron beam increases the lattice temperature in the sample by a factor of two or more, thereby considerably shortening the time for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized neutrons. By observing the (100) Bragg reflection, we have unambiguously proven antiferromagnetic ordering of the copper nuclear spins. Using a linear, position-sensitive detector, the time evolution of this peak was followed during the warm-up of the nuclear spin system. The peak intensity was found to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation for our experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Andres and O. V. Lounasmaa, inProgress in Low Temperature Physics, Vol. 8, D. F. Brewer, ed. (North-Holland, Amsterdam, 1982), p. 222.

    Google Scholar 

  2. H. Suzuki, M. Namburdribad, B. Bleaney, A. L. Allsop, G. J. Bowder, I. A. Campell, and N. I. Stone,J. Physique Collq. C6, 801 (1978); J. Babcock, J. Kiely, T. Manley, and W. Weyhmann,Phys. Rev. Lett. 43, 380 (1979); M. Kubota, H. R. Folle, Ch. Buchal, R. M. Mueller, and F. Pobell,Phys. Rev. Lett. 45, 1812 (1980); M. Kubota, K. J. Fischer, and R. M. Mueller,Jpn. J. Appl. Phys. (Suppl.)26-3, 427 (1987).

    Google Scholar 

  3. R. M. Nicklow, R. M. Moon, S. Kawarazaki, N. Kunitomi, H. Suzuki, T. Ohtsuka, and Y. Morii,J. Appl. Phys. 57, 3784 (1985); A. Benoit, J. Flouquet, J. L. Genicon, and J. Palleau,Physica 108B, 1103 (1981).

    Google Scholar 

  4. A. Abragam and M. Goldman,Nuclear Magnetism: Order and Disorder (Clarendon Press, Oxford, 1982), p. 470.

    Google Scholar 

  5. W. A. Halperin, C. N. Archie, F. B. Rasmussen, R. A. Buhrman, and R. C. Richardson,Phys. Rev. Lett. 32, 927 (1974).

    Google Scholar 

  6. D. D. Osheroff, M. C. Cross, and D. S. Fisher,Phys. Rev. Lett. 44, 792 (1980).

    Google Scholar 

  7. G. Eska and E. Schuberth,Jpn. J. Appl. Phys. (Supl.)26-3, 435 (1987).

    Google Scholar 

  8. A. S. Oja, A. Annila, and Y. Takano, to be published.

  9. M. T. Huiku and M. T. Loponen,Phys. Rev. Lett. 49, 1288 (1982).

    Google Scholar 

  10. M. T. Huiku, T. A. Jyrkkiö, and M. T. Loponen,Phys. Rev. Lett. 50, 1516 (1983).

    Google Scholar 

  11. M. T. Huiku, T. A. Jyrkkiö, J. M. Kyynäräinen, A. S. Oja, and O. V. Lounasmaa,Phys. Rev. Lett. 53, 1692 (1984).

    Google Scholar 

  12. M. T. Huiku, T. A. Jyrkkiö, J. M. Kyynäräinen, M. T. Loponen, O. V. Lounasmaa, and A. S. Oja,J. Low Temp. Phys. 62, 433 (1986).

    Google Scholar 

  13. A. S. Oja,Phys. Scr. T19, 462 (1987), and references therein.

    Google Scholar 

  14. Y. Roinel, V. Bouffard, G. L. Bacchella, M. Pinot, P. Meriel, P. Roubeau, O. Avenel, M. Goldman, and A. Abragam,Phys. Rev. Lett. 41, 1572 (1978).

    Google Scholar 

  15. A. Benoit, J. Bossy, J. Flouquet, and J. Schweizer,J. Phys. (Paris),Lett. 46, L923 (1985).

  16. T. A. Jyrkkiö, M. T. Huiku, K. N. Clausen, K. Siemensmeyer, K. Kakurai, and M. Steiner,Z. Phys. B 71, 139 (1988).

    Google Scholar 

  17. T. A. Jyrkkiö, M. T. Huiku, O. V. Lounasmaa, K. Siemensmeyer, K. Kakurai, M. Steiner, K. N. Clausen, and J. K. Kjems,Phys. Rev. Lett. 60, 2418 (1988).

