Skip to main content
Log in

X-ray photoelectron spectroscopic study of the oxidation and reduction of a cerium(III) oxide/cerium foil substrate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy has been used to examine the nature of the oxide overlayers on a passivated cerium metal foil as a function of a variety of oxidation and reduction treatments. Oxidation of a clean uncontaminated cerium(III) oxide surface is facile at room temperature and produces non-stoichiometric ceria (CeO2−x) at oxygen doses as low as 10 L. At higher doses the overlayer thickens, and after a dose of 160 L the layer depth exceeds the Ce 3d photoelectron attenuation distance of about 20 Å. High pressure treatment of the foil in oxygen (0.5 bar at RT and 473 K) produces CeO2 in a high degree of crystallographic order such that O 1s photoelectron intensities are increased above that expected from a randomly oriented powder. An attempt to reduce the CeO2 layer formed by controlled oxidation with CO (633 K, 14 h, 0.6 bar) results in the formation of a carbonated surface layer. Results following attempts to reoxidise this layer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Creaser, P.G. Harrison, B.A. Wolfindale and M.A. Morris, in:Catalysis and Surface Characterisation, eds. T.J. Dines, C.A. Rochester and J. Thompson (Royal Society of Chemistry, Cambridge, 1992) p. 261.

    Google Scholar 

  2. Y. Baer and G. Busch, Phys. Rev. Lett. 31 (1973) 35.

    Google Scholar 

  3. L. Schlapbach, Solid State Commun. 33 (1981) 117.

    Google Scholar 

  4. S.L. Qui, C.L. Lin, J. Chen and M. Slrongin, Phys. Rev. B 41 (1990) 7467.

    Google Scholar 

  5. D.D. Sarma, M.S. Hegde and C.N.R. Rao, J. Chem. Soc. Faraday Trans. II 77 (1981) 1509.

    Google Scholar 

  6. P.D. Schulze and E.L. Hardegree, J. Phys. Chem. 93 (1989) 5254.

    Google Scholar 

  7. M. Ayyoob and D.D. Sarma, Ind. J. Chem. 22A (1983) 731.

    Google Scholar 

  8. A. Platau, L.I. Johansson, A.L. Hagstrom, S.-E. Karlsson and S.B.M. Hagstrom, Surf. Sci. 63 (1977) 153.

    Google Scholar 

  9. C.R. Helms and W.E. Spicer, Appl. Phys. Lett. 21 (1972) 237.

    Google Scholar 

  10. A. Platau and S.E. Karlsson, Phys. Rev. B 18 (1978) 3820.

    Google Scholar 

  11. G. Praline, B.E. Koel, R.L. Hance, H.-I. Lee and J.M. White, J. Electron. Spectry. Relat. Phenom. 21 (1980) 17.

    Google Scholar 

  12. P. Burroughs, A. Hamnett, A.F. Orchard and G. Thornton, J. Chem. Soc. Dalton Trans. (1976) 1686.

  13. D.A. Shirley, Adv. Chem. Phys. 23 (1973) 85.

    Google Scholar 

  14. J.H. Scofield, J. Electron Spectry. Relat. Phenom. 8 (1976) 129.

    Google Scholar 

  15. M.A. Morris, ICI C&P Internal Report No. IC10454.

  16. M.P. Seah and W.A. Dench, Surf. Anal. 1 (1979) 2.

    Google Scholar 

  17. P.E. Caro, G. Schiffmacher, C. Boulesterix, Ch. Loier and R. Portier, in:Defects and Transport in Oxides, eds. M.S. Seltzer and R.I. Jaffee (Plenum Press, New York, 1974) 521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creaser, D.A., Harrison, P.G., Morris, M.A. et al. X-ray photoelectron spectroscopic study of the oxidation and reduction of a cerium(III) oxide/cerium foil substrate. Catal Lett 23, 13–24 (1994). https://doi.org/10.1007/BF00812127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00812127

Keywords

Navigation