Skip to main content
Log in

A transient hot-wire method for measuring the thermal conductivity of gases and liquids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper we describe a version of a transient hot-wire apparatus which employs an integrating digital voltmeter to measure the bridge out-of-balance signal. The integrating period of the voltmeter is variable and is routinely set equal to one 60-Hz power-line cycle, 16.67 ms. Use of measurement or integration periods less than an integral multiple of the power-line period results in substantially more electronic noise and a significant degradation in experimental precision. A correction to the working equation which accounts for the integration of the out-of-balance signal is also presented. The precision of the digital voltmeter used with the apparatus is ±0.1 μV, which translates into an ultimate precision of ±0.03 mK in the measured temperature rise. In practice the precision in the temperature rise is typically ±0.3 mK, which represents a moderate improvement over the precision generally obtained with transient techniques employing automatic bridge balancing schemes. Although the current apparatus is designed principally for measurements of the thermal conductivity of liquids, it can been used for gas-phase measurements, with some decrease in accuracy due to the somewhat larger heat capacity correction which must be applied to the temperature rise measurements. The operation of the instrument was verified by measuring the thermal conductivities of toluene and nitrogen. Preliminary data are presented for the new environmentally acceptable fluorocarbons such as R-134a (CF3CH2F), R-123 (CHCl2CF3), and R-141b (CCl2FCH3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica 100A:349 (1980).

    Google Scholar 

  2. M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. I 77:439 (1981).

    Google Scholar 

  3. C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1073 (1986).

    Google Scholar 

  4. C. A. Nieto de Castro, S. F. Y. Li, G. C. Maitland, and W. A. Wakeham, Int. J. Thermophys. 4:311 (1983).

    Google Scholar 

  5. E. Charitidou, M. Dix, M. J. Assael, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:511 (1987).

    Google Scholar 

  6. N. Mani, Ph.D. thesis (University of Calgary, Calgary, Canada, 1971).

    Google Scholar 

  7. Y. H. Julia, J. F. Renaud, D. J. Ferrand, and P. F. Malbrunot, Rev. Sci. Instrum. 48:1654 (1977).

    Google Scholar 

  8. Y. Nagasaka and A. Nagashima, Rev. Sci. Instrum. 52:229 (1981).

    Google Scholar 

  9. H. M. Roder, J. Res. Natl. Bur. Stand. (U.S.) 86:457 (1981).

    Google Scholar 

  10. H. M. Roder, J. Res. Natl. Bur. Stand. (U.S.) 87:279 (1982).

    Google Scholar 

  11. G. P. Anderson, J. J. de Groot, J. Kestin, and W. A. Wakeham, J. Phys. E Sci. Instrum. 7:948 (1974).

    Google Scholar 

  12. C. A. Nieto de Castro, J. C. G. Colado, W. A. Wakeham, and M. Dix, J. Phys. E Sci. Instrum. 9:1073 (1976).

    Google Scholar 

  13. J. J. de Groot, J. Kestin, and H. Sookiazian, Physica 75:454 (1974).

    Google Scholar 

  14. J. Kestin and W. A. Wakeham, Physica 92A:102 (1978).

    Google Scholar 

  15. G. C. Maitland, M. Mustafa, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. I 79:163 (1983).

    Google Scholar 

  16. Y. S. Touloukian (ed.), Thermophysical Properties of Matter, Vol. 3. Thermal Conductivity Nonmetallic Liquids and Gases, (Plenum, New York, 1970), pp. 185–189.

    Google Scholar 

  17. T. Makita, T. Tanaka, Y. Morimoto, M. Noguchi, and H. Kubota, Int. J. Thermophys. 2:249 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, R.G., Shankland, I.R. A transient hot-wire method for measuring the thermal conductivity of gases and liquids. Int J Thermophys 10, 673–686 (1989). https://doi.org/10.1007/BF00507988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00507988

Key words

Navigation