    Google Scholar 

  18. A. S. Oja and H. E. Viertiö,Jpn. J. Appl. Phys. (Suppl).26-3, 441 (1987).

    Google Scholar 

  19. M. A. Ruderman and C. Kittel,Phys. Rev. 96, 99 (1954).

    Google Scholar 

  20. M. T. Huiku,Physica 126B, 51 (1984).

    Google Scholar 

  21. P.-A. Lindgård, X.-W. Wang, and B. N. Harmon,J. Magn. Magn. Mater. 54–57, 1052 (1986).

    Google Scholar 

  22. S. J. Frisken and D. J. Miller,Phys. Rev. Lett. 57, 2971 (1986).

    Google Scholar 

  23. A. S. Oja and P. Kumar,J. Low Temp. Phys. 66, 155 (1987).

    Google Scholar 

  24. D. L. Price and K. Sköld, in“Neutron Scattering”, Methods of Experimental Physics, Vol. 23 A, K. Sköld and D. L. Price, eds. (Academic Press, New York, 1987), p. 1.

    Google Scholar 

  25. L. Koester and H. Rauch,Summary of Neutron Scattering Lengths, IAEA Contract 2517/RB (1981).

  26. G. J. Ehnholm, J. P. Ekström, J. F. Jacquinot, M. T. Loponen, O. V. Lounasmaa, and J. K. Soini,J. Low Temp. Phys. 39, 417 (1980).

    Google Scholar 

  27. M. T. Huiku, M. T. Loponen, T. A. Jyrkkiö, J. M. Kyynäräinen, A. S. Oja, and J. K. Soini, inProceedings of the LT-17 Conference, V. Eckernet al., eds. (North-Holland, Amsterdam, 1984), p. 133.

    Google Scholar 

  28. O. V. Lounasmaa,Experimental Principles and Methods below 1 K (Academic Press, New York, 1974), p. 103.

    Google Scholar 

  29. M. Goldman,Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon Press, Oxford, 1970), p. 51.

    Google Scholar 

  30. M. Steiner,Neutron Scattering in the Nineties (IAEA, Vienna, 1985), p. 185.

    Google Scholar 

  31. For66Cu,Nuclear Data Sheets B2-6-43 (1968); for64Cu, B2-3-65 (1967).

  32. G. Knoll,Radiation Detection and Measurement (John Wiley & Sons, New York, 1968), p. 56.

    Google Scholar 

  33. M. Steiner, L. Bevaart, Y. Ajiro, A. J. Millhouse, K. Ohlhoff, G. Rahn, H. Dachs, U. Scheer, and B. Wanklyn,J. Phys. C 14, L597 (1982).

    Google Scholar 

  34. A. Benoit, J. Flouquet, D. Rufin, and J. Schweitzer,J. Physique C 7, 311 (1982).

    Google Scholar 

  35. W. H. Zachariassen,Acta Crystallogr. 23, 558 (1967).

    Google Scholar 

  36. G. E. Bacon,Neutron Diffraction, 3rd ed. (Clarendon Press, Oxford, 1975), p. 84.

    Google Scholar 

  37. P. J. Becker and P. Coppens,Acta Crystallogr. A30, 129 (1974), andA31, 417 (1975).

    Google Scholar 

  38. H. E. Viertiö and A. S. Oja,Phys. Rev. B 36, 3805 (1987).

    Google Scholar 

  39. L. H. Kjäldman and J. Kurkijärvi,Phys. Lett. 71A, 454 (1979).

    Google Scholar 

  40. P. Kumar, J. Kurkijärvi, and A. S. Oja,Phys. Rev. B 33, 444 (1986).

    Google Scholar 

  41. J. P. Ekstöm, J. F. Jacquinot, M. T. Loponen, J. K. Soini, and P. Kumar,Physica 98B, 45 (1979).

    Google Scholar 

  42. E. R. Andrew and W. S. Hinshaw,Phys. Lett. 43A, 113 (1973).

    Google Scholar 

  43. A. S. Oja and P. Kumar,Physica 126B, 451 (1984).

    Google Scholar 

  44. P.-A. Lindgård,Phys. Rev. Lett. 61, 629 (1988).

    Google Scholar 

  45. H. E. Viertiö and A. S. Oja (1988) to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jyrkkiö, T.A., Huiku, M.T., Siemensmeyer, K. et al. Neutron diffraction studies of nuclear magnetic ordering in copper. J Low Temp Phys 74, 435–473 (1989). https://doi.org/10.1007/BF00682669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682669

Keywords

Navigation