Skip to main content
Log in

The thermal conductivity of gases: Incorrect results due to desorbed air

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Air desorbed from the measuring instrument can falsify the thermal conductivity of a gas measured by steady-state methods. For a guarded hot-plate apparatus the contamination effect was determined to depend on both the residence time in the system and the temperature. The investigation covered the gases H2, He, Ne, CH4, N2, air, Ar, and Kr. For gases whose conductivity is better than that of air (H2, He) the measured values are too small, and for gases of poorer conductivity they are too high. Corrections for the effect of impurity have been applied to the measurements presented. These impurity corrections are considerably larger than the precision of the measurements, but they are of the order of the estimated overall uncertainty of the measurements. The departures between the corrected thermal conductivities reported here and values taken from the correlations in the literature run up to 5 % at the highest temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Guildner, J. Res. Natl. Bur. Stand. 79A:407 (1975).

    Google Scholar 

  2. H. Poltz and R. Jugel, Int. J. Heal Mass Transfer 25:1093 (1982).

    Google Scholar 

  3. R. Jugel, PTB-Bericht W-26:1 (1985).

    Google Scholar 

  4. W. Hemminger and R. Jugel, Int. J. Thermophys. 6:483 (1985).

    Google Scholar 

  5. H. Ziebland, Pure Appl. Chem. 53:1863 (1981).

    Google Scholar 

  6. I. Amdur and L. A. Guildner, J. Am. Chem. Soc. 79:311 (1957).

    Google Scholar 

  7. H. Ebert (ed.), Physikalisches Taschenbuch, 5th ed. (Vieweg, 1978), p. 450.

  8. B. M. W. Trapnell, Chemisorption (Butterworths, London, 1955), p. 49.

    Google Scholar 

  9. Y. S. Touloukian and C. Y. Ho, Thermophysical Properties of Matter, Vol. 3 (IFI/Plenum, New York, 1970).

    Google Scholar 

  10. Landolt-Börnstein, Zahlenwerte und Funktionen, Vol. IV/4b, 6th ed. (Springer, Berlin, 1971).

    Google Scholar 

  11. W. G. Kannuluik and L. H. Martin, Proc. Roy. Soc. 144:496 (1934).

    Google Scholar 

  12. S. Weber, Ann. Phys. 82:479 (1927).

    Google Scholar 

  13. A. Banerjea, K. Hammeke, N. Hüpping, H. E. Kipke, and A. Stoehr, Thermodynamische Stoffwerte von Helium im Bereich von 20 bis 1500°C und 1 bis 100 bar, Teil 1, KFA Jülich, Jül-1762, December (1978).

    Google Scholar 

  14. B. Le Neindre, R. Tufeu, P. Bury, P. Johannin, and B. Vodar, in Proc. 8th Conf. Therm. Conduct., C. Y. Ho and R. E. Taylor, eds. (Plenum Press, New York, 1969), p. 75.

    Google Scholar 

  15. D. R. Tree and W. Leidenfrost, inProc. 8th Conf. Therm. Conduct., C. Y. Ho and R. E. Taylor, eds. (Plenum Press, New York, 1969), p. 101.

    Google Scholar 

  16. Japan Society of Mechanical Engineers (ed.), JSME Data Book: The Thermophysical Properties of Fluids (JSME, 1983).

  17. H. L. Johnston and E. R. Grilly, J. Chem. Phys. 14:233 (1946).

    Google Scholar 

  18. B. A. Younglove, J. Phys. Chem. Ref. Data 11:Suppl. 1 (1982).

    Google Scholar 

  19. H. J. M. Hanley and J. F. Ely, J. Phys. Chem. Ref. Data 2:735 (1973).

    Google Scholar 

  20. R. L. Nutall and D. C. Ginnings, J. Res. Natl. Bur. Stand. 58:271 (1957).

    Google Scholar 

  21. H. Senftleben, Z. Angew. Phys. 17:86 (1964).

    Google Scholar 

  22. W. G. Kannuluik and H. E. Carman, Proc. Roy. Soc. B 65:701 (1952).

    Google Scholar 

  23. P. C. Jain, Ind. J. Pure Appl. Phys. 22:739 (1984).

    Google Scholar 

  24. A. Michels, J. V. Sengers, and L. J. M. Van De Klundert, Physica 29:149 (1963).

    Google Scholar 

  25. H. J. M. Hanley, W. M. Haynes, and R. D. McCarty, J. Phys. Chem. Ref. Data 6:597 (1977).

    Google Scholar 

  26. D. L. Timrot and A. S. Umanskii, High Temp. 3:345 (1965).

    Google Scholar 

  27. N. C. Blais and J. B. Mann, J. Chem. Phys. 32:1459 (1960).

    Google Scholar 

  28. Y. S. Touloukian, S. C. Saxena, and P. Hestermans, Thermophysical Properties of Matter, Vol. 11 (IFI/Plenum, New York, 1975).

    Google Scholar 

  29. N. V. Tsederberg, Thermal Conductivity of Gases and Liquids, (Arnold, London, 1965), p. 79.

    Google Scholar 

  30. K. Kadoya, N. Matsunaga, and A. Nagashima, J. Phys. Chem. Ref. Data 14:947 (1985).

    Google Scholar 

  31. K. Stephan and A. Laesecke, J. Phys. Chem. Ref. Data 14:227 (1985).

    Google Scholar 

  32. J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, J. Phys. Chem. Ref. Data 13:229 (1984).

    Google Scholar 

  33. H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, J Phys. Chem. Ref. Data 3:979 (1974).

    Google Scholar 

  34. J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica 110A:349 (1980).

    Google Scholar 

  35. M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. 77:439 (1981).

    Google Scholar 

  36. R. A. Dawe and E. B. Smith, J. Chem. Phys. 52:693 (1970).

    Google Scholar 

  37. E. Vogel, E. Bich, and J. Millat, Z. Phys. Chem. Leipzig 267:131 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemminger, W. The thermal conductivity of gases: Incorrect results due to desorbed air. Int J Thermophys 8, 317–333 (1987). https://doi.org/10.1007/BF00503945

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503945

Key words

Navigation